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The genome-scale model (GEM) of metabolism in the
bacterium Escherichia coli K-12 has been in development
for over a decade and is now in wide use. GEM-enabled
studies of E. coli have been primarily focused on six
applications: (1) metabolic engineering, (2) model-driven
discovery, (3) prediction of cellular phenotypes, (4)
analysis of biological network properties, (5) studies of
evolutionary processes, and (6) models of interspecies
interactions. In this review, we provide an overview of these
applications along with a critical assessment of their
successes and limitations, and a perspective on likely
future developments in the field. Taken together, the studies
performed over the past decade have established a genome-
scale mechanistic understanding of genotype–phenotype
relationships in E. coli metabolism that forms the basis for
similar efforts for other microbial species. Future chal-
lenges include the expansion of GEMs by integrating
additional cellular processes beyond metabolism, the
identification of key constraints based on emerging data
types, and the development of computational methods able
to handle such large-scale network models with sufficient
accuracy.
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Introduction

Whole-genome sequencing along with decades worth of
detailed biochemical and enzymatic data (e.g., bibliomic data)
on microbial metabolism has led to the reconstruction of
metabolic networks at the genome scale (so-called, GENREs or
genome-scale reconstructions; Price et al, 2004; Feist et al,
2009; Henry et al, 2010; Thiele and Palsson, 2010). Integrating
this information in a structured fashion has enabled its

translation into computational models that can be used to
calculate metabolic phenotypes (Palsson, 2009; Pfau et al, 2011;
Lewis et al, 2012). In addition, other omics data types that have
been generated can be interpreted in the context of a
reconstruction and computational model to analyze cellular
functions under specific conditions. Taken together, this
information becomes a de facto knowledge base. Genome-
scale models (GEMs) are a structured format of such a
knowledge base that can be used to perform computational
and quantitative queries to answer various questions about the
capabilities of organisms and their likely phenotypic states
(Palsson, 2006; Orth et al, 2010).

Escherichia coli is one of the most important model
organisms in biology and its metabolic GEM has aided the
development of microbial systems biology. The history of
the metabolic network reconstruction process for E. coli, and
the formulation and testing of its metabolic GEM now spans
over a decade (Figure 1). One of the earliest studies to
systematically analyze E. coli utilized a simplified constraint-
based model of acetate overflow (Majewski and Domach,
1990). Subsequent pre-genome-scale studies expanded upon
the constraint-based approach to include reactions involved in
central carbohydrate metabolism, amino acid synthesis, and
nucleotide synthesis to evaluate the biocatalyst production
potential of E. coli (Varma et al, 1993; Varma and Palsson 1993)
using flux balance analysis (FBA; Varma and Palsson, 1994a).
The ability of FBA, in particular, and constraint-based
modeling, in general, to quantitatively describe the metabolic
physiology of E. coli observed experimentally (Varma and
Palsson, 1994b) arguably solidified the value of systems level
analysis in understanding microbial metabolism. The sequen-
cing of the E. coli genome (Blattner et al, 1997), the advent of
the lambda-red system for efficient genome manipulation
(Datsenko and Wanner, 2000), and information readily
available on annotated content of E. coli in databases and
detailed biochemical reviews led to a steady increase in
content of the E. coli GEM in the genomic era. Reconstruction
efforts in the 2000s built off of successive versions, each
adding new subsystems (e.g., fatty acid, alternate carbon
metabolism, and cell wall synthesis, respectively) as the
reconstructions strived to incorporate all of the existing
content in literature and newly appearing data. Analysis of
the rate at which new content was added to the latest
metabolic GEM (Orth et al, 2011) indicates that mostly newly
characterized content is now left to include in the reconstruc-
tion. Future expansion for the metabolic GEM is likely to come
from characterizing promiscuity of known enzymes, and the
addition of protein synthesis will open the door for more
detailed examination of other cellular processes and integra-
tion with other omics data sets.

In over a decade of model-driven development of systems
biology for E. coli, over 200 peer-reviewed studies have
appeared, as summarized in Figure 2 and Supplementary
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Figure S1, and as documented in greater detail in
Supplementary Table S1. This review aims to determine the
benefits and drawbacks of the uses of the E. coli GEM to date,
what has been accomplished, what has been missed, and what
is likely to lie ahead for this field in its next decade of
development.

Categories of uses of GEMs

The E. coli GEM has been applied to answer different biological
questions (Figure 3), most frequently in the categories of (1)
metabolic engineering, (2) model-driven discovery, (3) pre-
diction of cellular phenotypes, (4) analysis of biological
network properties, (5) studies of evolutionary processes,
and (6) models of interspecies interactions. In a previous
review we described and categorized the uses of the E. coli
GEM appearing in 64 papers published before 2007 (Feist and

Palsson, 2008). Similarly, Oberhardt et al (2009) have
reviewed applications enabled by GEMs for organisms
other than E. coli through 2009, and specific reviews on
GEM-enabled studies in plants (Sweetlove and Ratcliffe, 2011)
and Saccharomyces cerevisiae (Osterlund et al, 2012) have
recently appeared. However, the E. coli GEM remains the
oldest and arguably the most extensively utilized GEM, and
given the extensive uses of the E. coli GEM that have appeared
since 2007, we now have a sufficient amount of studies to
critically assess what GEMs can and cannot do by focusing
on the E. coli GEM as a subject. For example, metabolic
engineering and model-driven discovery are categories of uses
in E. coli that have matured over the years into workflows that
can be continuously repeated to tackle a diverse set of
biological questions. In particular, strain design has matured
from academic to industrial; thanks to the advent of sustain-
able processes that can be applied from one target compound
to another. The development of these iterative workflows in
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Figure 1 History of the E. coli expression and metabolic reconstructions. Shown in the upper portion of the graph are 2 milestone efforts contributing to the
reconstruction of the E. coli transcription and translation network, and shown in the bottom portion of the graph are 7 milestone efforts contributing to the reconstruction of
the E. coli metabolic network. For each of the two reconstructions shown (Allen and Palsson, 2003; Thiele et al, 2009) in the upper graph, the number of included
transcription units (blue diamonds), genes (green triangles) and components (purple squares) are displayed. For each of the seven reconstructions shown (Majewski and
Domach, 1990; Varma and Palsson, 1993; Pramanik and Keasling, 1997; Edwards and Palsson, 2000; Reed et al, 2003; Feist et al, 2007; Orth et al, 2011) in the bottom
graph, the number of included reactions (blue diamonds), genes (green triangles) and metabolites (purple squares) are displayed. Moreover, listed is noteworthy content
expansion that each successive reconstruction provided over previous efforts. For example, Varma et al (1993), and Varma and Palsson (1993) included amino acid and
nucleotide biosynthesis pathways in addition to the content that Majewski and Domach (1990) characterized. The start of the genomic era (Blattner et al, 1997) marked a
significant increase in included components for successive iterations of the network reconstruction. The significant increase in the number of reactions in 2007 (Feist
et al, 2007) was, in large part, due to the removal of many lumped reactions, which were often included for lipid and cell wall biosynthesis in earlier metabolic
reconstructions. Thiele et al (2009) expanded the initial work of Allen and Palsson (2003) by increasing the scope of the transcription and translation network from a few
example pathways to all known genes involved in protein synthesis (i.e., expression). Not included on the timeline is a metabolic reconstruction based upon Reed et al
(2003), which was modified to include additional reactions from the KEGG (Kanehisa et al, 2008) database and incorporated into the MetaFluxNet software package
(Lee et al, 2005).
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systems biology is a theme that will be highlighted and
discussed in greater detail as they appear in each category. In
another example, recent studies modeling interspecies inter-
actions signal an expansion of the field from single cell models
to ecosystem level models. We have also highlighted a
collection of noteworthy studies (Supplementary Figure S2)
from the pool of uses that, we feel, demonstrate how a GEM
can be well utilized to deduce biological complexities.

A detailed overview of the successes and limitations of the
E. coli GEM implementation for the categories outlined above
have been summarized in Table I and will be presented in
detail in each section below. At the conclusion of each section,
we will then assess how the limitations of GEMs can be
overcome with further development and refinement. We also
highlight systems biology workflows made possible by GEMs.
Furthermore, we will attempt to identify the future challenges
that need to be overcome to bring us closer to the ultimate goal
of establishing a comprehensive and multi-scale mechanistic
understanding of the genotype–phenotype relationship of
microbial metabolism. It should be stressed that although this
review is focused on the E. coli GEM, the findings documented
here can be readily extended to metabolic modeling at the
genome scale in general.

Metabolic engineering

Current industrial processes rely upon nonrenewable
resources that cannot sustain the growing world population
indefinitely. The development of biosustainable processes that
can convert renewable resources into commodity items is
therefore of paramount socio-economic importance. Bacteria
have recently emerged as a means by which to achieve bio

sustainability (Lee et al, 2012). Through metabolic engineer-
ing, the native biochemical pathways of bacteria can be
manipulated and optimized to more efficiently produce
industrial and therapeutically relevant compounds. The
E. coli GEM has guided metabolic engineers towards the
production of an assortment of compounds, including organic
acids, amino acids, and alcohols to name a few (see
Supplementary Table S3 for a comprehensive list).

Contrary to random mutagenesis and screening, rational
strain design uses the GEM to predict cellular phenotypes from
a systems level using genomic, stoichiometric, kinetic, and
regulatory knowledge to identify engineering strategies, which
can then be implemented in vivo. These strategies include gene
deletions (Fong et al, 2005), gene over- and underexpression
(Fowler et al, 2009), mapping high-throughput data onto the
network reconstruction to identify bottlenecks or competing
pathways (Lee et al, 2007), and more recently, integration of
nonnative pathways into standard microbial production hosts
for production of compounds that are either not natively found
in, or only synthesized in minute concentrations by the host
(Jung et al, 2010; Xu et al, 2011; Yim et al, 2011). More
advanced methods have even allowed for the identification of
strategies that couple bacterial growth to target product
overproduction (Burgard et al, 2003; Patil et al, 2005; Kim
and Reed, 2010). A so-called ‘growth-coupled’ strain leads to a
more robust strain that is less likely to lose the genetically
engineered genotype, or be outcompeted by alternate bacterial
phenotypes in a bioprocess environment. A cadre of algo-
rithms, first appearing in 2003 (Burgard et al, 2003), with
increasing biological detail (Kim and Reed, 2010) or alternative
optimization methods (Patil et al, 2005) have been developed
(Supplementary Table S2) and extensively reviewed
(Oberhardt et al, 2009; Copeland et al, 2012).
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Figure 2 The detailed usage of the E. coli metabolic GEM over time. The cumulative and new number of studies published per year separated according to (A) the
metabolic reconstruction used (Edwards and Palsson, 2000; Reed et al, 2003; Feist et al, 2007; Orth et al, 2011), (B) in silico (i.e., strictly computational prediction) or
combined in silico and in vivo (i.e., computational usage of the model and experimental validation or data generation guided by the model) and (C) the application
category of the study. BD, model-driven discovery; BE, studies of evolutionary processes; II, interspecies interaction; ME, metabolic engineering; NA, analysis of network
properties; PB, prediction of cellular phenotypes.
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Engineering strategies found using model-driven analysis
can often be nonintuitive and highlight some of the most
interesting recent findings using GEMs. For instance,
researchers used the GEM to not only determine a gene that
needed to be upregulated, but were able to tune the expression
level of this gene after subsequent GEM analysis of a
deleterious overexpression event (Lee et al, 2007). In another
GEM-enabled study, the highest flavanone production was
predicted and experimentally determined by strategically
knocking out genes to not only increase the production of
the redox carrier (NADPH) to drive the heterologous
flavanone catalyst, but also to maintain the optimal redox

potential of the cell (i.e., the ratio of NADPH to NADPþ )
(Fowler et al, 2009; Chemler et al, 2010). For a final example,
researchers improved the production potential of the non-
native metabolite 1,4-butanediol in E. coli by over three orders
of magnitude (Yim et al, 2011). The researchers were able to
rewire the host cell to produce the compound via native and
nonnative pathways by ensuring that the production of 1,4-
butanediol was the only means by which the host cell could
maintain a redox balance and grow anaerobically (Yim et al,
2011). These successes highlight the need to analyze genetic
alterations at the systems level where one can not only predict
the activation of pathways that compensate for lost
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Figure 3 Six categories of uses and number of studies for each use of the E. coli metabolic GEM. The original five categories defined in 2008 (Feist and Palsson, 2008)
include (A) metabolic engineering, (B) model-driven discovery, (C) prediction of cellular phenotypes, (D) analysis of biological network properties and (E) studies of
evolutionary processes. A new category has been added, (F) interspecies interaction. The addition of this category signifies a growing trend in the field to explore the
interaction of the E. coli metabolic network with other organisms and across different environmental conditions. Specifically, studies have explored host/pathogen
interactions (Jain and Srivastava, 2009), cocultures (Wintermute and Silver, 2010; Hanly and Henson, 2011; Tzamali et al, 2011), ecology (Klitgord and Segrè, 2010) and
chemotaxis (Kugler et al, 2010). The number of studies in this category is expected to increase, as the interest in understanding the complexities of microbial interactions
and ecosystems continues to grow. The complete lists of the studies for each category are included in Supplementary Table S1.
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functionalities following gene deletions, but also predict
engineering strategies that couple cellular goals to target
compound overproduction.

Engineering strategies derived from the E. coli GEM have
also led to nonviable and suboptimal phenotypes. Even in the
above studies (Fowler et al, 2009; Chemler et al, 2010; Yim
et al, 2011), the authors had to carefully select which predicted
knockout designs were constructed in vivo, due to, e.g., known
isozymes that result in nonviability when deleted simulta-
neously. Hence, a strong understanding of metabolic biochem-
istry is a prerequisite for successful strain design. Many
potential engineering strategies cannot be addressed with the
current generation of GEMs as they do not account for
translational regulation and detailed enzyme kinetics. For
example, strains generated using random knockouts via

transposon libraries and screening for lycopene overproduc-
tion identified gene deletion targets in regulatory elements
(Alper et al, 2005) that cannot be predicted by the current
GEM. Similarly, as GEM does not account for optimal codon
usage, the in vivo performance of nonnative genes and
proteins cannot be predicted.

The E. coli GEM has tilted the field of metabolic engineering
towards advanced rational strain design by enabling research-
ers to explore a vast native and nonnative genetic space in
designing strains for improved metabolite production. More
complete biochemical information will greatly aid metabolic
engineering by allowing for genome-scale reconstructions that
account for cellular functions beyond those accounted for
in the metabolic models (e.g., regulation, expression, and
enzyme kinetics). This implies the need for greater

Table I Strengths and limitations of the metabolic GEM applications

Application What the model can do What the model cannot do
Strengths of the E. coli GEM Areas for future progress

Metabolic
engineering

Gene deletion (combinatorial) Limited coverage of molecular biology
Gene addition Predicting the effects of perturbations to regulatory elements
Gene over- and under-expression Predicting allosteric inhibition
Rapidly test the systemic effects of heterologous pathway
additions

There is no explicit representation of metabolite
concentrations

Design biomarkers/biosensors for characteristic function Account for enzyme kinetics
Determine media supplementation strategies
Map high-throughput data to identify bottlenecks

Cannot accurately predict the performance of nonnative genes/
proteins in E. coli

Design strains through evolution

Biological
discovery

Predict growth on different carbon sources/media conditions Predict the regulation of isozymes/parallel pathways
Guide the functional assignment of network gaps Predict enzyme promiscuity
Guide the discovery of previously uncharacterized gene
product functions (graph theory analysis)

Predictive power is inherently limited, because the model is not
complete in scope

Guide the reannotations of incorrectly annotated genes Predict the expression of genes
Connect orphan metabolites to known reactions Predict the functional state of proteins (e.g., posttranslational

modification)

Phenotypic
behavior

Predict optimal cellular behavior Differentiate between computed alternate optimal flux
distributions of the cell a prioriUnderstand energetics and occurrence of suboptimal behavior
Explain the reasons for suboptimal performance a prioriInfer impact of regulation

Provide a context for which experimental data can be
interpreted

Provide a framework for incorporating additional regulatory
interactions that are currently under development

Predict and understand absolute and conditional gene
essentiality
Predict and understand shifts in growth conditions

Network
analysis

Evaluate metabolic networks from a systems view through
node and link dependencies, essentialities, overall network
robustness

Does not always include the biological mechanisms behind the
network connections
Few predictions can be experimentally validated

Describe the complex interactions of the components of the
metabolic network
Evaluate modularity of function
Evaluate regulation based on network structure

Bacterial
evolution

Predict essential genes Account for changes in regulatory elements
Predict the endpoint of evolution Predict the time-course of evolution
Understand the basis for epistatic interactions and mutational
effects

Predict location of mutations in the genome
Predict the effects of mutations in the genome

Provide insights into evolutionary trajectories Account for strain-specific genomic differences

Interspecies
interaction

Model the exchange of metabolites Model interactions that affect metabolic regulation
Analyze high-throughput data from different strains Inability to measure flux exchange in multi cell-type systems
Determine the cost/benefit ratio for different types of
commensalism

There are still too many unknowns to accurately build an
interactions network
Limited ability to define individual genetic content in large
communities
Limited spatial knowledge in large communities
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experimental method development to deduce the details of
expression, posttranscriptional and posttranslational modifi-
cations, and enzyme kinetics. Advancements in pathway
finding procedures to identify heterologous pathways that are
not native to the host, and the techniques to optimize the
expression of nonnative enzymes will expand the type of
compounds that can be overproduced at an industrial scale.
Overall, the ability of the E. coli GEM to aid systems level
analysis for rational strain design will only continue to
improve the speed with which viable production strains can
be designed and constructed.

Biological discovery

There are aspects of bacterial functions that remain unchar-
acterized. Even in E. coli, the most studied and best-known
bacterium, 34% of the genes have an unknown function (Orth
et al, 2011). In order to more efficiently expand our current
understanding of cellular functions, an iterative workflow is
needed that allows researchers to (1) account for what is
known, (2) identify gaps in our knowledge, and (3) allow
for the design of experiments to elucidate these gaps. The
E. coli GEM has enabled the implementation of such a
workflow to discover new features of microbial metabolism
(Supplementary Table S4).

The function of uncharacterized open reading frames
(ORFs) can be elucidated by comparing growth phenotypes

from in silico model predictions of gene deletion mutants to
in vivo experimental data (Box 1). Discrepancies between GEM
predictions and experimental results can point to where
current knowledge is missing or where there are functional
discrepancies. This, in turn, allows one to systematically
formulate testable hypotheses. For example, incorrect predic-
tions made for talAB mutants grown on xylose led the authors
to discover a novel pathway catalyzed by the gene products of
pfkA and fbaA (Nakahigashi et al, 2009). Various algorithms
have been implemented to aid researchers in this process by
parsing the vast number of biochemical pathways of metabo-
lism to reconcile in silico growth predictions with experimental
data (Reed et al, 2006; Satish Kumar et al, 2007; Barua et al,
2010). These algorithms suggest network modifications
(including assignment of enzymatic function to uncharacter-
ized ORFs) that can then be confirmed by researchers in vivo
(Reed et al, 2006). For example, one study used a combination
of graph-theory-based and comparative genomic analyses to
identify yneI (sad) as the gene responsible for the NADþ/
NADPþ -dependent succinate semialdehyde dehydrogenase,
which the authors experimentally confirmed (Fuhrer et al,
2007).

Although the GEM-enabled workflow (Covert et al, 2004;
Joyce et al, 2006; Reed et al, 2006; Barua et al, 2010; Holm et al,
2010) has advanced our understanding of metabolism greatly,
many aspects of bacterial metabolism are still waiting to be
uncovered. One such aspect is the transcriptional regulation of
metabolism. Researchers have attempted to integrate the
transcriptional regulatory network (TRN) with the metabolic
network to better understand and predict regulation. For
example, the TRN was used to elucidate changes in expression
of oxygen regulators between oxic and anoxic conditions
(Covert et al, 2004). In another example, the TRN was used to
confirm and refine the regulatory and functional assignment of
various regulatory and metabolic genes, which included the
novel finding that D-allose induces rpiR (Barua et al, 2010).
However, the Boolean formulation of the TRN regulatory rules
only allows one to model regulatory interactions as either on or
off. Consequently, complex regulatory interactions involving a
multitude of transcription factors, binding constants, and
environmental dependencies along with posttranscriptional
and posttranslational modifications that may account for in
silico and in vivo discrepancies cannot be identified using the
current GEMs.

Efforts are underway to better understand bacterial regula-
tion. Large-scale, genome-wide screens to deduce the function
of transcriptional regulators and the development of new
formalisms to account for and integrate transcriptional
regulation in the model are in progress (Cho et al, 2011).
RNA sequencing-based technology will greatly assist research-
ers in elucidating the interactions of the transcriptional
network by providing a richer data set than the existing
methods (e.g., RNA microarrays and ChIP-chip; Cho et al,
2011). Other posttranscriptional and posttranslational
modifications (these include, for instance, by small RNA at
the transcript level or by phosphorylation, methylation,
glycosylation, acetylation, or carboxylation, to name several,
at the protein level) also contribute to the regulation of
metabolic function in prokaryotes. Exemplary experimental
efforts to better understand small RNA regulation of

Box 1 Growth phenotyping

Growth phenotypes from single-gene deletion mutants based on in silico
model predictions can be compared to in vivo experimental data to elucidate
or confirm function of ORFs. The results of growth phenotyping studies can
be classified into four categories:

K Growth/Growth (G/G): the model and experimental data show growth
K Growth/No Growth (G/NG): the model predicts growth, but the

experimental data indicates no growth
K No Growth/Growth (NG/G): the model predicts no growth, but the

experimental data indicates growth
K Growth/No Growth (NG/NG): the model and experimental data show no

growth.

The G/NG case indicates that the model over-estimates the metabolic
capabilities of the organism, while the NG/G case indicates that the model
under-estimates the metabolic capabilities of the organism. Metabolic over-
predictions are commonly caused by reactions that are absent in vivo,
reactions that are down-regulated or inhibited under a specific environmental
condition, or the biomass formulation is includes an erroneous metabolite.
Metabolic under-predictions often represent knowledge gaps in that the
model does not account for an unknown isozyme, parallel pathway, or some
other functionality of the organism. G/G can be regarded as a consistency
check and NG/NG can be regarded as a form of model validation.
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Box 1 Figure The four categories of growth phenotypes.
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transcription (Wassarman and Saecker, 2006), and the con-
servation of phosphorylation in serine, tyrosine, and threonine
metabolism (Macek et al, 2008) have demonstrated that the
link between gene expression and metabolite profiles are far
more complex than once thought. Continued experimental
efforts and improved computational efforts to deduce and
model the complexities of regulation will be needed to expand
the scope of biological discoveries that the current model can
assist with.

Phenotypic functions

For simple organisms, the physiology of bacteria is remarkably
complex. The diverse set of biochemical pathways in bacteria
have conferred a vast phenotypic potential that have enabled
them to thrive in a plethora of environments ranging from
volcanic vents on the bottom of the ocean, clouds, glaciers,
and the human gut. In order to understand this phenotypic
potential, researchers have turned to GEMs to interpret and
predict cellular phenotypes. Constraint-based modeling with
GEMs (Palsson, 2006) has allowed researchers to rapidly
predict growth phenotypes in various genetic (Fong and
Palsson, 2004) and environmental (Ibarra et al, 2002)
conditions, explore different objectives of microbial metabo-
lism (Schuetz et al, 2007; Ow et al, 2009) to examine the
driving force behind cellular function, and better understand
the suboptimal behavior of cells following perturbation (Segre
et al, 2002; Link et al, 2010) and latent pathway activation
(Nishikawa et al, 2008).

When phenotypic predictions are made using the GEM, one
finds a large solution space of potential phenotypes that would
allow the organism to survive in a given genetic and
environmental background. Many of these solutions of
metabolic network usage that would allow for survival may
not be observed under physiological conditions. Conse-
quently, researchers have formulated ways to confine the
solution space to more accurately represent the experimentally
observed phenotype of the cell for a given growth condition by
incorporating constraints. Regulatory control of the metabolic
genes provides a means to constrain the allowable solution
space by specifying what genes are active in the metabolic
network for a given environmental condition. Researchers
have been able to show that while over 50% of the flux
distribution is constrained by metabolism in a given environ-
mental condition, an additional 20% can be attributed to the
TRN (Shlomi et al, 2007). In addition, the TRN allows the
organism to rapidly and efficiently adapt its metabolism to a
wide range of environmental conditions by altering the
expressed metabolic genes (Barrett et al, 2005; Samal and
Jain, 2008). Spatial constraints in the form of molecular
crowding (Beg et al, 2007; Vazquez et al, 2008), growth-
associated metabolite dilution (Benyamini et al, 2010),
membrane occupancy (Zhuang et al, 2011), super coiling of
the DNA (Sonnenschein et al, 2011), and indirect protein–
protein interactions to facilitate the organization of enzymes in
the cytoplasm (Perez-Bercoff et al, 2011) have shown promise
for increasing the predictive power of the E. coli GEMs. For
instance, a mechanistic constraint on the available space on
the cytoplasmic membrane was introduced to better explain

respiro-fermentation physiology (Zhuang et al, 2011).
Researchers have also shown that the physical structure of
the DNA correlates more closely to the metabolic state than the
regulatory network (Sonnenschein et al, 2011). Thermody-
namic analysis provides another means to constrain the
solution space by removing infeasible reaction loops that
violate energy balance (Ederer and Gilles, 2007; Fleming et al,
2009), by refining reaction directionality, and by defining
allowable flux ranges via calculation of the in vivo change of
Gibbs free energy of reactions (Kümmel et al, 2006; Henry et al,
2007; Flamholz et al, 2012). Intimately tied to thermodynamic
analysis is the integration of high-throughput metabolomics
data. Several studies have incorporated metabolomics data
into the E. coli GEM to better calculate the in vivo change in
Gibbs free energy of reaction in order to better confine the
feasible flux range of reactions and identify reactions that are
potentially under allosteric regulation (Zamboni et al, 2008;
Yizhak et al, 2010).

The metabolic model can be used as a scaffold onto which
high-throughput data types, such as fluxomic (Herrgard et al,
2006; Choi et al, 2007; Chen et al, 2011), transcriptomic
(Becker and Palsson, 2008; Portnoy et al, 2010), and proteomic
data (Lewis et al, 2010), can be mapped to gain insight into
context-specific phenotypes. Fluxomics data can be used to
directly compare intracellular flux distribution as predicted by
constraint-based models (Herrgard et al, 2006; Chen et al,
2011) using the GEM and can even be incorporated as
additional constraints (Choi et al, 2007). Recent work has also
demonstrated that fluxomic data can be integrated into a
computational framework to explain suboptimal behavior as a
trade-off between near optimal growth under one condition,
and the ability to quickly adapt to a new growth condition
(Schuetz et al, 2012). Transcriptomic data provide the
experimentalist with a powerful means to decipher the
phenotypic behavior of the cell due to its ability to qualitatively
or quantitatively determine what genes are expressed by the
cell under the given experimental conditions (Portnoy et al,
2010). A combination of transcriptomic and proteomic data
have also allowed researchers to better understand the
physiology of adapted strains and the mechanism for this
adaption (Lewis et al, 2010).

Although the E. coli GEM has aided our understanding of
cellular metabolism, it has limitations. For instance, one
should be aware that alternate optimal flux distributions of the
cell may confound the researcher’s ability to determine the
true physiological state. This has been demonstrated when
comparing fluxomic data to in silico predictions (Chen et al,
2011) and also in studies of adapted E. coli mutants (Fong and
Palsson, 2004; Charusanti et al, 2010) where variations found
in evolved replicates reflected the possible existence of
multiple flux distributions that lead to equivalent growth
phenotypes. The methods to predict cellular physiology
present a user bias in the form of an objective function that
must be validated for specific growth conditions (Schuetz et al,
2007). The suboptimal state of the cell can also be predicted,
but the most utilized method (Segre et al, 2002) provides little
insight into the biological driving force for suboptimal
performance (Shlomi et al, 2005). It appears instead that a
Pareto optimal solution of multiple (and at times) conflicting
objectives can better explain the biological significance of
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suboptimal behavior than any one method (Schuetz et al,
2012). Incorporating thermodynamic constraints has been
demonstrated to greatly reduce the solution space of metabo-
lism. Unfortunately, the calculation of Gibbs free energy of
reaction is hampered by the limited availability of experimen-
tally determined standard Gibbs free energy of formation for a
majority of the metabolites in the E. coli GEM. Therefore, the
free energies of reaction can only be estimated (Jankowski
et al, 2008).

Advancements in methods to obtain and integrate high-
quality omics data with the model will aid in overcoming many
current limitations in accurately predicting phenotypic beha-
vior. For example, genome-scale metabolomics is hampered by
the biochemical diversity, range of physiological concentra-
tions, and chemical liability of the species that comprise the
intracellular metabolome. Consequently, multiple analytical
platforms and well-tested analytical procedures (Buscher et al,
2009) are needed to accurately assay the full metabolome,
which is costly, time-consuming, and technically challenging.
The enzyme kinetic and thermodynamic information that can
be obtained from metabolomics can directly improve the
accuracy of the metabolic model, and can also be correlated
with gene expression profiles (Jozefczuk et al, 2010) to assist in
unraveling the dynamics between transcriptome and metabo-
lome. Another promising area is the formulation of a genome–
scale isotope mapping model (Ravikirthi et al, 2011) for
implementation with metabolic flux analysis. An expansion of
metabolic flux analysis to the genome–scale and the ability to
determine the intracellular distribution of atoms beyond
carbon will enhance our knowledge of in vivo flux states.

Biological network analysis

The metabolic reaction network is a highly complex,
interwoven, and nonlinear system that responds to environ-
mental and genetic perturbations. In order to elucidate and
understand the relationship between the network structure
and function, many researchers have turned to network
analysis. This exercise is mathematical in nature. In network
analysis, biochemical reactions are transformed into a
unipartite or bipartite graph, where the nodes and links take
the form of metabolites and enzymatic reactions. Once
formulated as a graph, the network can be sampled and
explored using a variety of minimally biased mathematical and
algorithmic methods to arrive at biologically insightful
conclusions. The following paragraphs will focus on the most
recent advances in biological network analysis; the reader is
referenced to Feist and Palsson (2008) and Oberhardt et al
(2009) for less recent examples not covered in the main text.

Much progress has been made in the analysis of link and
node essentiality, whereby the consequences of removing a
link (i.e., the reaction) from the network is examined. As links
have varying degrees of dependence upon one another, one
must look to higher-order combinations of link removals to
better understand the network properties of the E. coli GEMs.
For example, synthetic lethals, which are defined as two genes
whose independent deletion is not lethal, but simultaneous
elimination is lethal, are often a consequence of network
redundancy or parallel pathways (Ghim et al, 2005). The

converse of synthetic lethals, synthetic rescues, which are
defined as a gene pair where the deletion of one of the genes is
lethal, but the simultaneous deletion of both genes is
nonlethal, can be used to rescue a nonviable single-gene
deletion phenotype by rewiring the network in such a way as to
compensate for the deleterious effect of the initial genetic
perturbation (Motter et al, 2008; Kim and Motter, 2009). To
illustrate, it has been shown that the overexpression of udhA
improves the growth of E. coli pgi knockout strains on glucose
minimal media (Kim and Motter, 2009). Higher-order epistatic
interactions have also been analyzed to predict nonintuitive
combinations of lethal and auxotrophic-inducing/rescuing
gene deletions (Suthers et al, 2009).

It is important to emphasize that although the E. coli
metabolic network is analogous to other interaction networks
(e.g., the internet) and can be interrogated using network
theory (Almaas et al, 2004; Samal et al, 2011), the E. coli
network is unique in that it is a biological network that
describes a highly evolved function. Network analysis can
easily be taken out of context or provide little insight if the
function of the metabolic network is not taken into account.
For example, graph theory can deduce the topological proper-
ties of the model without providing any information about the
underlying biology. A prerequisite of biologically meaningful
network analysis is a biologically functional random network,
to which one can compare the properties of the E. coli GEM
(Samal and Martin, 2011; Basler et al, 2012). However, the
in vivo experimental validation of such comparisons (i.e., to a
random network) is infeasible. In addition, many of the
network analysis methods become computationally chal-
lenged for large biochemical networks. Examples include
elementary mode (Schuster et al, 1999) and extreme pathway
analyses (Schilling et al, 2000), which have been, for the most
part, limited to small-scale networks due to the combinatorial
explosion inherent to the methods (Klamt and Stelling, 2002;
Yeung et al, 2007). It should be noted that numerical efforts
have been made to scale pathway analysis to GEMs by
calculating only a subset of elementary modes (Wessely et al,
2011). In addition, the E. coli metabolic network model is
subject to iterative updates. Analyses obtained between older
and newer models can lead to vastly different results. For
instance, 81% of the coupling relations identified using flux
coupling analysis changed between iJR904 and iAF1260 due to
missing reactions in the older network model (Marashi and
Bockmayr, 2011).

Network analysis using GEMs has largely been depicted as a
strictly in silico undertaking. Recent progress, however,
indicates that network analysis has practical applications.
For example, the recent advances in elementary mode analysis
can be readily extended to strain design (de Figueiredo et al,
2009) and nonnative pathway finding procedures (Larhlimi
et al, 2012). In another example, progress has been made in
applying network analysis of the E. coli metabolic GEM to
discover novel drug targets (Plaimas et al, 2008; Kim et al,
2010; Shen et al, 2010). The E. coli GEM is particularly suitable
for this application by enabling pharmaceutical researchers to
analyze the complex interactions of the network as a whole, to
elucidate target links and nodes that would allow for complete
system collapse or would severely cripple the network if
removed. A potential viable workflow for antimicrobial drug
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discovery was recently presented (Shen et al, 2010). The
workflow invoked network analysis to identify novel anti-
microbial targets combined with computational screening to
identify inhibitory molecules against them followed by
experimental validation (Shen et al, 2010). This GEM-aided
workflow could reduce the expensive and time-consuming
experimental methods in drug discovery (Shen et al, 2010),
and is readily extendible to other bacterial species.

Bacterial evolution

The genomic content and phenotypic landscape of bacterial
species are constantly adapting to meet the demands of the
imposed environmental conditions. Adaption occurs via
elimination of individual reactions by loss-of-function muta-
tions, alterations in gene expression and enzyme capacity,
alterations in enzyme kinetics, and through the addition of
new reactions by horizontal gene transfer, gene duplication,
and gain-of-function mutations. The E. coli GEM has been
proven to be most useful in modeling microbial evolution
through elimination and addition of new metabolic network
content, and acting as a scaffold to aid in the understanding of
bacterial evolution.

Computational frameworks using GEMs have been
employed to simulate bacterial evolution through random
gene deletions. These studies have shown that there appears to
be a conserved reaction set that is similar for organisms with
similar lifestyles (Pal et al, 2006), which reflects the common
enzymatic machinery required to metabolize specific carbon
sources. It has also been shown that although genes are lost at
random, the order in which genes are lost follows a
coordinated and consistent pattern—40% of which can be
accounted for by the metabolic model when compared with
available phylogenic data (Yizhak et al, 2011). The E. coli GEM
also provides a context by which phylogeny data can be
understood. Comparative genomics in the context of con-
straint-based modeling with the E. coli GEM has led
researchers to assert that the dominant mechanism of bacterial
evolution in E. coli appears to be horizontal gene transfer.
Horizontal gene transfer is highly dependent upon the
genomic content of the organism (Pal et al, 2005b; Notebaart
et al, 2009) and involves genes that are mostly environment-
specific and located at the periphery of the metabolic network
(Pal et al, 2005a).

The E. coli GEM can act as a scaffold on which similar
bacterial strains can be reconstructed, and their divergent
evolutions understood. Because of the high standard of
biochemical accuracy of the E. coli metabolic GEM (e.g.,
97% of the included genetic content of the most recent E. coli
GEM has been experimentally validated (Orth et al, 2011),
many researchers have based the reconstruction of specific
pathways or the entire organism on the reactions of the E. coli
GEM (e.g., Salmonella typhimurium ; AbuOun et al, 2009).
More recently, the pangenome of the species E. coli was
reconstructed based on iAF1260, and was used to generate five
strain-specific GEMs that include commensal strain K-12
W3110, two enterohemorrhagic O157:H7 strains EDL933 and
Sakai, and two uropathogenic strains CFT073 and UTI89
(Baumler et al, 2011). The study found that pathogenic E. coli

appear to be more adapted to growth under anaerobic
conditions than commensal E. coli (Baumler et al, 2011). The
use of the E. coli GEM to rapidly construct strain-specific
models will continue to increase, particularly as the cost of
genome sequencing of microbes continues to fall and the
available number of sequenced and annotated strains con-
tinues to rise.

Although the metabolic model allows a vast region of
genotypic space to be explored in order to model and
understand bacterial evolution, the space is currently limited
to metabolic genes. Changes in the regulation of metabolism
during evolution are not accounted for in GEMs. Although
horizontal gene transfer and gene loss can be modeled up to
the resolution of a core metabolic gene set (Pal et al, 2006), and
the predicted gene-loss order can be compared with evidence
provided by comparative genomics (Yizhak et al, 2011),
limitations remain in determining the precise genes and their
exact loss, the location of mutations in the genome, and
predicting their effect on the physiology of the organism.
In addition, comparison of the evolutionary trajectories of
different bacterial strains is hampered by the fact that
strain-specific portions of the genomes remain largely
uncharacterized.

The use of GEMs in modeling and understanding bacterial
evolution will benefit from studies of adaptive laboratory
evolution (ALE). ALE is an experimental procedure that
introduces a selection pressure (e.g., fastest growth) in a

Box 2 Microbial interactions

A microbial interaction can be defined and modeled as an exchange of
molecules between species in a given environment. There are three main
types of interaction classes between microbial species:

K Mutualism, also known as syntrophy or symbiosis, is where each
organism produces an essential metabolite needed to support growth by
the other organism.

K Commensalism is where only one organism depends on the other for the
production of an essential nutrient to support growth. A special case of
commensalism, known as parasitism, is when the organism providing the
essential nutrient comes at the cost of reduced fitness. Host/pathogen
interactions are a type of parasitism.

K Neutralism is where each organism can sustain growth in a given
environment without the presence of the other organism. As each species
are consuming the same resources, competition can arise between the
organisms.

Mutualism

Commensalism

Neutralism

Box 2 Figure Microbial interactions as defined by metabolite exchange.
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controlled environmental setting that allows for a time-
resolved depiction of changes in the organism’s genome that
occur during the process of adaption (Conrad et al, 2011).
These changes can then be reintroduced and their effect on the
organism’s fitness studied (Herring et al, 2006; Conrad et al,
2009; Lee and Palsson, 2010; Applebee et al, 2011). The GEM
provides a context for understanding these mutations by
allowing the researcher to model the growth physiology of the
adapted network.

Interspecies interaction

There is a growing interest in better understanding host–
pathogen interactions for the development of improved
antimicrobials (Lebeis and Kalman, 2009), the use of microbes
for environmental remediation (Singh et al, 2011), and for
understanding and manipulating the microbiome of the
human gut for improved health (Walter et al, 2011). Such
applications would benefit greatly from a platform that would
allow for the prediction and simulation of biological interac-
tions. The E. coli GEM provides such a platform and has been
successful in modeling the exchange of metabolites (Box 2)

between different cell types (e.g., microbial species) and
environmental conditions (Jain and Srivastava, 2009; Klitgord
and Segrè, 2010; Wintermute and Silver, 2010).

Although interaction classes of interspecies interactions
have been established, the mathematical formalism to model
these interaction classes using GEMs has arisen only recently
(Jain and Srivastava, 2009; Klitgord and Segrè, 2010;
Wintermute and Silver, 2010; Hanly and Henson, 2011;
Tzamali et al, 2011). Researchers have modeled host–
pathogen interactions by directly incorporating pathogenic
reactions into the stoichiometry of the host reaction network
(e.g., to account for viral amino acid and nucleotide synthesis
(Jain and Srivastava, 2009). Concatenated and joint stoichio-
metric models have been employed to study the exchange of
metabolites between species (e.g., cocultures; Wintermute
and Silver, 2010; Hanly and Henson, 2011) and the environ-
ment (Klitgord and Segrè, 2010). In contrast to multicellular
stoichiometric models, which assume that the collection of
microbes seeks to maximize the collective biomass, research-
ers have developed multicompetitor metabolic models to
describe microbial communities, where each member seeks to
maximize their own biomass (Tzamali et al, 2011). Together,
these studies have found that the combined metabolisms of
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Figure 4 Iterative workflows. (A) A generic network reconstruction and model-driven systems biology workflow is a cyclic path that iterates between in silico predictions
and in vivo observations. This general process has been followed in some of the more influential studies presented in this review. DNA sequencing and bibliomic data can
be used to reconstruct and translate a biological system into a mathematical structure. Other omics data types that have been generated can be interpreted in the context
of a reconstruction and computational model to analyze organism functions under specific conditions. This information becomes a de facto knowledge base that can be
queried through a consortium of analytical methods. The aim of these methods is to hypothesize answers to complex biological questions that can often be nonintuitive or
not readily apparent. Experiments can then be designed to test these predictions in order to either confirm GEM-derived explanations or move researchers one iteration
closer to the answer. Studies that have successfully iterated through the E. coli GEM workflow that are presented as examples include (B) Reed et al (2006), (C) Shen
et al (2010), (D) Yim et al (2011) and (E) Nakahigashi et al (2009).
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multiple species can utilize the capabilities of the environment
better than a single species. Furthermore, although not every
metabolic interaction is beneficial, metabolic interactions
necessitate community formation.

Much work remains in the field of modeling interspecies
interactions. For example, the measurement of metabolites
exchanged between cells, needed to validate the accuracy of
the in silico predictions, presents a strong technical challenge.
In addition, the effect of biological interactions on regulatory
elements is not yet accounted for. For instance, the extent to
which other strains and the environment influence the
regulation of metabolism (e.g., through quorum sensing) is
unclear. Moreover, most of the large-community models do
not differentiate the genetic content between individual
species nor account for their spatial organization. Considera-
tion of regulation, individual genetic content, and spatial
organization will be needed to more accurately model and
predict community-level biological processes (Zengler and
Palsson, 2012).

The advent of single-cell sequencing technology (Tang et al,
2009) and other single-cell assays (Taniguchi et al, 2010) will
benefit the study of interspecies interactions with GEMs. Such
a ‘bottom-up’ approach would allow for the characterization
of individual biological entities through, e.g., genomics and
transcriptomics of individual species. From a ‘top-down’
approach, the total interaction of microbial communities can
be characterized through genome-scale omic data. Genome
sequencing and reconstruction of other bacterial species
through manual curation or automatic reconstruction (e.g.,
model SEED; Henry et al, 2010), and the mapping of metabolite
and reaction identifiers between reconstructions (e.g., RxnMet
(Kumar et al, 2012)) will expand the number of species
interactions that can be simulated together. On the basis of the
genome-scale omic data that correspond with single cell data,
developments in bioinformatics approaches that establish the
relationships between individual biological entities and the
growing number of reconstructions will allow researchers
to piece together the contribution of each member on
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Figure 5 The future of the E. coli GEM. The most widely used E. coli reconstruction accounts only for metabolism (the ‘M’ matrix) (Feist et al, 2009). However, efforts
are currently underway to integrate the operon structure that determines cellular regulation (the ‘O’ matrix), the transcriptional and translational machinery allowing for the
expression of proteins (the ‘E’ matrix; Thiele et al, 2009) and other cellular processes (e.g., DNA replication, posttranslational modifications, etc.) with metabolism. The
integration of these cellular processes, supported by high-throughput data types, into a single mathematical model, will allow researchers to more accurately compute
complex phenotypes, and will guide the discovery of unknown aspects of cellular functions beyond that of just metabolism.
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the biological community in order to generate complete
community-level models.

In closing: what is likely for the future
of GEMs

The number of applications focused on E. coli that have
utilized the metabolic GEM have grown in size and scope (Feist
and Palsson, 2008). This review distilled into six categories the
B200 studies that have appeared in peer-reviewed manu-
scripts over the past 12 years. In each category, key examples
and success stories were summarized and presented. In
addition, we critically analyzed the current status of applica-
tions using the E. coli metabolic GEM to demonstrate what the
model can and cannot do, and discussed the developments
needed to overcome current limitations, as summarized in
Table I. To help summarize the impact of GEM-aided analyses
thus far, Supplementary Figure S2 highlights studies that have
made a significant contribution to the E. coli GEM in particular,
and our understanding of microbial metabolism, in general.
Researchers are now able to complete the systems biology
workflow and generate new biological knowledge with the
help of the E. coli GEM (Figure 4). It should be emphasized that
although this review has focused on the metabolic network, it
is but one of several networks actively at work inside the cell
(Feist et al, 2009).

The GEM of E. coli will continue to expand, as more cellular
processes are mechanistically detailed and added to the
organized GEM structure. The next significant increase in the
applications of an E. coli GEM will likely come from
mechanistically incorporating and integrating protein synth-
esis with metabolism. The integration of the transcriptional
and translational machinery on the genome scale (Thiele et al,
2009, 2012) has now been completed. The operon structure
that accounts for cellular regulation will follow protein
synthesis as the next logical step of GEM expansion. The
incorporation of DNA structure and transcription binding as a
ready-to-compute biochemical network in a mathematical
format would overcome the limitations presented by the
current Boolean formulation of the TRN, and allow for
complex regulatory interactions to be mechanistically mod-
eled and predicted. It is conceivable that DNA synthesis,
posttranslational modifications, and other cellular processes
that involve biochemical interactions that can be described by
a biochemical interaction network can also be incorporated
into GEMs. In brief, what lies ahead for GEMs is the iterative
expansion to include other cellular processes beyond metabo-
lism, with the aid of omics data and the mathematical
formalisms to model them (Figure 5). It is unclear which
high-throughput data types and algorithms will be the major
drivers for many of the applications enabled by GEMs with an
expanded scope. However, it is clear that modeling with such
expansive networks, whose components will carry activities
across many orders of magnitude, will require greater
computational accuracy and power given their size. Further-
more, the payoff for this increased complexity will be more
accurate phenotype predictions after initial validation and gap
filling is performed. GEM expansion will be a substantial but
worthwhile endeavor that will unite many diverse aspects of

microbiology and move the community closer to the ultimate
goal of establishing a comprehensive mechanistic under-
standing of the genotype–phenotype relationship of microbes.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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