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Chromosome 9p21 is frequently deleted in many cancers. Previous reports have indicated that 9p21 LOH is an uncommon finding in
neuroblastoma (NB), a tumour of childhood. We have performed an extensive analysis of 9p21 and genes located in this region
(cyclin-dependent kinase inhibitor 2A – CDKN2A/p16INK4a, CDKN2A/p14ARF, CDKN2B/p15INK4b, MTAP, interferon a and b cluster).
LOH was detected in 16.4% of 177 NB. The SRO was identified between markers D9S1751 and D9S254, at 9p21–23, a region
telomeric to the CDKN2A and MTAP genes. A significantly better overall and progression-free survival was detected in stage 4 patients
displaying 9p21–23 LOH. Hemizygous deletion of the region harbouring the CDKN2A and CDKN2B loci was identified in two
tumours by means of fluorescent in situ hybridisation and MTAP was present by immunostaining in all but one tumour analysed. The
transcriptional profile of tumours with 9p21–23 LOH was compared to that of NB displaying normal 9p21–23 status by means of
oligonucleotide microarrays. Four of the 363 probe sets downregulated in tumours with 9p21–23 LOH were encoded by genes
mapping to 9p22–24. The only well-characterised transcript among them was nuclear factor I-B3. Our results suggest a role for genes
located telomeric of 9p21 in good risk NB.
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Neuroblastoma (NB) is a tumour in which many chromosomal
abnormalities have been detected (Takita et al, 1995; Mora et al,
2002a). The 9p21 region has been found to be deleted in a wide
range of malignancies (Chin et al, 1998) and it has also been
reported to be altered in NB tumours, although at a low frequency
(Marshall et al, 1997; Giordani et al, 2002; Mora et al, 2002b).
Three loci in 9p21 have been implicated as tumour suppressor
genes (TSG): cyclin-dependent kinase inhibitor 2A – CDKN2A/
p16INK4a, CDKN2A/p14ARF and CDKN2B/p15INK4b. The proteins
p16INK4a and p14ARF have unique first exons (exon 1b and 1a,
respectively), but share exons 2 and 3 and are translated in
different reading frames (Kamb et al, 1994a; Quelle et al, 1995).
p16INK4a functions as a regulator of the G1/S-phase transition by
inhibiting the activity of cyclin-dependent kinases CDK4 and
CDK6. This hampers the phosphorylation of the retinoblastoma
(Rb) protein, contributing to cell cycle arrest (Serrano et al, 1993).
Although alterations of the CDKN2A gene have been reported in
many malignancies, it is a rare event in neuroblastoma (NB)

(Beltinger et al, 1995; Kawamata et al, 1996; Castresana et al, 1997;
Takita et al, 1997; Iolascon et al, 1998). However, deregulation of
the p16-CDK/cyclin D-pRb pathway has been described in NB
(Diccianni et al, 1996; Easton et al, 1998) and, interestingly,
contradictory results have been reported concerning the correla-
tion between clinical outcome in NB and CDKN2A/p16INK4a

expression (Takita et al, 1998; Omura-Minamisawa et al, 2001).
p14ARF regulates both the p53 and pRb pathways, by binding to

and inhibiting the function of the proto-oncogene mdm-2
(Pomerantz et al, 1998), thus preventing p53 degradation
(Lundberg and Weinberg, 1999; Sharpless and DePinho, 1999). It
also binds E2F-1 and inhibits its transcriptional activity (Eymin
et al, 2001). Whereas CDKN2A/p16INK4a mutation selectively
inactivates the Rb pathway, deletion of the CDKN2A locus impairs
both the Rb and p53 pathways. Deletion of the CDKN2A locus also
frequently affects the CDKN2B locus, which encodes p15INK4b, an
important mediator of the antiproliferative effect of TGF-b
(Hannon and Beach, 1994).

Other genes implicated in cancer also map to 9p21: MTAP
(methylthioadenosine phosphorylase), and interferon (IFN) a and b
clusters. The MTAP gene resides approximately 100 kb telomeric of
CDKN2A and is frequently codeleted with it (24, 25). It encodes an
ubiquitous enzyme which is essential in methionine and purine
metabolism and is frequently deficient in cancer cell lines (Kamatani
et al, 1981) and in some malignancies (Fitchen et al, 1986; Schmid
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et al, 1998; Garcia-Castellano et al, 2002). To the best of our
knowledge, there are no reports on MTAP gene alterations in NB.

The IFN gene cluster resides approximately 500– 1000 kb in the
telomeric direction from CDKN2A (Olopade et al, 1995). It consists
of the IFN-b1 gene (INFB1) and at least 25 genes and pseudogenes
for INF-a (INFA) and INF-o (Diaz et al, 1988). MTAP is codeleted
with a frequency of 485% in cell lines bearing CDKN2A deletions,
whereas the IFN gene cluster is deleted in whole or in part in
450% of p16INK4a -deficient cell lines (Zhang et al, 1996).
Deletions of the IFN gene cluster have also been described in lung
cancer (Olopade et al, 1993), acute lymphoblastic leukaemia (Diaz
et al, 1990), acute lymphocytic leukaemia (Einhorn et al, 1990),
glioma cell lines (James et al, 1993) and head and neck cancer
(Lydiatt et al, 1998).

Homozygous deletion of the 9p21 locus occurs frequently in
malignancies such as bladder carcinomas (Cairns et al, 1994),
melanomas (Kamb et al, 1994b), and other carcinomas (Nobori
et al, 1994). We and others have previously reported a low
frequency of loss of heterozygosity (LOH) at 9p21 in NB (Takita
et al, 1995; Castresana et al, 1997; Marshall et al, 1997; Easton et al,
1998; Mora et al, 2001a; Thompson et al, 2001). However,
conflicting results exist on the correlation between LOH at 9p21
and prognosis of NB patients (Takita et al, 1997; Mora et al, 2001a).

In order to further analyse the role of 9p21 region in NB biology,
we investigated the incidence of LOH at 9p21 and the status and
expression of all known genes in the region in a well-characterised
series of NB tumours.

MATERIALS AND METHODS

Samples and patients

Samples of 177 NB were obtained from patients who underwent
surgery at Memorial Sloan-Kettering Cancer Center (MSKCC), New
York. They included 11 stage 4s; 64 local-regional (LR) and 102
stage 4. Their clinical features have been described elsewhere (Mora
et al, 2000, 2001b, 2002a, b). Matched normal tissues (peripheral
blood or bone marrow not affected by tumour) were also procured.
The specimens were obtained in accordance with a protocol
approved by the Memorial Hospital Institutional Review Board.

All cases were collected from 1987 to 1999 and selected only
based on the availability of good quality normal and tumour
specimen. Of the 64 LR cases, 44 were initially diagnosed at
Memorial Sloan-Kettering Cancer Center and 20 referred at
relapse. Eight referred patients had prior chemotherapy for their

LR NB. Of the 102 stage 4 patients, 76 samples (74.5%) were
obtained at the time of diagnosis prior to any chemotherapy and
26 (25.5%) were obtained at the time of the second-look surgery
after induction chemotherapy. In all, 84 (82%) of the 102 patients
were managed at MSKCC from diagnosis and were analysed
separately. Five patients came to our institution at the time of
relapse from other centres and were then treated with N6/N7
protocols; six patients came to our institution having responded to
other induction regimens and were continued therapy based on
N6/N7 protocols; and six patients were treated elsewhere and came
to our institution for 3F8 antibody-based therapy.

Allelic analysis

Allelic analysis for 9p21 was first evaluated in the complete series
of 177 NB tumours using a set of four microsatellite markers (cent
– D9S301, D9S319, D9S156 and D9S775 – pTer), according to
methods previously described (Mora et al, 2000). Further
allelotype analysis was carried out in cases showing LOH in the
first screening, adding eight microsatellite markers (cent – D9S171,
D9S1752, D9S1748, D9S1747, D9S1749, D9S736, D9S1751 and
D9S254 – pTer). Primer sequences for polymorphic microsatellite
loci were obtained from the Genome Data Base. The location of
genes mapping to 9p21 and the microsatellite markers used in the
analysis is depicted in Figure 1.

Interphase bicolour fluorescent in situ hybridisation
(FISH)

The CDKN2A and CDKN2B genes copy number was analysed by
interphase bicolour FISH in 21 of the 29 tumours displaying 9p21
LOH in the first allelotype screening. FISH was carried out on
touch imprints as described in previous reports (Mora et al,
2001c), except for the probes. A locus-specific probe was used for
detecting CDKN2A/p16INK4a, CDKN2A/p14ARF and CDKN2B/
p15INK4b loss (P1 clone 1063, A Kamb, Myriad Genetics) and the
chromosome 9 centromeric probe (CEP9 Vysis) was utilised as
control. Control tissues were normal lymphocytes and the A673-
Ewing sarcoma cell line with known homozygous CDKN2A/
p16INK4a deletion.

PCR and sequencing of the MTAP gene

Exons 2, 4, 6 and 7 of the MTAP gene were analysed in 22 tumours,
eight of them with LOH at 9p21 and 14 with normal 9p21 status.
Genomic DNA was isolated using standard procedures. Polymer-
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Figure 1 The 9p21 region. Genes located on it and some of the microsatellite markers used in the allelic analysis. The locus specific probe utilised for
fluorescent in situ hybridisation is indicated with the name of the clone (P1 clone 1063, A Kamb, Myriad Genetics).
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ase chain reaction (PCR) and agarose gel electrophoresis were
performed according to previously described methods (Garcia-
Castellano et al, 2002).

Immunohistochemistry for MTAP

Paraffin sections were obtained from 10 tumours in which LOH at
9p21–23 had been detected in order to evaluate MTAP protein
expression. Immunohistochemistry was carried out as reported
before (Garcia-Castellano et al, 2002). The anti-human MTAP
chicken antibody was a kind gift of Dr Dennis Carson (UCSD
Cancer Center). COS 7 cells were processed as positive controls
and human osteosarcoma cell line HOS, U2OS and SaOS-2 as
negative controls. Vessels and endothelial cells in each sample
served as internal controls.

Analysis of differentially expressed genes by
oligonucleotide microarrays

Genome-wide expression profiles of seven NB displaying 9p21– 23
LOH were compared to those of 17 NB with normal 9p21– 23
status. Gene expression analysis was performed using Affymetrix
Human Gene Array Set U95, which includes 63 175 features for
individual gene/expressed sequence tags (ESTs) clusters, as
described elsewhere (LaTulippe et al, 2002). Scanned image files
were visually inspected for artefacts and analysed using Microarray
Suite v5.0 (Affymetrix).

Statistical analysis

To examine the association between allelic loss in 9p21 region and
factors such as sex, ploidy, MYCN, age, ferritin and LDH at
diagnosis, Fisher’s exact test was performed and two-sided P-
values were computed. The association between progression-free
survival (PFS), defined as relapse, and overall survival (OS),
defined as the time to death or last follow-up and clinicobiological

variables, was assessed using the log-rank test (Cox and Oakes,
1984). Those factors which were potentially predictive of PFS and
OS were entered into a multivariate analysis using the Cox
proportional hazards model. Survival curves were generated using
the method of Kaplan and Meier (Kaplan and Meier, 1958). All
statistical calculations were performed using S-Plus 2000 (Mathsoft
Inc. Seattle, Washington, USA).

Microarray expression data set was filtered to include only those
probe sets detecting transcripts with mean expression values that
differed by at least two-fold between the group with 9p21 –23 LOH
and the group without the allelic loss. Probes were then ranked
based on the relative magnitude of the difference (t-test) between
the two-sample sets. A transcript was considered to be down-
regulated in the 9p21– 23 LOH group when the mean of fluorescent
intensities for that particular mRNA was at least two-fold higher in
the cohort with normal 9p21 –23 status, and when the comparison
of means provided a significant difference (t-test, Po0.01). We
also utilised these parameters to compare the levels of expression
of CDKN2A/p16INK4a, CDKN2A/p14ARF, CDKN2B/p15INK4b, MTAP,
IFNA and IFNB mRNAs in both groups.

RESULTS

9p21 –23 allelic analysis

LOH defined as loss of two contiguous microsatellite markers was
detected in 29 (16.4%) of the 177 tumours in the first screening.
This proportion was higher (22.6%) in favourable nonstage 4 (4s
and LR) than in stage 4 tumours (11.7%). Of 29, 20 (68.9%)
demonstrated an SRO between markers D9S1751 and D9S254, a
region telomeric to the CDKN2A and MTAP genes and near the
IFN gene cluster (Figure 2). This region was the most commonly
deleted in both the favourable (64%) and unfavourable (83.3%)
stages. A second region with frequent LOH occurred in 9/29 (31%)
tumours and was centromeric to the CDKN2A locus (D9S1748).
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Figure 2 Shortest region of overlap (SRO) at 9p21–23 between markers cent – D9S1751 and D9S254 – pTer, a region telomeric to the CDKN2A and
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Clinical outcome and 9p21 – 23 LOH

A significantly better overall and progression-free survival was
detected in stage 4 NB patients with LOH at the SRO (P¼ 0.0273
and 0.046, respectively) (Figure 3). In total, 80% of stage 4 patients
with 9p21 –23 LOH were alive 150 months after diagnosis vs 40%
patients with retained heterozygosity. For nonstage 4 subgroups
(LR and stage 4s) no survival differences could be found (P40.05).

Correlation between clinical and genetic variables for stage
4 patients

Significant correlation was found between age and histology;
elevated LDH and unfavourable histology; LDH and MYCN

amplification; elevated ferritin and MYCN amplification, gain of
material at 17q and intact 11q 23 region. MYCN amplification
statistically correlated with 1p36 LOH as reported, and 1p36 LOH
correlated with loss of material at chromosome 1p22 as previously
reported (Mora et al, 2000).

Sex, age at diagnosis, LDH, ferritin, histopathology, MYCN,
ploidy and allelotype for chromosomal arms 1p36, 1p22, 11q23,
14q32, 19q13, 17q and 9p21 were analysed for potential prognostic
value (Table 1A). Among all the biologic and clinical features
studied only 9p21 and 11q23 LOH were identified as potential risk
factors that indicated superior chances of OS (P¼ 0.044 and
0.0398, respectively). Patients with 9p21 or 11q23 LOH had
significantly better survival than patients with an intact 9p21 or
11q23 regions. MYCN amplification and elevated LDH showed
marginally significant P-values (0.0901 and 0.0768, respectively)
associated with poor OS (see Mora et al, 2002b for further
information).

Cox proportional hazard models were applied for multivariate
analyses of potentially predictive factors, including the four
markers that showed best P-values associated with OS in the
univariate analysis described above. The best modal combinations
of paired variables showing independence predicting OS are shown
in Table 1B. The models LDHþ 9p21 and MYCNþ 9p21 LOH
showed significance as predictive factors for poor outcome. When
one global, multivariate test, with all four markers associated with
poor OS was analysed, we found that none of the variables
remained independent and the combined P-value was not
significant (0.0544).

Analysis of CDKN2A, CDKN2B and MTAP

Hemizygous deletions of CDKN2A and CDKN2B were detected by
FISH with probe P1 clone 1063 in two of the 21 tumours available
for study (9.5%) (Figure 4). They were both stage 4 patients: case
#14 (Figure 2), with extensive allelic loss of 9p and a tumour
displaying LOH at a region centromeric to the CDKN2A locus (data
not shown) (markers D9S1752 and D9S1748). Analysis of MTAP
exons in tumours with 9p21 –23 LOH did not detect deletions or
sequence mutations. Only one (10%) of the 10 NB with LOH at the
SRO analysed by immunohistochemistry displayed decreased
expression of MTAP protein compared to endothelial cells
in the same sample. This was a stage 4 NB tumour (case #2) in
which LOH was detected for microsatellites D9S319, D9S171
and D9S1752, a region centromeric to the MTAP gene. All
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Figure 3 Stratification of overall (A) and progression-free (B) survival
according to the 9p21 allelic status, using the method of Kaplan and Meier.
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Table 1 Univariate and multivariate analyses of survival

P-value

(A) Univariate analysis of survival
9p21 LOH 0.044
11q23 LOH 0.0398
LDH 0.0768
MYCN 0.0901

(B) Results of the multivariate analysis (Cox models)
Model 1 LDH 0.034
N¼ 89 9p21 LOH 0.066

LDH+9p21 LOH 0.0181
likelihood ratio 8.03

Model 2 MYCN 0.059
N¼ 101 9p21 LOH 0.051

MYCN+9p21 LOH 0.0131
likelihood ratio 8.67

Only variables with P-values equal or less than 0.1 are listed.
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other tumours had immuno-detectable levels of MTAP protein
expression.

Analysis of genome-wide expression profiles by oligonucleotide
microarrays in tumours with 9p21 –23 LOH and with normal
9p21–23 status. Diminished expression of 363 mRNAs was
found in tumours displaying 9p21 –23 LOH. Only five of them
were encoded by genes located at 9p. Four probe sets were
ESTs encoded by genes mapping to 9p24.1 (GenBank Acces-
sion #AI084974), 9p24.2 (GenBank Accession #H15396 and
#AI917470) and 9p13.2 (GenBank Accession #AA278423), respec-
tively. Only one of the probe sets corresponded to a characterised
gene, nuclear factor IB (GenBank Accession #U70862), located on
9p22.3, and included in the SRO, according to the Ensembl
Genome Browser. No significant change was detected for CDKN2A/
p16INK4a, CDKN2A/p14ARF

, CDKN2B/p15INK4b, MTAP, IFNA and
IFNB mRNAs in tumours with 9p21 –23 LOH when compared to
those with retained heterozygosity.

DISCUSSION

Our results show that 9p21 –23 LOH is an infrequent event in NB
that usually occurs in a region telomeric to 9p21. LOH at this
region is more frequently detected in favourable NB stages and is
statistically associated with a better clinical outcome in stage 4
patients.

We observed that 9p21–23 LOH occurs at a low frequency in NB
tumours (16.4%), similar to results obtained by Marshall et al
(1997), who reported 9p21 LOH in 17% of NB analysed. In another
study of patients identified by a mass screening programme, 9p21
LOH was more frequently detected, although this cohort was likely
to include a higher proportion of low-risk tumours (Takita et al,
1997).

Approximately 70% of tumours in our series displaying 9p21 –
23 LOH had a SRO at a region telomeric to the CDKN2A and MTAP
genes, near the IFNA and IFNB genes cluster. Homozygous or
hemizygous deletions of the a-, b-, and/or o-IFN genes have been
reported in other malignancies such as acute lymphoblastic
leukaemia, and head and neck cancer. Given the statistical
association between LOH at the IFN gene cluster and recurrence
in head and neck cancer, Lydiatt et al (1998) suggested the
existence of a TSG in this region. However, no specific gene has yet
been found and our results add to other data supporting that the
region involved in NB biology lies telomeric of the IFN gene cluster
(Giordani et al, 2002).

Previous reports have provided conflicting results on the
correlation between LOH at 9p21 and prognosis in NB patients.
Takita et al (1997) reported that patients with LOH at 9p21 showed

statistically significant association with poor prognosis. Conver-
sely, Marshall et al (1997) found no correlation between 9p21 LOH
and clinical outcome, while others have observed a statistically
significant association between LOH at a region telomeric to 9p21
and good prognosis for NB patients (Giordani et al, 2002). Our
results support the latter study and show that LOH at 9p21–23 is
more frequently found in favourable stages of NB. Moreover, LOH
at 9p is associated with a significant better overall and progression-
free survival in stage 4 patients.

Our results also suggest that CDKN2A gene deletions are rare
events in NB tumours, in agreement with several prior studies in
NB (Beltinger et al, 1995; Diccianni et al, 1996; Kawamata et al,
1996; Castresana et al, 1997; Iolascon et al, 1998). However,
Thompson et al (2001) found homozygous deletion of the
CDKN2A locus in four of 46 NB cell lines analysed and in two of
the corresponding primary tumours. They suggested that CDKN2A
inactivation was an in vivo genetic event contributing to tumour
biology rather than an in vitro phenomenon. However, the
incidence of mutations or homozygous deletions has been reported
to be lower in primary tumours than in cell lines (Spruck et al,
1994) and the possibility of an in vitro origin of those deletions
cannot be excluded.

Overexpression of CDKN2A/p16INK4a mRNA and protein with-
out genetic alteration of CDKN2A has been described in NB
(Diccianni et al, 1996; Omura-Minamisawa et al, 2001). In
contrast, Takita et al found LOH at the CDKN2A locus and lack
of p16INK4a expression in cell lines (Takita et al, 1997) and in
primary tumours (Takita et al, 1998). In the latter cohort, p16INK4a

immunostaining was undetectable in 61% of patients and this lack
of expression correlated with poor prognosis of patients and
advance stage of disease (Takita et al, 1998). The results we have
obtained in a larger series of patients seem to exclude major
alterations in the genomic sequence and transcription of genes
located on 9p21. Several reasons could account for the disagree-
ment between our results and those reported by other authors.
Some of those studies have performed expression analysis on NB
cell lines. We have observed that expression profiles of NB cell
lines clearly differ from those of their primary tumours (Mora et al,
2003). On the other hand, although our results exclude major
transcriptional modifications of p16INK4a in primary tumours, we
cannot rule out the possibility of translational or post-translational
changes that could explain the high proportion of NB with lack of
p16INK4a immunostaining in the series reported by Takita et al
(1998).

To the best of our knowledge, this is the first report examining
MTAP gene deletions and MTAP protein expression in NB
tumours. MTAP maps to the 9p21 region and it is frequently
codeleted with CDKN2A. Deletion of at least one MTAP exon was

Figure 4 FISH analysis performed on one case with retained heterozygosity at 9p21–23 (tumour #10) and one case with LOH and loss of one of the
copies of the gene CDKN2A/p16INK4a (tumour #14). Chromosome 9 centromeric probe (green signals) as well as a locus-specific probe for CDKN2A/
p16INK4a, CDKN2A/p14ARF and CDKN2B/p15INK4b (orange signals) were used.
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identified in 37.5% of osteosarcomas and MTAP mRNA and
protein were not detectable in those cases (Garcia-Castellano et al,
2002). In our large series of NB, only one sample displayed
diminished MTAP immunostaining and no alteration of MTAP
exons was found. In addition, no significant difference of MTAP
mRNA expression was detected between NB with 9p21 LOH and
those with normal 9p21 status by means of oligonucleotide
microarrays.

Finally, given that the more frequently detected SRO included
the IFN gene cluster, we also compared the expression of IFNA and
IFNB mRNAs in NB with and without 9p21 –23 LOH, but did not
detect any significant difference between the two groups.

Among the 363 mRNAs that were significantly downregulated in
NB displaying 9p21–23 LOH, four were derived from genes
mapping to 9p22 –24. Only one probe set matched a well-
characterised transcript, the human NFI-B3 mRNA, located on
9p22.3. Nuclear factor I proteins constitute a family of dimeric
DNA-binding proteins that function as cellular transcription
factors and as replication factors for adenovirus (Qian et al,
1995). NFI-B3 is a naturally truncated isoform that includes the
DNA binding and dimerisation domains also present in the
other NFI family members, although experimental evidences
suggest that it cannot bind to DNA by itself. NFI-B3 apparently
forms heterodimers with other NFI proteins thereby interfering

with their function and is thus considered a transcriptional
repressor (Liu et al, 1997). Further studies are necessary to
investigate the target genes of this repressor activity and to
elucidate which of those genes are not repressed in stage 4 NB
with LOH at this region and good clinical outcome, as a
consequence of the diminished presence of NFI-B3 protein. Their
function could shed light on the biological events responsible for
the different response to treatment and clinical evolution of stage 4
NB patients.

In summary, our results seem to exclude 9p21 as a critical region
in NB biology and point to the existence of potentially deleted
genes on 9p22– 23. Given the statistical association between 9p21
and 23 LOH with favourable NB stages and stage 4 patients with
better clinical outcome, those genes are expected to be involved in
biological features related to aggressiveness of NB.
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