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The rapid development of wearable bio-sensing techniques has made it possible to
continuously record neurophysiological signals in naturalistic scenarios such as the
classroom. The present study aims to explore the neurophysiological correlates of
middle-school students’ academic performance. The electrodermal signals (EDAs) and
heart rates (HRs) were collected via wristband from 100 Grade seven students during
their daily Chinese and math classes for 10 days in 2 weeks. Significant correlations
were found between the academic performance as reflected by the students’ final
exam scores and the EDA responses. Further regression analyses revealed significant
prediction of the academic performance mainly by the transient EDA responses
(R2 = 0.083, p < 0.05, with Chinese classes only; R2 = 0.030, p < 0.05, with both
Chinese and math classes included). By combining the self-report data about session-
based general statuses and the neurophysiological data, the explained powers of
the regression models were further improved (R2 = 0.095, p < 0.05, with Chinese
classes only; R2 = 0.057, p < 0.05, with both Chinese and math classes included),
and the neurophysiological data were shown to have independent contributions to
the regression models. In addition, the regression models became non-significant by
exchanging the academic performances of the Chinese and math classes as the
dependent variables, suggesting at least partly distinct neurophysiological responses
for the two types of classes. Our findings provide evidences supporting the feasibility of
predicting educational outputs by wearable neurophysiological recordings.

Keywords: wearable neurophysiology recordings, skin conductance, ambulatory assessment, middle school,
academic performance

INTRODUCTION

The rapid development of wearable bio-sensing techniques has made it possible to continuously
record neurophysiological signals in naturalistic scenarios, such as driving, gaming, studying,
and, etc. (Rutherford, 2010; Jacucci et al., 2015). The wearable bio-sensing devices, usually
taking the form of a wristband, a chestband, or a headband, are capable of recording
human neurophysiological signals without interrupting the participants’ performance. As human
neurophysiological signals have long been acknowledged to be effective indicators of a variety of
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cognitive functions such as attention, engagement, emotion, and,
etc. (Driver, 2001; Picard et al., 2001; Li et al., 2015; Cowley et al.,
2016), these wearable recordings are expected to provide a real-
time, objective measurement of human cognitive statuses in real-
world situations beyond the laboratory.

The application of wearable neurophysiological recordings
in naturalistic classroom scenarios has attracted increasing
attention for both psychologists and educational researchers,
leading to an emerging field of educational neurosciences
(Lieberman, 2012; Miller, 2016). Researchers are starting to
collect neurophysiological data in the classroom and the analyses
of these data are supposed to reveal the underlying mechanisms
for learning (Wu et al., 2016). A better understanding of how
people learn will ultimately improve the learning and instruction.

The state-of-the-art wearable bio-sensing techniques are
readily available for recording the neurophysiological signals
from both the central nervous system (CNS) and the autonomic
nervous system (ANS). Wearable electroencephalography (EEG)
and wearable functional near-infrared spectroscopy (fNIRS)
are the most popular signals for characterizing CNS activities.
For instance, teaching outcome has been demonstrated to
be correlated with fNIRS-based cortical coupling between the
teacher’s and the student’s brain in dyadic settings (Holper et al.,
2013; Zheng et al., 2018); simultaneous EEG recordings from
groups of students have been exhibited to be associated with
engagement, attention, and even their preferences for teachers
(Dikker et al., 2017; Ko et al., 2017; Poulsen et al., 2017);
and student-teacher synchrony in real classroom settings can
reflect students’ perceived closeness to the teacher (Bevilacqua
et al., 2018). Despite these recent exciting findings, the
need for experts for preparing and setting up the recording
devices, as well as the inevitable physical contacts between
the probes/electrodes and human scalps, pose limitations for a
direct application in long-term and large-scale studies, which is
a necessary and important step toward providing suggestions
for educational researchers and practitioners (Immordino-Yang
and Gotlieb, 2017). Indeed, the experimental conditions were
usually well controlled with artificial tasks and limited number
of students (with size between 9 and 18 students in recent
studies).

The recordings of ANS activities, however, are likely to be
a more suitable candidate for monitoring students’ cognitive
statuses in a more natural way. To represent ANS activities, heart
rate (HR), heart rate variability, skin conductance, respiration
rate, and skin temperature are the commonly used signals. These
signals have been well documented to reflect critical cognitive
statuses as well (Cowley et al., 2016; Wu et al., 2016). In addition,
multi-dimensional representations using two or more of these
signals, have been suggested to characterize more complex
cognitive statuses or have better predictive powers, as compared
to the single-signal unidimensional representation (Frantzidis
et al., 2010; Shiota et al., 2011; Charland et al., 2015). The earliest
attempt to use ANS to investigate education questions can be
tracked back to Koester and Farley (1982), using both HR and
skin conductance. Compared to this pioneer study, these signals
can now be acquired by using wristband-like devices with high
quality. Besides the maturation of the ANS recording techniques,

the wristband-like devices are much cheaper and more user-
friendly to wear and use than the EEG and fNIRS devices for
CNS signals, with minimal influence on the students’ normal
activities. Therefore, they are more suitable for studies with a high
ecological validity, i.e., monitoring a larger group of students in
their normal classroom environment for a longer term, e.g., for
weeks, months, or years.

Whereas the majority of the ANS-based studies to date
have focused on the prediction of the cognitive statuses,
cognitive activities need be able to predict academic performance
to be meaningful to educators. Despite the recognition of
multidimensional educational outcomes, academic achievement
is still considered as the primary educational outputs by
both educational researchers and practitioners (Marton and
Säljö, 1976). Extensive studies have shown consistent evidence
that test scores serve as significant and positive predictors
of future career advancement and income (e.g., Grogger and
Eide, 1995; Murnane et al., 1995, 2000; Altonji and Blank,
1999; Currie and Thomas, 2001). Therefore, it is necessary for
neurophysiologists and psychologists to explore further beyond
cognition, to fulfill the needs by educational researchers and
practitioners.

The present study is an exploratory investigation on the
prediction of academic performance by neurophysiological
signals. HRs and electrodermal signals (EDAs) were measured
from 100 grade seven middle-school students for 2 weeks during
their daily Chinese and math classes, using a customized designed
wristband. These recordings were found to be an effective
predictor of the students’ academic performance measured by
their final exam scores. Our results provide evidences supporting
the feasibility of evaluating educational outputs by wearable
neurophysiological recordings.

MATERIALS AND METHODS

Participants
All participants are from a regular middle school in Beijing.
Three classes of grade 7 were selected, from which 100 students
volunteered to participate in the study (mean age 12 years
and 9 months, range from 12 years and 1 month to 13 years
and 4 months). The study was conducted in accordance with
China’s law and the Declaration of Helsinki and approved
by the institutional review board (IRB) in the Department of
Psychology, Tsinghua University. All the volunteer participants
and their legal guardians were provided with paper-back
informed consent and signed before the data collection.

Data Collection
The EDAs and HRs were collected in Chinese and math
sessions for 1 week (from Monday to Friday) in November
(20th to 24th) and another week in December (11th to 15th),
2017. Students wore the wristband in everyday morning before
formal sessions (8AM) begun and took off after the Chinese
sessions and math sessions were done for that day. Each
session lasted for 40 min. In each week, there were six Chinese
sessions and six math sessions for one class of students.
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The total number of sessions was 72 for the three classes of
students, with 36 sessions for Chinese and 36 sessions for
math.

To obtain the neurophysiological signals, the participants
wore customized designed wristbands on either of their hands
(Psychorus, China) throughout the Chinese and math sessions.
EDAs were acquired by surface electrodes with conductive gels
at a sampling rate of 40 Hz. HRs were collected using the
photoplethysmography (PPG) method at a sampling rate of
20 Hz. Three-axis accelerations were recorded at 20 Hz as well,
but not used in the present study. The experimenters helped
the students to use conductive gels and wear the devices. To
minimize the disturbance on the regular teaching activity, we did
not have time to check the quality of the data during preparation
but performed post hoc artifact rejection to exclude possible
low-quality data.

After each session, participants filled out a short questionnaire
to report their self-assessment on the following three items: (1)
the degree of knowledge mastery during this session (five options:
under 30%, 30–50%, 50–70%, 70–90%, 90% above), (2) the
degree of concentration during this session, and (3) the general
emotional valence (negative or positive) during this session. The
second and third items were rated by seven-point Likert scales.
All the students were explicitly informed that their reports were
just for research purposes and would never be revealed to their
teachers.

Following the common practice (Marsh and Yeung, 1997;
Sirin, 2005), the students’ final exam scores (in January 2018)
were used to measure their academic performance.

Data Preprocessing
Defining one student’s data collected in one session as one
dataset, there were in total 2400 datasets (100 students × 24
sessions per student). As the neurophysiological recordings took

place in real classrooms and the cooperation level of grade
seven students were in general lower than adult participants,
we performed careful visual inspections to exclude the datasets
with low data qualities. Datasets were rejected if they fitted
one of the following criterions: (1) no change in EDA signals
for >30% of the recording time (indicating the wristband not
properly worn by participants as required); (2) high frequency
oscillation for >50% of the recording time (indicating no
effective contact between the wristband and the skin); (3)
abnormal HR values (<40 beat per minute (BPM) or >200
BPM) for >30% of the recording time. These ratios were selected
empirically so as to keep a sufficient amount of data for a reliable
estimation of the single session neurophysiological data. After
inspection, 809 datasets from 84 students were included for
further analysis.

Preprocessing of EDA signals was carried out using the
LEDALAB toolbox (Benedek and Kaernbach, 2010). The raw
signals were first downsampled to 10 Hz and then smoothed
with an 8-point Gaussian window for noise reduction. The
signals were further decomposed into the tonic skin conductance
level (SCL) and the transient skin conductance response (SCR)
(Boucsein, 2012), using the continuous decomposition analysis
(CDA) method. Instead of defining discrete events from SCRs
based on the response peaks, here the integration of SCRs (iSCR)
was calculated to represent the overall SCR in a certain time
period. The integration was believed to effectively capture the
cumulative effect of the EDA signals, while avoiding the possible
influences by the usually arbitrary decision of the thresholds for
peak detection and event definition (Benedek and Kaernbach,
2010). Considering the non-stationary of the EDA signals (Son
and Park, 2011), both SCL and iSCR were calculated on the basis
of 10-s non-overlapping time windows for all datasets. The mean
and variation of the 10-s based SCL and iSCR over each 40-min
session were then extracted as the indicators of the EDA signals of

FIGURE 1 | An example of a participant’s EDA curves over one classroom session. (A) EDA is the curve of raw data of skin conductance of one student over a
sample session (40 min); (B) SCL is the tonic skin conductance level decomposed from the CDA method; (C) SCR is the transient skin conductance response
decomposed from the CDA method; and (D) iSCR is the integral of SCR over the 10-s non-overlapping time windows.
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each dataset. The calculation of the EDA indicators is illustrated
in Figure 1.

Heart rates were calculated in a similar way using the PPG
data. The mean and variation of the 10-s based averaged HRs
over one session were extracted as the indicators of the HRs of
the corresponding dataset.

A second-round artifact rejection procedure was then
performed to check for extreme outliers, the datasets with any
of the above-mentioned extracted neurophysiological indicators
(i.e., mean and variation of SCL, iSCR, HR) exceeding five
standard deviations of the sample mean (of all datasets) were
rejected. The selection of five standard deviations was decided
empirically to exclude the most extreme data while maintaining
a reasonable amount of data for the following data analyses. The
final number of datasets for statistical analysis was 771 from 84
students. For each of the 84 students, 1–21 datasets were available
for analysis.

The academic performance, i.e., the final exam scores for
Chinese and math, were standardized, respectively, over all the
Grade seven students of that school (503 students, including
non-participant).

Data Analysis
Pairwise Pearson’s correlations were first calculated between
all possible pairs among the neurophysiological indicators,
the questionnaire reports and the corresponding academic
performance (i.e., pooled final exam scores of Chinese and
math). Since the neurophysiological data were clustered within
each individual student (i.e., each student had data from
multiple sessions), standard errors were corrected for this intra-
individual correlation by using cluster-robust covariance matrix
and multilevel modeling as suggested by Liang and Zeger (1986)
and White (1980).

Multiple linear regression was applied to explore the
relation between all the neurophysiological indicators and
the academic performance as reflected by the final exam
scores. Regression models were first computed for Chinese and
math classes separately and then on pooled data of the two
subjects. The neurophysiological indicators were used as the
independent variables and the final exam scores were used as
the dependent variables. Due to the high correlations among
the neurophysiological indicators, principal component analysis
(PCA) was used to extract the principal components to avoid
collinearity, prior to the regression analysis. PCA was applied
to the z-scores of the neurophysiological data and a varimax
rotation was used. The Kaiser criterion (eigenvalue > 1) was
employed to decide the number of factors to be retained. Similar
to the correlation analysis, standard errors were corrected for
intra-individual correlations by using cluster-robust covariance
matrix and multilevel modeling as well.

The self-report questionnaire is the traditional method to
measure students’ personal inputs in class and learning output
(Schmeck et al., 1977; Pintrich and De Groot, 1990; Pekrun
et al., 2002). We would like to check if physiological data could
provide additional explanation to the variation of academic
performance, compared with self-report data. To this end,
multiple linear regression models were constructed with the
session-based questionnaire reports as the independent variables
and the academic performance as the dependent variable were
constructed. Principal components were extracted from the
questionnaire reports as well, using the PCA method. Then, the
two predicted values from both the neurophysiological-based
and the questionnaire-based regression models were further
used together as independent variables to predict academic
performance. A significant regression coefficient for any of the
two predicted values would imply a unique contribution of the

TABLE 1 | The pairwise correlation matrix.

HR mean HR variation SCL mean SCL variation iSCR mean iSCR variation Knowledge mastery Attention Emotion

HR variation −0.047

(0.047)

SCL mean −0.087 −0.091∗∗

(0.053) (0.037)

SCL variation 0.005 0.005 0.584∗∗∗

(0.045) (0.049) (0.069)

iSCR mean −0.002 0.263∗∗∗
−0.305∗∗∗

−0.120∗∗∗

(0.050) (0.056) (0.038) (0.029)

iSCR variation 0.014 0.240∗∗∗
−0.224∗∗∗

−0.063∗∗ 0.901∗∗∗

(0.051) (0.054) (0.039) (0.022) (0.046)

Knowledge mastery −0.122∗ 0.060 −0.019 −0.067 −0.035 −0.027

(0.065) (0.051) (0.054) (0.044) (0.069) (0.049)

Attention −0.075 0.059 0.008 −0.023 −0.062 −0.077 0.483∗∗∗

(0.048) (0.055) (0.040) (0.028) (0.065) (0.052) (0.061)

Emotion −0.133∗∗ 0.099∗ 0.007 −0.026 −0.010 0.002 0.539∗∗∗ 0.630∗∗∗

(0.055) (0.051) (0.045) (0.039) (0.064) (0.049) (0.057) (0.066)

Final exam −0.033 −0.051 0.079∗∗ 0.006 −0.172∗∗∗
−0.154∗∗∗ 0.260∗∗ 0.089 0.101

(0.073) (0.052) (0.036) (0.042) (0.061) (0.057) (0.101) (0.074) (0.067)

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01, cluster-robust standard errors in parentheses.
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corresponding set of variables that cannot be explained by the
other set.

Lastly, the subject-specificity of the relationship between
neurophysiological data and test scores (either Chinese or math)
were also investigated. Regression models were constructed by
switching the dependent variables between the two subjects,
while keeping the independent variables unmoved. A non-
significant result by such a switch would support a subject-
specific neurophysiological response pattern and a significant
regression would imply a supra-subject finding. In addition to
further check if this correlation is subject specific or just because
of students’ consistent performance in both Chinese and math
sessions, a subsample of students favoring only one subject over
the other is identified by the standard that the difference between
math and Chinese standardized test scores exceeding 0.5 SD.
According to this standard, thirty students are identified as those
favoring only subject. Similarly, the regular regression model
and switched dependent variable model were applied on this
subsample.

RESULTS

Pairwise Correlations
The pairwise correlation results are presented in Table 1.
The neurophysiological data were highly correlated: significant
positive correlations were observed for the pairs of SCL mean
and SCL variation (r = 0.584, p < 0.01), iSCR mean and iSCR
variation (r = 0.901, p < 0.01), HR variation and iSCR mean
(r = 0.263, p < 0.01)/variation (r = 0.240, p < 0.01); significant
negative correlations were found for the pairs of HR variation
and SCL mean (r = −0.091, p < 0.05), SCL mean with iSCR
mean (r = −0.305, p< 0.01)/variation (r = −0.224, p< 0.01), and
SCL variation with iSCR mean (r = −0.120, p < 0.01)/variation
(r = −0.063, p < 0.01). The pooled final exam scores were
positively correlated with SCL mean (r = 0.079, p < 0.05), self-
reported knowledge mastery (r = 0.260, p < 0.01), and negatively
correlated with iSCR mean (r = −0.172, p < 0.01)/variation
(r = −0.154, p < 0.01). When considering the subject specificity,
iSCR mean (r = −0.354, p < 0.001) and iSCR variation
(r = −0.325, p < 0.01) were only negatively correlated with
Chinese scores; and SCL mean was only positively correlated with
math scores (r = 0.113, p < 0.01).

The Relationship Between Physiological
Indicators and Final Exam Scores
The loading matrix of PCA performed on the neurophysiological
signals are reported in Table 2. Three neurophysiological factors
(NF1, NF2, NF3) have eigenvalues larger than one and therefore
retained (Kaiser’s criterion), explaining 77.7% of the total
variance. According to the loading matrix, NF1 mainly represents
iSCR; NF2 represents SCL and NF3 represents HR.

The multiple regression results with the neurophysiological
factors as independent variables and the academic performance
as dependent variables are listed in Table 3. Significant prediction
of the Chinese final exam scores and the pooled data by the
neurophysiological data were found (R2 = 0.083 and 0.03,

TABLE 2 | Rotated factor loading matrix for the neurophysiological data.

Variables NF1 NF2 NF3

HR mean 0.035 −0.011 0.964

HR variation 0.473 0.045 −0.288

SCL mean −0.231 0.856 −0.086

SCL variation 0.011 0.908 0.049

iSCR mean 0.943 −0.137 0.014

iSCR variation 0.943 −0.055 0.038

TABLE 3 | Regression on final exam scores by the neurophysiological factors.

Variables Chinese Math Chinese and Math

(1) (2) (3)

NF1 −0.291∗∗∗(0.083) −0.082∗(0.044) −0.138∗∗∗(0.046)

NF2 0.000(0.032) 0.054(0.033) 0.023(0.027)

NF3 0.024(0.081) −0.060(0.060) −0.029(0.061)

Sample size 345 426 771

F-value 4.66 1.90 3.03

P-value 0.005 0.137 0.034

R2 0.083 0.020 0.030

∗p < 0.1, ∗∗ p < 0.05, ∗∗∗p < 0.01, cluster-robust standard errors in parentheses.

respectively). The major contributor in both regressions was NF1,
i.e., iSCR mean and variation. Although the prediction of math
scores was not significant, the regression coefficient of NF1 was
also significant.

Comparison Between the
Neurophysiological Data and Self-Report
Data
A PCA was first run on self-reported data to keep the
analysis consistent, and one self-report factor (SF1) was retained
(Table 4), explaining 70.1% of the total variance. The regression
results of self-report factor on final scores were presented
in Table 5. The self-reports on the pooled data significantly
predicted the final exam scores (R2 = 0.031, p = 0.054) but the
subject-specific models showed different results: While the self-
reports on math sessions could marginally significantly predict
the final exam scores (R2 = 0.033, p = 0.054), while the self-reports
on Chinese sessions failed to do so (R2 = 0.026, p = 0.182).

The results of the regression models with both the
neurophysiological data and self-report data are summarized
in Table 6. The pooled model showed significant contributions
by both these two types of data, as reflected by the
significant regression coefficients. Similar findings were
observed for math classes as well, but the regression

TABLE 4 | Loading matrix on self-report variables.

Variables SF1

Q1-Mastery of knowledge 0.795

Q2-Attention 0.845

Q3-Emotional valence 0.871
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TABLE 5 | Analysis on self-report to final exam scores.

Chinese Math Chinese and Math

(1) (2) (3)

SF1 0.137(0.104) 0.149∗(0.076) 0.146∗∗(0.066)

Sample size 345 426 771

F-value 1.82 3.82 4.84

P-value 0.182 0.054 0.031

R2 0.026 0.033 0.031

∗p < 0.1, ∗∗p < 0.05, ∗∗∗ p < 0.01, cluster-robust standard errors in parentheses.

TABLE 6 | Regression on both self-report and neurophysiological data.

Chinese Math Chinese and Math

(1) (2) (3)

Self-report 0.895(0.638) 0.988∗(0.510) 0.951∗∗(0.430)

Neurophysiological 1.829∗∗∗(0.621) 0.615∗∗(0.291) 0.949∗∗∗(0.325)

Sample size 345 426 771

F-value 5.34 2.93 5.81

P-value 0.007 0.060 0.004

R2 0.095 0.046 0.057

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01, cluster-robust standard errors in parentheses.

coefficient of the self-report data during the Chinese
classes failed to reach a significant level. Increases of the
regression R2 values were also observed, as compared to
the single-indicator based models. The largest R2 value
was obtained for the Chinese-class based model, reaching
0.095.

Subject-Specificity
The regression analysis results with the subject scores switched
are shown in Table 7. Based on the neurophysiological data, all
regression models failed to reach a significant level (although
marginal significant for Chinese). Nevertheless, the coefficients

TABLE 7 | Regression on subject-switched data.

Chinese Math Chinese and Math

(1) (2) (3)

NF1 −0.221∗∗(0.100) −0.090(0.056) −0.126∗∗(0.054)

NF2 −0.032(0.033) 0.060∗(0.034) 0.010(0.030)

NF3 −0.027(0.103) 0.030(0.054) 0.006(0.061)

Sample size 345 426 771

F-value 2.65 1.15 2.22

P-value 0.055 0.334 0.092

R2 0.043 0.020 0.022

∗p < 0.1, ∗∗p < 0.05, ∗∗∗ p < 0.01, cluster-robust standard errors in parentheses.

for NF1 remained to be significant for Chinese and pooled
data.

A further exploration with a subsample focusing on students
favoring one subject only are listed in Table 8. Among all
the regression models, the ones with mismatched exam scores
revealed non-significant results and the ones with matched scores
were toward significance. Notably, the regression for Chinese
scores reached a R2 value as high as 0.162 (p < 0.001).

DISCUSSION

In the present study, we explored the predictability of
the neurophysiological recordings in the classroom for
academic performance in a middle-school cohort. The
wrist recorded EDAs were found to be an effective
indicator of the students’ academic performance, with
better results for the Chinese classes than the math
classes. Compared to the session-based self-reports,
these neurophysiological signals were shown to provide
additional information. Furthermore, the predication
of the neurophysiological signals was revealed to be
subject specific. Taken together, our results provide
preliminary evidences toward the application of wearable

TABLE 8 | Subject specific check on one-subject preferred students.

Chinese class Math class Chinese and Math

Chinese score Math score Math score Chinese score Corresponding score Switched score

(1) (2) (3) (4) (5) (6)

NF1 −0.328∗∗∗(0.052) −0.239(0.140) −0.023(0.075) −0.028(0.106) −0.109∗(0.062) −0.099(0.088)

NF2 −0.020(0.087) −0.115(0.090) 0.048(0.071) 0.092(0.069) −0.002(0.060) −0.012(0.076)

NF3 −0.275(0.211) −0.323(0.348) −0.364∗(0.206) −0.171(0.136) −0.306(0.198) −0.224(0.201)

Sample size 108 108 141 141 249 249

F-value 13.97 1.17 2.43 1.30 2.59 0.79

P-value 0.000 0.340 0.087 0.294 0.071 0.511

R2 0.162 0.096 0.101 0.035 0.086 0.046

∗p < 0.1, ∗∗ p < 0.05, ∗∗∗p < 0.01, cluster-robust standard errors in parentheses. A subsample was selected who are identified as those favoring one subject only. The
column (1), (3), and (5) show the results of regression on corresponding final Chinese, math and total scores separately and the column (2), (4), and (6) present the results
of regression on subject-switched final exam scores. In column (2), Chinese sessions data were applied to predict math scores, and in column (4), math sessions data
were used to predict Chinese scores.
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neurophysiological recordings for the evaluation of educational
outputs.

Among all the six types of neurophysiological signals,
SCL mean, iSCR mean, and iSCR variation were shown
to be significantly correlated with the students’ academic
performance. As the tonic skin conductance level (SCL
mean) has been suggested to reflect the general arousal or
activation level (Bortoletto et al., 2011), the positive correlation
between SCL mean and the final exam scores indicated
that the students with better academic performance were
more activated when attending the classes. The negative
correlation between the final exam scores and the mean of
the transient skin conductance response (iSCR mean), could
be attributed to an overall reduced response magnitude, or
a reduced number of transient responses to the possible
classroom events. The negative effect of the variation of the
transient skin conductance response over all 10-s segments
within one session (iSCR variation) on exam scores, further
implied that the stability of the students’ neurophysiological
responses over time could be critical for their academic
performance.

Chinese and math represent two kinds of competence.
In Chinese and math classes, students need to use very
different emotional and cognitive strategies in order to learn
well. Accordingly, the regression models were found to be
specific for the Chinese and the math classes: the regression
models with the switched final scores reported non-significant
results, and significant regression results were achieved for
the Chinese classes, as well as the pooled data. This finding
suggests at least partly distinct neurophysiological activity
patterns during the two types of classes. Indeed, iSCR performs
better in predicting Chinese score than in explaining math
score; while SCL mean only positively correlates with math
core. These two results indicate that high math achievers
have higher activation and more stable response; while high
Chinese achievers only need even more stable responses in
the classroom. More stable response may due to lower effort
or better emotion regulation (Shi et al., 2007; Nourbakhsh
et al., 2012; Christopoulos et al., 2016). It might due to the
fact that math class is more challenging and more structured,
therefore the activation level is higher but the needs for
emotion regulation is relatively lower, compared with Chinese
class, in which the content is not so challenging and not
so clearly structured (e.g., Chinese class has more group
discussions, more free writing time, and even performance and
presentations), and therefore needs more emotion regulation to
study well.

Importantly, the regression analysis with both the
neurophysiological data and the self-report data revealed
independent contributions from the neurophysiological data
in both Chinese and math classes. In other words, students’
neurophysiological data provided additional information about
their final exam scores that could not be explained by self-
reports. Such observation provides strong support for the
necessity of recording neurophysiological data in real classroom
environment, in line with the general opinions on physiological

computing (Rutherford, 2010; Jacucci et al., 2015; Cowley et al.,
2016). By combining the two types of information, a better and
more complete understanding of the students’ learning process is
expected to be achieved.

While the link between human neurophysiological
signals and cognitive functions has been well established,
our study demonstrates a direct link toward academic
performance. As wearable bio-sensing techniques are capable
of continuously recording students’ neurophysiological signals
without interrupting normal classroom activities, our results
suggest wearable neurophysiological recording devices as
a useful tool for educational research and practices. With
the emerging trend along this promising new direction,
there is a strong call for further studies that integrate
neuroscience and educational research with high ecological
validity.

Notably, whereas ideally it is expected to record data
from all sessions in this semester for the prediction of the
academic performances, the data were measured 2 weeks
with an interval of approximately a month due to feasibility
issues, mainly about possible disturbances on the regular
school activities. Therefore, the found correlation between
the recorded neurophysiological signals and the academic
performances might be explained by a relatively stable
status of the students over all sessions. Alternatively, it
might also be possible that the neurophysiological activities
reflected a general but subject-specific cognitive capability.
Nevertheless, it remains to be elucidated whether more
recording data could provide a better prediction of the academic
performances.
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