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Diagnostic accuracy of symptoms 
for an underlying disease: 
a simulation study
Yi‑Sheng Chao1,10*, Chao‑Jung Wu2, Yi‑Chun Lai3, Hui‑Ting Hsu4, Yen‑Po Cheng4, 
Hsing‑Chien Wu5, Shih‑Yu Huang6,7 & Wei‑Chih Chen8,9

Symptoms have been used to diagnose conditions such as frailty and mental illnesses. However, 
the diagnostic accuracy of the numbers of symptoms has not been well studied. This study aims to 
use equations and simulations to demonstrate how the factors that determine symptom incidence 
influence symptoms’ diagnostic accuracy for disease diagnosis. Assuming a disease causing symptoms 
and correlated with the other disease in 10,000 simulated subjects, 40 symptoms occurred based on 
3 epidemiological measures: proportions diseased, baseline symptom incidence (among those not 
diseased), and risk ratios. Symptoms occurred with similar correlation coefficients. The sensitivities 
and specificities of single symptoms for disease diagnosis were exhibited as equations using the 
three epidemiological measures and approximated using linear regression in simulated populations. 
The areas under curves (AUCs) of the receiver operating characteristic (ROC) curves was the measure 
to determine the diagnostic accuracy of multiple symptoms, derived by using 2 to 40 symptoms 
for disease diagnosis. With respect to each AUC, the best set of sensitivity and specificity, whose 
difference with 1 in the absolute value was maximal, was chosen. The results showed sensitivities 
and specificities of single symptoms for disease diagnosis were fully explained with the three 
epidemiological measures in simulated subjects. The AUCs increased or decreased with more 
symptoms  used for disease diagnosis, when the risk ratios were greater or less than 1, respectively. 
Based on the AUCs, with risk ratios were similar to 1, symptoms did not provide diagnostic values. 
When risk ratios were greater or less than 1, maximal or minimal AUCs usually could be reached with 
less than 30 symptoms. The maximal AUCs and their best sets of sensitivities and specificities could be 
well approximated with the three epidemiological and interaction terms, adjusted R-squared ≥ 0.69. 
However, the observed overall symptom correlations, overall symptom incidence, and numbers 
of symptoms explained a small fraction of the AUC variances, adjusted R-squared ≤ 0.03. In 
conclusion, the sensitivities and specificities of single symptoms for disease diagnosis can be explained 
fully by the at-risk incidence and the 1 minus baseline incidence, respectively. The epidemiological 
measures and baseline symptom correlations can explain large fractions of the variances of the 
maximal AUCs and the best sets of sensitivities and specificities. These findings are important for 
researchers who want to assess the diagnostic accuracy of composite diagnostic criteria.

Symptoms that are considered signs of certain diseases have been used for diagnostic purposes such as those used 
for the diagnosis of frailty and mental illnesses1,2. The diagnostic accuracy of these symptoms varies over a wide 
range3. The number of symptoms used to diagnose varies across diagnoses4 and even for the same diagnosis1,5. 
For example, frailty, a geriatric syndrome, has been defined and diagnosed with 4 to 70 symptoms, depending 
on the frailty models1,6–9. More complicated frailty models define and use more frailty symptoms for diagnosis10. 
Since various designs and model specifications coexist, it remains unclear whether there are optimal numbers 
of symptoms for the diagnosis of a disease, for example, frailty.
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In a simplistic hypothetical case (see Table 1), a proportion of a population is affected by a disease, denoted 
by d, and a constant and random rate of incidence occurs for one symptom at a particular time point, denoted by 
ir. For those affected by the disease, the incidence rate of the symptoms increases by a risk ratio, denoted by rr. 
With respect to the individuals diseased, the proportion of those presenting the symptom was d × ir × rr, and the 
proportion of those not presenting the symptom was d × (1 − ir × rr). Regarding those not diseased, the propor-
tion of those presenting the symptom was (1 − d) × ir and the proportion of those not presenting the symptom 
was (1 − d) × (1 − ir). The sensitivity11 of this symptom for detecting the disease equaled (d × ir × rr)/d = ir × rr, and 
the specificity was [(1 − d) × (1 − ir)]/(1 − d) = 1 − ir. Based on these calculations, the symptom incidence (and the 
risk ratio) should connect to the diagnostic test accuracy of the symptoms for the disease.

In Table 2, a two-symptom case is hypothesized. Two symptoms are associated with the occurrence of the 
disease. There are incidence rates and risk ratios for presenting both symptoms, one, or none. The correlations 
between the symptoms can influence the co-occurrence of multiple symptoms and thus joint incidence (irboth) 
and joint risk ratios (rrboth)2. The sensitivity and specificity11 of presenting two symptoms for the detection of 

Table 1.   Diagnostic accuracy of a single symptom to diagnose the disease cause in equations. Equations are 
derived based on Baratloo et al.’s definitions11. d proportions in a population with the disease, ir symptom 
incidence rate, rr risk ratios.

Disease status Disease present Disease absent

Proportions diseased d 1− d

Symptom present d × ir × rr (1− d)× ir

Symptom absent d × (1− ir × rr) (1− d)× (1− ir)

Derived statistics if the symptom present

Sensitivity11 d×ir×rr

d
= ir × rr

Specificity11 (1−d)×(1−ir)
1−d

= 1− ir

Positive predictive value11 d×ir×rr

d×ir×rr+(1−d)×ir
 = d×ir×rr

d×ir×rr+ir−d×ir

Negative predictive value11 (1−d)×(1−ir)
d×(1−ir×rr)+(1−d)×(1−ir)

 = 1−d−ir+d×ir

1−d×ir×rr−ir+d×ir

Observed ratios of developing symptoms d×ir×rr+(1−d)×ir

d×(1−ir×rr)+(1−d)×(1−ir)
 = d×ir×rr+ir−d×ir

1−d×ir×rr−ir+d×ir

Derived statistics if the incidence reaching 1 among those diseased (ir × rr= 1)

Sensitivity11 d×ir×rr

d
= ir × rr = 1

Specificity11 (1−d)×(1−ir)
1−d

= 1− ir

Positive predictive value11 d×ir×rr

d×ir×rr+(1−d)×ir
 = d×ir×rr

d×ir×rr+ir−d×ir
 = d

d+ir−d×ir

Negative predictive value11 (1−d)×(1−ir)
d×(1−ir×rr)+(1−d)×(1−ir)

 = 1−d−ir+d×ir

1−d×ir×rr−ir+d×ir
 = 1−d−ir+d×ir

1−d−ir+d×ir
 = 1

Observed  ratios of developing symptoms d×ir×rr+(1−d)×ir

d×(1−ir×rr)+(1−d)×(1−ir)
 = d×ir×rr+ir−d×ir

1−d×ir×rr−ir+d×ir
 = d+ir−d×ir

1−d−ir+d×ir

Table 2.   Diagnostic accuracy of two symptoms to diagnose the disease cause in equations. Equations are 
derived based on Baratloo et al.’s definitions11. both both symptoms presenting due to the disease that caused 
the symptoms, d proportions in a population with the disease, ir symptom incidence rate, one one symptom 
presenting, rr risk ratios.

Disease status Disease present Disease absent

Probability d 1 − d

Both symptoms present d × irboth × rrboth (1 − d) × irboth

At least one symptoms present d × irone × rrone (1 − d) × irone

Both symptoms absent d × (1 − irboth  × rrboth) (1 − d )× (1 − irboth )

At least one symptom absent d × (1 − irone  × rrone) (1 − d )× (1 − irone )

Derived statistics if both symptoms present

Sensitivity11 (d × irboth × rrboth)/d = irboth × rrboth

Specificity11 [(1 − d) × (1 − irboth)]/(1 − d) = 1 − irboth

Positive predictive value11 (d × irboth × rrboth)/[d × irboth × rrboth + (1 − d) × irboth] = (d × irboth × rrboth)/(d × irboth × rrboth + irboth − d × irboth)

Negative predictive value11 (1 − d) × (1 − irboth)/[d × (1 − irboth × rrboth) + (1 − d) × (1 − irboth)] = (1 − d − irboth + d × irboth)/(1 − d × irboth × rrboth − irboth + d × irboth)

Derived risk ratios of developing 2 symptoms [d × irboth × rrboth + (1 − d) × irboth]/[d × (1 − irboth × rrboth) + (1 − d) × (1 − irboth)] = (d × irboth × rrboth + irboth − d × irboth)/ (1 − d × irboth × rrboth − i
rboth + d × irboth)

Derived statistics if at least one symptom present

Sensitivity11 (d × irone × rrone )/d =  irone × rrone

Specificity11 [(1 − d) × (1 − irone)]/(1 − d) = 1 − irone 

Positive predictive value11 (d × irone ×  rrone)/[d × irone × rrone + (1 − d) ×  irone] = (d ×  irone × rrone )/ (d ×  irone × rrone + irone − d × irone)

Negative predictive value11 (1 − d) × (1 − irone)/[d ×  (1 − irone × rrone) + (1 − d) × (1 − irone)] = (1 − d − irone + d  × irone)/(1 − d  × irone ×  rrone  − irone + d × irone)
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the disease are irboth × rrboth and 1 − irboth respectively. The sensitivity and specificity11 of presenting one of the 
symptoms for the detection of the disease are irone × rrone and 1 − irone, respectively. When increasing numbers 
of symptoms present due to the disease status, it becomes more difficult to predict the relationship between the 
disease status and the symptoms using equations.

This study aims to understand the relationships between disease statuses and associated symptoms in terms 
of their diagnostic test accuracy by simulating populations of various assumed disease prevalence, symptom 
incidence, risk ratios, and correlations between symptoms.

Methods
The assumptions and the epidemiological measures for the simulations are listed in Table 3 and illustrated 
in Fig. 1. In detail, there were only two diseases. One directly influenced the incidence of the symptoms, and 
the other was only associated with the disease. The incidence rates and risk ratios were similar with respect to 
all the simulated symptoms. The products of the incidence rates and risk ratios (at-risk incidence) could not 
exceed 1, an upper limit of incidence rate of 100%. There were 10,000 individuals simulated each time. There 
were 40 symptoms induced by the disease. The correlations between the disease and the other associated disease 
were 0, 0.3, and 0.7. We assumed the prevalence rates of the disease were 0.05, 0.1, 0.2, 0.4, and 0.8, similar to 
the values adopted in a previous study2. Several conditions have been observed in more than 80% of selected 
populations, for example, Epstein–Barr virus infection12,13 and the herpes simplex virus type 2 infection14. The 
baseline incidence of developing symptoms for those not affected by the disease were 0.05, 0.1, 0.2, 0.4, and 0.8. 
The risk ratios of developing symptoms when diseased were 0.5 (less likely to develop symptoms), 1.0 (equally 
likely to develop symptoms), 2, 5, 10, and 25 (more likely to develop symptoms). Risk ratios more than 25 were 
reported in several studies15–17. We assumed the correlations between the symptoms were 0, 0.4, and 0.8, similar 
to a range in a previous study2. We assumed the correlations between the diseases were 0, 0.3, and 0.7. We used 
10 simulations for each combination of disease correlations, disease prevalence, symptom incidence, symptom 
correlations, and risk ratios of developing symptoms.

Simulation procedures.  The R codes to simulate individuals with assumed epidemiological measures are 
in Appendix 1. For each simulation, we chose a combination of the above-mentioned epidemiological measures, 
including disease incidence, associations between diseases, and symptom risk ratios. In a simulation, we created 
10,000 individuals and randomly assigned them disease statuses based on the assumed proportions diseased. 
We also randomly assigned the other associated disease based on its correlations with the main disease using 
an established method18,19. The probability of individuals developing symptoms differed by whether they were 
diseased or not. Among those diseased, the probability of developing a symptom was the product of its baseline 
incidence and an assumed risk ratio. Among those not diseased, the probability of developing a symptom was 
based on the baseline incidence of the symptom, and we created 40 symptoms at the same time. We consid-

Table 3.   Assumptions and the assessments of the simulated symptoms. AUC​ area under curve.

Assumptions

1 2 diseases of interest: one disease directly related to the symptoms and the other 
associated with the disease only (unrelated to symptoms)

2 Similar baseline incidence rates among those not diseased and similar risk 
ratios for the symptoms

3 Accurate disease statuses; symptoms reported accurately by patients

4 The products of baseline incidence rates and risk ratios less than or equal to 1

5 Similar baseline correlations between symptoms among those diseased or not 
diseased

Epidemiological measures of symptom occurrence in simulations

1 Population sizes 10,000

2 Number of symptoms that can be caused by the disease 40

3 Correlations between the disease that caused symptoms and the other associ-
ated disease that did not cause symptoms 0, 0.3, and 0.7

4 Prevalence rates or proportions of the population with the disease that caused 
symptoms 0.05, 0.1, 0.2, 0.4, and 0.8

5 Baseline incidence rates of the symptoms, similar to all symptoms 0.05, 0.1, 0.2, 0.4, and 0.8

6 Risk ratios of developing symptoms if diseased 0.5, 1.0, 2.0, 10.0, and 25.0

7 Correlations between symptoms 0, 0.4, and 0.8

8 Number of simulations for each combination of the above measures 3 to 7 10

Statistics for assessment

Correlations between symptoms

Diagnostic test accuracy (sensitivities, specificities, and AUCs) of the symptoms 
for the detection of the disease

Diagnostic test accuracy (sensitivities, specificities, and AUCs) of the symptoms 
for the detection of the unrelated disease
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ered the correlations between the 40 symptoms, and we randomly assigned the symptoms based on disease 
statuses18,19.

Diagnostic test accuracy of symptoms.  We first described the diagnostic accuracy of the symptoms 
to detect the disease and the other associated disease using equations. Then we used the data obtained from 
simulations to validate the equations. We defined sensitivity as the number of true cases identified by a symptom 
or symptoms (more than the numbers required by a threshold) divided by the number of those diseased11,20. 
We defined specificity as the number of non-cases identified by the absence of a symptom or symptoms (using 
the same threshold as the sensitivity) divided by the number of those not diseased. The areas under the receiver 
operating characteristic (ROC) curves and the 95% CIs were derived when using more than one symptom to 
detect the disease status21. We compared the area under curves (AUCs) that were derived from using different 
numbers of symptoms for disease diagnosis21. We chose the best set of sensitivity and specificity in a ROC curve 
by searching the set with the maximal difference between 1 and the sum of sensitivity and specificity in absolute 
values22. We reported the number of symptoms and the sensitivity and specificity of the best set.

Approximation of diagnostic accuracy and symptom correlations.  We approximated the cor-
relations between symptoms and diagnostic accuracy, including the sensitivities and specificities of single 
symptoms for disease diagnosis in simulated populations, with epidemiological measures using linear regres-
sion. Using linear regression models to approximate complicated measures has been proven to be an effec-
tive method to understand the role or importance of various factors on these measures. We considered cor-
relations between symptoms or diagnostic accuracy to be a dependent variable ( Y  ), and approximated them 
by using the above-mentioned epidemiological measures with or without their interaction terms (denoted as 
xi , i ranging from 1 to the total number of independent variables in a regression model). The equation was 
Y = α0 + α1 × x1 + α2 × x2 + · · · + αn × xn , where α0 denoted the intercept, αi denoted the regression coeffi-
cients, and n was the number of independent variables. The implementation of the regression models is available 
in the R codes in Appendix 1.

We used this approach to interpret principal components23–25, determine life stages26,27, interpret the diagnosis 
of frailty syndrome1, and demonstrate the biases generated by the diagnostic criteria of mental illnesses2. We 
conduced all the statistical analyses using the R environment (v3.5.1, R Foundation for Statistical Computing, 
Vienna, Austria)28 and RStudio (v1.1.463, RStudio, Inc., Boston, MA)29.

Results
Quality of simulations and symptom incidence.  The derived baseline incidence rates of single symp-
toms matched the assumed incidence rates, regardless of the assumed proportions diseased, assumed risk ratios, 
and assumed correlations between symptoms (Appendix 2). The derived risk ratios matched the assumed risk 
ratios when the at-risk incidence (incidence among those diseased) was less than 1 (Appendix 2). Figure 2 pre-
sents the symptom incidence among all subjects. The overall symptom incidence depended on the proportions 
diseased, baseline symptom incidence, and symptom risk ratios. Based on the similarities between the assumed 
and derived values, the simulations were well implemented.

Correlations between symptoms.  The correlations between the symptoms ranged from − 0.02 to 0.99 in 
all simulations (see Table 4). The effects of the assumed epidemiological measures on the correlations between 
symptoms in the linear regression models depended on whether the at-risk incidence reached 1. The correla-
tions between the two diseases, one causing symptoms and the other only associated with the disease, were not 

Correlation 

Disease Associated 

disease

Symptom 1
(d  ir  rr if diasesed; 

d (1 ir ! rr) if not 

diseased)

Symptom 2
(d  ir  rr if diasesed; 

d (1 ir ! rr) if not 

diseased)
Symptom 3

(d  ir  rr if diasesed; 

d (1 ir ! rr) if not 

diseased)
Symptom 

(d  ir  rr if diasesed; 

d (1 ir ! rr) if not 

diseased)

Symptom n
Symptom incidence =

ir  rr, if diasesed; 
ir, if not diseased)

Diagnostic 

accuracy?

Determined by 

what factors?

Figure 1.   Elements of the simulations in this study. d proportions diseased, ir incidence rate, rr risk ratio.
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significantly associated with the correlations between the symptoms. The at-risk incidence reaching 1 or not, 
proportions diseased, risk ratios, at-risk incidence, and symptom correlations among those not diseased (base-
line symptom correlations) were significantly and positively associated with the overall symptom correlations. 
The baseline incidence was negatively and significantly associated with the overall symptom correlations. The 
adjusted R-squared was 0.86 and 0.89 with at-risk incidence reaching 1 or not, respectively.

Diagnostic test accuracy of individual symptoms for the detection of the diseases.  As expected 
in Table 1, the sensitivities and specificities of individual symptoms for disease diagnosis can be predicted with 
at-risk incidence (Table 5) and 1 minus baseline incidence (Table 6), respectively. The sensitivities of individual 
symptoms for disease diagnosis were 1 for all symptoms, when the at-risk incidence reached 1. The effect sizes 
of disease correlations, proportions diseased, risk ratios, and baseline symptom correlations remained the same, 
when the at-risk incidence reached 1 or not.

Figure 2.   Symptom incidence depending on the baseline incidence, proportions diseased, and risk ratios. RR 
risk ratios.

Table 4.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations on 
overall symptom correlations. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) − 0.007 (− 0.008 to − 0.006) < 0.0001

Correlation between diseases 0 (− 0.001 to 0.001) 0.859

Proportions diseased 0.119 (0.117 to 0.121) < 0.0001

Baseline incidence − 0.107 (− 0.109 to − 0.105) < 0.0001

Risk ratio 0.016 (0.016 to 0.016) < 0.0001

At-risk incidence 0.185 (0.183 to 0.187) < 0.0001

Baseline symptom correlation 0.841 (0.840 to 0.842) < 0.0001

Dependent variables mean = 0.5; SD = 0.31; median = 0.47; min = − 0.04; max = 0.99

Adjusted R-square = 0.89

Incidence reaching 1 among those diseased

(Intercept) 0.339 (0.336 to 0.342) < 0.0001

Correlation between diseases 0 (− 0.002 to 0.002) 0.736

Proportions diseased 0.315 (0.312 to 0.318) < 0.0001

Baseline incidence − 0.337 (− 0.341 to − 0.333) < 0.0001

Risk ratio 0.01 (0.01 to 0.01) < 0.0001

Baseline symptom correlation 0.639 (0.637 to 0.641) < 0.0001

Dependent variables mean = 0.62; SD = 0.29; median = 0.72; min = − 0.02; 
max = 0.99

Adjusted R-square = 0.86
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Diagnostic test accuracy of symptom numbers for disease diagnosis.  When using the accumula-
tive numbers of symptoms to predict the disease directly causing the symptoms, we used the AUCs to compare 
the diagnostic test accuracy across the numbers of symptoms used. Figure 3 shows one example of the ROC 
curve assuming the risk ratio as 2, baseline symptom incidence as 0.1, proportions diseased as 0.05, no correla-
tions between diseases, and no correlations between symptoms. When more symptoms were used for disease 
diagnosis, the AUCs increased. We selected the best set of sensitivities and specificities for disease diagnosis 
based on the sums of sensitivities and specificities (red dots in Fig. 3). The red dots also represent the diagnostic 

Table 5.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations on 
the sensitivities of individual symptoms for disease diagnosis. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0 (0 to 0) < 0.0001

Correlation between diseases 0 (0 to 0) 0.82

Proportions diseased 0 (0 to 0) 0.03

Baseline incidence 0 (0 to 0) < 0.0001

Risk ratio 0 (0 to 0) < 0.0001

At-risk incidence 1 (1 to 1) < 0.0001

Baseline symptom correlation 0 (0 to 0) 0.22

Dependent variable mean = 0.64; SD = 0.32; median = 0.55; min = 0.12; 
max = 1

Adjusted R-square = 1

Incidence reaching 1 among those diseased

(Intercept) 1 (1 to 1) < 0.0001

Correlation between diseases 0 (0 to 0) 0.24

Proportions diseased 0 (0 to 0) 0.34

Baseline incidence 0 (0 to 0) 0.22

Risk ratio 0 (0 to 0) 0.71

Baseline symptom correlation 0 (0 to 0) 0.22

Dependent variable mean = 1; SD = 0; median = 1; min = 1; max = 1

Adjusted R-square = 0.5

Table 6.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations on 
the specificities of individual symptoms for disease diagnosis. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 1 (1 to 1) < 0.0001

Correlation between diseases 0 (0 to 0) 0.03

Proportions diseased 0 (0 to 0) 0.01

Baseline incidence − 1 (− 1 to − 1) < 0.0001

Risk ratio 0 (0 to 0) < 0.0001

At-risk incidence 0 (0 to 0) < 0.0001

Baseline symptom correlation 0 (0 to 0) 0.1

Dependent variable mean = 0.62; SD = 0.27; median = 0.61; min = 0.17; 
max = 0.97

Adjusted R-square = 1

Incidence reaching 1 among those diseased

(Intercept) 1 (1 to 1) < 0.0001

Correlation between diseases 0 (0 to 0) 0.95

Proportions diseased 0 (0 to 0) 0.24

Baseline incidence − 1 (− 1 to − 1) < 0.0001

Risk ratio 0 (0 to 0) < 0.0001

Baseline symptom correlation 0 (0 to 0) 0.97

Dependent variable mean = 0.61; SD = 0.29; median = 0.63; min = 0.17; 
max = 0.97

Adjusted R-square = 1
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thresholds for disease diagnosis. For example, when using 40 symptoms for disease diagnosis, the threshold of 
obtaining the best set of sensitivities and specificities was 5.5 (see the red dots in Fig. 3). This result suggested 
that when there were 6 or more symptoms out of 40 presenting in individual patients, the sensitivity to detect 
the disease cause was 86.3%. The specificity for correctly excluding the disease in individuals with less than 6 
symptoms out of 40 was 79.4%. For other combinations of epidemiologic measures, see examples in Appendix 3.

Table 7 shows the effects of epidemiological measures on the AUCs of individual symptoms for disease 
diagnosis. The AUCs of individual symptoms can be explained fully by disease correlations, proportions dis-
eased, baseline symptom incidence, risk ratios, at-risk symptom incidence, and symptom correlations (adjusted 
R-squared = 1 for at-risk incidence reaching 1 or not). When the at-risk incidence was less than 1, the at-risk 
incidence and baseline incidence had the same effect sizes of opposite directions, a regression coefficient of 0.5 
and − 0.5, respectively. When the at-risk incidence reached 1, the AUCs of individual symptoms decreased with 
the baseline symptom incidence (regression coefficient = − 0.5) from 1 (perfect diagnostic accuracy).

In Table 8, using a maximum of 40 symptoms for disease diagnosis, we analyzed the effects of the epidemio-
logical measures on the observed maximal AUCs. The effect sizes and statistical significance of the epidemiologic 
measures depended on whether the at-risk incidence reached 1. The correlations between diseases were not 
significant (p > 0.68 for both). Proportions diseased were significantly and positively associated with the maximal 
AUCs (p < 0.05 for all). Baseline symptom incidence and symptom correlations were significantly and negatively 
associated with the maximal AUCs (p < 0.05 for all). The maximal AUCs can be well predicted by epidemiologic 
measures when the at-risk incidence reached 1 or not (adjusted R-squared = 0.83 and 0.80, respectively).

Figure 4 presents the changes in the AUCs according to the numbers of symptoms used for disease diagnosis 
using simulations assuming 0.8 correlations between symptoms among those not diseased. We colored the AUCs 
based on the observed risk ratios and baseline symptom incidence. In each simulation, when the 95% CIs of the 
AUCs overlapped those of the maximal or minimal AUCs with risk ratios greater or less than 1, respectively, we 
colored the dots gray. The AUCs changed when we used more symptoms for disease diagnosis. In Fig. 4, the 95% 
CIs of all of the AUCs in the simulations assuming risk ratios as 1 overlapped with the 95% CIs of the maximal 
or minimal AUCs. The AUCs in the simulations assuming 0 and 0.4 symptom correlations among individuals 
not diseased are presented in Appendix 4.

The best sets of sensitivities and specificities for disease diagnosis chosen based on the AUCs are plotted in 
Figs. 5 and 6, respectively. We plotted the sensitivities and specificities according to the assumed risk ratios and 
baseline symptom incidence. When the 95% CIs of the AUCs overlapped with the 95% CIs of the maximal AUCs, 

Figure 3.   Receiver operating characteristic (ROC) curves for disease diagnosis based on the numbers of 
symptoms. Red dots = the set of sensitivities and specificities with the largest difference in the absolute values 
between 1 and the sums of sensitivities and specificities in a ROC curve. For each number of symptoms used 
for disease diagnosis, one red dot—a best set of sensitivities and specificities—was selected. With a maximum 
of 40 symptoms used for disease diagnosis, ROC curves in this figure were created assuming the risk ratio as 
2, baseline symptom incidence as 0.1, proportions diseased as 0.05, no correlations between diseases, and no 
correlations between symptoms.
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we colored the dots gray. The role of the epidemiologic measures in the best sets of sensitivities and specificities 
are listed in Tables 9 and 10, respectively.

In Table 9, the best sets of sensitivities chosen based on the maximal or minimal AUCs—when the risk ratios 
were greater or less than 1, respectively—were approximated with epidemiological measures. When the at-risk 
incidence reached 1, the sensitivities were 1, and the epidemiological measures were not significantly associated 

Table 7.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations 
on the area under the receiver operating characteristic curve of individual symptoms for disease diagnosis. CI 
confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0.5 (0.5 to 0.5) < 0.0001

Correlation between diseases 0 (0 to 0) 0.25

Proportions diseased 0 (0 to 0) 0.57

Baseline incidence − 0.5 (− 0.5 to − 0.5) < 0.0001

Risk ratio 0 (0 to 0) < 0.0001

At-risk incidence 0.5 (0.5 to 0.5) < 0.0001

Baseline symptom correlation 0 (0 to 0) 0.44

Dependent variable mean = 0.63; SD = 0.27; median = 0.6; min = 0.27; 
max = 0.98

Adjusted R-square = 1

Incidence reaching 1 among those diseased

(Intercept) 1 (1 to 1) < 0.0001

Correlation between diseases 0 (0 to 0) 0.21

Proportions diseased 0 (0 to 0) 0.37

Baseline incidence − 0.5 (− 0.5 to − 0.5) < 0.0001

Risk ratio 0 (0 to 0) < 0.0001

Baseline symptom correlation 0 (0 to 0) 0.06

Dependent variable mean = 0.8; SD = 0.15; median = 0.8; min = 0.59; 
max = 0.98

Adjusted R-square = 1

Table 8.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations 
on the maximal area under the receiver operating characteristic curve using at most 40 symptoms for disease 
diagnosis. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0.58 (0.569 to 0.591) < 0.0001

Correlation between diseases − 0.001 (− 0.012 to 0.01) 0.807

Proportions diseased 0.006 (− 0.006 to 0.018) 0.322

Baseline incidence − 0.763 (− 0.781 to − 0.745) < 0.0001

Risk ratio − 0.013 (− 0.014 to − 0.012) < 0.0001

At-risk incidence 0.775 (0.762 to 0.788) < 0.0001

Baseline symptom correlation − 0.104 (− 0.114 to − 0.094) < 0.0001

Dependent variable mean = 0.7; SD = 0.29; median = 0.76; min = 0; max = 1

Adjusted R-square = 0.79

Incidence reaching 1 among those diseased

(Intercept) 1.125 (1.116 to 1.134) < 0.0001

Correlation between diseases 0.004 (− 0.004 to 0.012) 0.303

Proportions diseased − 0.007 (− 0.015 to 0.001) 0.088

Baseline incidence − 0.256 (− 0.268 to − 0.244) < 0.0001

Risk ratio − 0.003 (− 0.004 to − 0.002) < 0.0001

Baseline symptom correlation − 0.177 (− 0.184 to − 0.17) < 0.0001

Dependent variable mean = 0.94; SD = 0.1; median = 0.99; min = 0.66; max = 1

Adjusted R-square = 0.71
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with the sensitivities. The correlations between diseases and proportions diseased were not significant when the 
at-risk incidence did not reach 1 (p > 0.05 for both). The baseline symptom incidence, risk ratios, and baseline 
symptom correlations were negatively associated with the best-set sensitivities when the at-risk incidence was less 
than 1 (p < 0.0001 for all). The variances of the best-set sensitivities can be explained mostly by epidemiological 
measures when the at-risk incidence was less than 1 (adjusted R-squared = 0.72).

In Table 10, the best sets of specificities chosen based on maximal or minimal AUCs—when the risk ratios 
were greater or less than 1, respectively—were approximated with epidemiological measures. The correlations 
between diseases and proportions diseased were not significantly associated with the best-set specificities when 
the at-risk incidence reached 1 or not (p > 0.05 for all). When the at-risk incidence was less than 1, the at-risk 
incidence was positively and significantly associated with specificities (p < 0.05). The baseline symptom incidence, 
risk ratios, and baseline symptom correlations were negatively and significantly associated with specificities, and 
the effect sizes depended on whether the at-risk incidence reached 1 (p < 0.0001 for all). The adjusted R-squared 
was 0.71 and 0.69 when the at-risk incidence reached 1 or not, respectively.

Diagnostic accuracy for the disease associated with the disease causing symptoms.  The diag-
nostic accuracy for the disease associated with the disease causing symptoms were approximated with the epi-
demiological measures shown in Table 11. When the at-risk incidence was less than 1, the correlations between 

Figure 4.   Areas under the receiver operating characteristic curves for disease diagnosis by numbers of 
symptoms, baseline symptom incidence, and symptom risk ratios. AUC​ area under curve, CI confidence 
interval, RR risk ratio, incidence baseline symptom incidence among those not diseased. Gray dots are the 
area under curve (AUCs) whose 95% confidence intervals (CIs) overlapped with the maximal AUC 95% CIs 
identified using a maximum of 40 symptoms for disease diagnosis. The lines were added to show the AUCs 
assuming the same epidemiological measures. All AUCs assuming 0.8 correlations between symptoms among 
those not diseased are illustrated.
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the diseases and their interaction terms with baseline symptom incidence, risk ratios, and baseline symptom 
correlations were significantly associated with the AUCs to predict the associated disease (p < 0.0001 for all). The 
main effects of baseline symptom incidence, risk ratios, and at-risk incidence also were significant (p < 0.0001 
for all). When the at-risk incidence reached 1, the correlations between the diseases and their interaction terms 
with the baseline symptom incidence, risk ratios, and baseline symptom correlations remained significantly 
associated with the AUCs to predict the associated disease (p < 0.0001 for all). The proportions of the AUC vari-
ances explained by the epidemiological measures depended on whether the at-risk incidence reached 1 or not, 
adjusted R-squared = 0.96 and 0.66, respectively.

Observed symptom correlations and incidence on the AUCs.  In Table 12, the AUCs to predict the 
disease directly causing symptoms were approximated with observable measures: overall symptom correlations, 
overall symptom incidence, and numbers of symptoms used for disease diagnosis. The overall symptom correla-
tions and numbers of symptoms were positively and significantly associated with AUCs for disease diagnosis 
(coefficients = 0.145 and 0.001, respectively; p < 0.0001 for both). The overall symptom incidence was negatively 
and significantly associated with AUCs (coefficient =  − 0.033, p < 0.0001). However, these three measures only 
explained a small fraction of the AUC variances for all risk ratios or when the risk ratios were greater than 1, 
adjusted R-squared = 0.03 and 0.02, respectively.

Figure 5.   Sensitivities for disease diagnosis by numbers of symptoms, baseline symptom incidence, and 
symptom risk ratios. AUC​ area under curve, CI confidence interval, RR risk ratio, incidence baseline symptom 
incidence among those not diseased. Gray dots are the area under curve (AUCs) whose 95% confidence 
intervals (CIs) overlapped with the maximal AUC 95% CIs identified using a maximum of 40 symptoms for 
disease diagnosis. The lines were added to show the AUCs assuming the same epidemiological measures. All 
AUCs assuming 0.8 correlations between symptoms among those not diseased are illustrated.
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Discussions
This is the first study to estimate the diagnostic accuracy of single symptoms and the numbers of symptoms, 
based on simulations that have been used to demonstrate the biases in the diagnostic criteria of mental illnesses2. 
When single symptoms are caused by a common disease and used to predict disease status, the sensitivities and 
specificities of single symptoms can be predicted fully with the at-risk incidence and 1 minus baseline symptom 
incidence, respectively. This can be proved by mathematical equations or observed in simulations. However, 
when two or more symptoms of the same disease cause are used to estimate disease status, the estimates of the 
joint incidence rates, joint risk ratios, and joint at-risk incidence are required  in the equations describing these 
multiple symptoms. Therefore, it becomes complicated to derive diagnostic accuracy in mathematical equations, 
and so it is practical to estimate the diagnostic accuracy of multiple symptoms through simulations. Key epide-
miological measures for symptom development were identified in the equations: proportions diseased, baseline 
symptom incidence, and risk ratios of symptom development. The correlations between symptoms are important 
when more than one symptom are used for disease diagnosis. A combination of these epidemiological measures 
of the symptoms can be used to simulate symptom development according to disease status. When at most two 
symptoms occur in a population, the diagnostic accuracy—sensitivities and specificities—of having 0, 1, and 2 
symptoms can be derived to construct a ROC and its AUC. By repeating this process until 40 symptoms are used, 
the AUCs increase or decrease or remain around 0.5 when risk ratios are greater than 1, less than 1, or equals 

Figure 6.   Specificities for disease diagnosis by numbers of symptoms, baseline symptom incidence, and 
symptom risk ratios. AUC​ area under curve, CI confidence interval, RR risk ratio, incidence baseline symptom 
incidence among those not diseased. Gray dots are the area under curve (AUCs) whose 95% confidence 
intervals (CIs) overlapped with the maximal AUC 95% CIs identified using a maximum of 40 symptoms for 
disease diagnosis. The lines were added to show the AUCs assuming the same epidemiological measures. All 
AUCs assuming 0.8 correlations between symptoms among those not diseased are illustrated.
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1, respectively. For a combination of the epidemiological measures, the maximal AUCs can be selected from 
the simulations. We selected the best sets of sensitivities and specificities whose absolute values had the largest 
differences between their sums and 1, for a given AUC. The trade-off between sensitivities and specificities can 
be observed1, when more symptoms are used for disease diagnosis.

For a combination of epidemiological measures, AUCs tend to reach the plateau with less than 30 symptoms, 
particularly when baseline symptom correlations are closer to 0, i.e., symptoms are not statistically correlated. 

Table 9.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations 
on the sensitivities obtained from the maximal area under the receiver operating characteristic curve using at 
most 40 symptoms for disease diagnosis. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0.394 (0.38 to 0.408) < 0.0001

Correlation between diseases − 0.003 (− 0.017 to 0.011) 0.664

Proportions diseased 0.001 (− 0.014 to 0.016) 0.853

Baseline incidence − 0.49 (− 0.512 to − 0.468) < 0.0001

Risk ratio − 0.008 (− 0.009 to − 0.007) < 0.0001

At-risk incidence 0.879 (0.863 to 0.895) < 0.0001

Baseline symptom correlation − 0.082 (− 0.095 to − 0.069) < 0.0001

Dependent variable mean = 0.71; SD = 0.32; median = 0.81; min = 0; max = 1

Adjusted R-square = 0.72

Incidence reaching 1 among those diseased

(Intercept) 1 (1 to 1) < 0.0001

Correlation between diseases 0 (0 to 0) 0.26

Proportions diseased 0 (0 to 0) 0.353

Baseline incidence 0 (0 to 0) 0.244

Risk ratio 0 (0 to 0) 0.725

Baseline symptom correlation 0 (0 to 0) 0.222

Dependent variable mean = 1; SD = 0; median = 1; min = 1; max = 1

Adjusted R-square = 0.5

Table 10.   Effects of baseline incidence, proportions diseased, risk ratios, and baseline symptom correlations 
on the specificities obtained from the maximal area under the receiver operating characteristic curve using at 
most 40 symptoms for disease diagnosis. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0.72 (0.706 to 0.734) < 0.0001

Correlation between diseases 0 (− 0.014 to 0.014) 0.968

Proportions diseased 0.01 (− 0.005 to 0.025) 0.201

Baseline incidence − 0.899 (− 0.921 to − 0.877) < 0.0001

Risk ratio − 0.013 (− 0.014 to − 0.012) < 0.0001

At-risk incidence 0.616 (0.6 to 0.632) < 0.0001

Baseline symptom correlation − 0.116 (− 0.129 to − 0.103) < 0.0001

Dependent variable mean = 0.69; SD = 0.29; median = 0.77; min = 0; max = 1

Adjusted R-square = 0.69

Incidence reaching 1 among those diseased

(Intercept) 1.249 (1.23 to 1.268) < 0.0001

Correlation between diseases 0.008 (− 0.008 to 0.024) 0.33

Proportions diseased − 0.015 (− 0.032 to 0.002) 0.084

Baseline incidence − 0.511 (− 0.535 to − 0.487) < 0.0001

Risk ratio − 0.005 (− 0.006 to − 0.004) < 0.0001

Baseline symptom correlation − 0.354 (− 0.368 to − 0.34) < 0.0001

Dependent variable mean = 0.88; SD = 0.2; median = 0.98; min = 0.33; max = 1

Adjusted R-square = 0.71
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The maximal AUCs can be well approximated with baseline incidence, risk ratios, at-risk incidence, and baseline 
symptom correlations (adjusted R-squared > 0.71). The best sets of sensitivities and specificities also can be well 
approximated with these measures (adjusted R-squared > 0.69). However, in the real world, symptom incidence 
and risk ratios cannot be determined when the disease status cannot be precisely confirmed. We found that 
the three observable measures—overall symptom correlations, overall symptom incidence, and numbers of 

Table 11.   Effects of the correlations between diseases, baseline incidence, proportions diseased, risk ratios, 
and baseline symptom correlations on the areas under curves obtained from the maximal area under the 
receiver operating characteristic curve using at most 40 symptoms to predict the disease associated with the 
disease that caused symptoms. CI confidence interval, SD standard deviation.

Coefficients (95% CIs) p

Incidence not reaching 1 among those diseased

(Intercept) 0.462 (0.453 to 0.471) < 0.0001

Correlation between diseases 0.208 (0.187 to 0.229) < 0.0001

Proportions diseased − 0.002 (− 0.013 to 0.009) 0.681

Baseline incidence − 0.195 (− 0.21 to − 0.18) < 0.0001

Risk ratio − 0.014 (− 0.015 to − 0.013) < 0.0001

At-risk incidence 0.262 (0.254 to 0.27) < 0.0001

Baseline symptom correlation − 0.005 (− 0.014 to 0.004) 0.265

Correlation between diseases:Proportions diseased 0.009 (− 0.016 to 0.034) 0.496

Correlation between diseases:Baseline incidence − 0.197 (− 0.228 to − 0.166) < 0.0001

Correlation between diseases:Risk ratio 0.027 (0.025 to 0.029) < 0.0001

Correlation between diseases:Baseline symptom correlation − 0.094 (− 0.116 to − 0.072) < 0.0001

Dependent variable mean = 0.57; SD = 0.14; median = 0.51; min = 0.13; max = 0.88

Adjusted R-square = 0.66

Incidence reaching 1 among those diseased

(Intercept) 0.508 (0.502 to 0.514) < 0.0001

Correlation between diseases 0.618 (0.604 to 0.632) < 0.0001

Proportions diseased − 0.007 (− 0.013 to − 0.001) 0.025

Baseline incidence 0 (− 0.008 to 0.008) 0.973

Risk ratio 0 (0 to 0) 0.764

Baseline symptom correlation − 0.003 (− 0.008 to 0.002) 0.174

Correlation between diseases:Proportions diseased 0.002 (− 0.011 to 0.015) 0.774

Correlation between diseases:Baseline incidence − 0.254 (− 0.273 to − 0.235) < 0.0001

Correlation between diseases:Risk ratio − 0.002 (− 0.003 to − 0.001) < 0.0001

Correlation between diseases:Baseline symptom correlation − 0.182 (− 0.193 to − 0.171) < 0.0001

Dependent variable mean = 0.65; SD = 0.13; median = 0.64; min = 0.47; max = 0.88

Adjusted R-square = 0.96

Table 12.   Role of numbers of symptoms, overall symptom correlations, and overall symptom incidence on the 
AUCs for disease diagnosis. CI confidence interval.

Coefficients (95% CIs) p

All RRs

(Intercept) 0.667 (0.664 to 0.67) < 0.0001

Overall symptom correlation 0.145 (0.142 to 0.148) < 0.0001

Overall symptom incidence − 0.033 (− 0.036 to − 0.03) < 0.0001

Number of symptoms 0.001 (0.001 to 0.001) < 0.0001

Dependent variable mean = 0.75; SD = 0.26; median = 0.84; min = 0; max = 1

Adjusted R-square = 0.03

RRs > 1

(Intercept) 0.803 (0.801 to 0.805) < 0.0001

Overall symptom correlation 0.02 (0.018 to 0.022) < 0.0001

Overall symptom incidence − 0.008 (− 0.01 to − 0.006) < 0.0001

Number of symptoms 0.002 (0.002 to 0.002) < 0.0001

Dependent variable mean = 0.75; SD = 0.26; median = 0.84; min = 0; max = 1

Adjusted R-square = 0.02
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symptoms—do not well explain the AUC variances (adjusted R-squared = 0.03). When researchers are confident 
that the RRs are greater than 1 (AUCs increase with the numbers of symptoms), the observable measures explain 
the AUC variances even worse (adjusted R-squared = 0.02).

Evidence‑based recommendations?  A previous study has provided several recommendations for how 
to use age-related symptoms to diagnose a geriatric syndrome, frailty7. The first recommendation for using 
symptoms for frailty diagnosis was to explicitly select these symptoms based on their associations with health 
status7. The authors did not provide recommendations about selecting symptoms directly associated with frailty7. 
The second recommendation was to choose symptoms that become more prevalent with age7. The third recom-
mendation was to choose symptoms that do not saturate early in the life stage (do not become very prevalent 
among the elderly)7. The fourth recommendation was to include symptoms developed from different systems7, 
for example, not to include only symptoms related to changes in cognition7. The last recommendation was to 
use the same frailty indices consisting of the same symptoms, when the indices are used in the same popula-
tions in different time points7. The authors thought different frailty indices often yield similar results in the same 
samples7. One additional recommendation was to use at least 30 to 40 symptoms to create frailty indices, since 
they claimed that using more symptoms leads to more precise estimates7.

No scientific evidence exists to support the first three above-mentioned recommendations7. In fact, these 
three recommendations are likely to contradict our findings. When symptoms were used to predict a disease 
not directly associated with them in our simulations, the diagnostic accuracy of the symptoms for the associated 
disease partly depended on the correlations between the associated disease and the disease that directly caused 
symptoms (Table 11). When health-related symptoms are chosen based on health status and used to predict 
frailty, the correlations between health status and frailty should be well determined to understand their role in 
the diagnostic accuracy of the health-related symptoms for frailty. The first recommendation failed to recognize 
that the diagnostic accuracy of the health-related symptoms for frailty diagnosis depends on the correlations 
between health status and frailty and their interaction terms with baseline symptom incidence, risk ratios, and 
baseline symptom correlations.

The second and third recommendations require the symptoms to also be associated with age7. In addition 
to being caused by frailty in theory, the symptoms used to predict frailty are required to be associated with 
both health status and age. This approach creates a causal network that is difficult to simulate due to the large 
number of epidemiological measures involved, including the associations between age, health status, and frailty 
(3 parameters), how they interact with the baseline incidence and risk ratios of symptoms (3 X 2 parameters), and 
many others. This complexity is beyond what our simulations could handle and thus further evidence to justify 
these recommendations would be required. However, to our knowledge, no clear evidence exists to support the 
hypothesized casual network associated with these two recommendations.

The second and third recommendations also impose limits on the prevalence of the symptoms for frailty 
diagnosis7. The prevalence of frailty symptoms could not be too low because they need to increase with age 
according to the second recommendation7. Frailty symptoms could not be too common so that they would not 
saturate early7. In our simulations, overall symptom incidence failed to explain a large proportion of AUC vari-
ances, and was, in fact, negatively associated with diagnostic accuracy, AUCs. When baseline symptom incidence 
(among those not diseased only) can be estimated, it is negatively associated with the specificities of individual 
symptoms. We do not have sufficient evidence to support the recommendations to select frailty symptoms based 
on overall symptom prevalence.

Our findings partly address the fourth recommendation that encourages using symptoms from various human 
systems. Baseline symptom correlations (among those not diseased) are significantly and negatively associated 
with the maximal AUCs, when the at-risk incidence among those diseased reached 1 or not. This recommenda-
tion may make better sense, particularly when symptoms from various human systems are less correlated. In 
the simulations, overall symptom correlations that are observable are significantly and positively associated with 
AUCs, though slightly. It is unclear whether the ranges of correlations that the recommendation authors aimed 
to suggest and this recommendation can be improved based on our findings.

The additional recommendation that encourages using more symptoms (at least 30) for disease diagnosis 
is not supported by any evidence7. Our simulations show that diagnostic accuracy measured with AUCs often 
reaches a plateau at 30 or fewer symptoms. Moreover, the frailty indices produced by the authors of the recom-
mendations being discussed have been criticized for using an excessive number of symptoms1. Their frailty 
indices seem overcomplicated and can be simplified with fewer symptoms, because many of the input symptoms 
are correlated1.

Implications for the use of diagnostic criteria.  Currently the diagnosis of many conditions, such as 
mental illnesses2,30 and frailty indices1,9, are based on composite diagnostic criteria. Both mental illnesses and 
frailty indices use symptoms to confirm diagnoses1,2. However, recently several issues related to composite diag-
nostic criteria have been identified. The most important issue is that complicated diagnostic criteria introduce 
biases into the diagnoses1,31. The input symptoms often are summed and censored with certain thresholds to 
derive intermediate variables or confirm diagnoses1. When  the numbers or sum  of symptoms are censored,  
biases that are not explained by the input symptoms can be generated and introduced to the diagnoses1. There-
fore, the diagnoses of frailty have poor relationships with the input symptoms and do not predict major out-
comes better than their input symptoms1. When tested in trials, the use of the diagnoses of poor interpretability, 
such as frailty, is associated with early termination of trials32.

Based on the findings in the present study, several approaches can be used to improve current diagnostic 
strategies. First, under certain circumstances, single symptoms may achieve high sensitivity or specificity. To 
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effectively detect the disease, single symptoms need to be rare among those not diseased (a low baseline incidence 
and thus a high specificity) and have high risk ratios of development due to the disease cause (high sensitiv-
ity). However, the baseline incidence and risk ratios of the symptoms used to diagnose several conditions, such 
as frailty1 or mental illnesses2, have not been well demonstrated.

Second, symptoms should be selected based on evidence, at least on the understanding of possible causes 
of the symptoms, estimated risk ratios, baseline symptom incidence, and baseline symptom correlations. We 
noticed that when the risk ratios were similar to 1, the maximal AUCs were around 0.5, and so the AUCs pro-
vided little diagnostic values. When the risk ratios were less than 1, suggesting that the presenting symptoms 
were less likely to be related to the disease, the AUCs were likely to be less than 0.5. When the risk ratios were 
greater than 1, the AUCs tended to exceed 0.5. When using less than 30 symptoms for disease diagnosis, the 
AUCs can often reach plateau levels. Epidemiological measures have different impacts on the sensitivities and 
specificities obtained from the maximal or minimal AUCs using at most 40 symptoms, and assuming risk ratios 
greater or less than 1, respectively.

Third, when the relationships between symptoms have been well explored, using the number of symptoms for 
disease diagnosis can effectively minimize the biases introduced by data censoring1. The biases induced by data 
censoring or categorization can lead to a diagnosis, of which more than 70% of its variances can be explained 
by biases alone1.

Fourth, using more symptoms for diagnosis increases complexity. In the present study, when we used more 
symptoms for diagnosis, we found that their diagnostic accuracy could be improved according to AUCs. However, 
selecting single symptoms with a high diagnostic accuracy is much preferred because using multiple symptoms 
requires complex design, depends on well-tested thresholds, and needs to be justified with extensive research 
on these symptoms and their interactions.

Fifth, baseline symptom correlations are associated with the diagnostic accuracy (AUC) plateau that the 
symptoms can reach. The differences in the diagnostic accuracy of single symptoms and multiple symptoms are 
larger when the baseline symptom correlations are closer to 0.  It is highly recommended that diagnoses consider 
the correlations between the symptoms among those diseased or not. Last, in the real world, when the disease 
cause remains to be investigated, it is not likely  to achieve a perfect estimate of baseline symptom incidence or 
risk ratios, or to confirm baseline symptom correlations among those not diseased. In our simulations, overall 
symptom correlations, overall symptom incidence, and numbers of symptoms were observable and can be 
easily obtained. If the risk ratios cannot be estimated at all, symptom correlations and numbers of symptoms 
are positively and significantly associated with the AUCs for disease diagnosis. The overall symptom incidence 
is negatively and significantly associated with the AUCs. The three observable measures only explain a small 
fraction of the variances of the AUCs for disease diagnosis (adjusted R-squared = 0.03). When researchers are 
confident that these symptoms are more likely to occur among those diseased (RR > 1), these three measures 
remain significant, although the fraction of the variances of the AUCs for disease diagnosis further decreases 
(adjusted R-squared = 0.02).

Future research directions.  Several directions are open for future research. First, continuous variables 
can be used for disease diagnosis, which will require the development of complicated mathematical equations 
and add complexity to simulation and modeling.  We will use the number of symptoms as the template for 
continuous-variable simulations. Second, often, more than one disease can cause the same symptoms, which 
adds quite a few interaction terms to the epidemiological measures. When established, these models will provide 
valuable examples to real-world studies. Third, models that build on incremental improvement will be necessary. 
It is computationally impossible to implement all models to demonstrate the diagnostic accuracy of the symp-
toms that occurred based on the epidemiological measures of all possible values. However, it is relatively feasible 
to construct simulations that conform to well-studied association networks33,34 and epidemiological measures 
reasonably estimated with real-world data. Simulations can be used to support the findings from real world data, 
and may provide lessons for causal inference. In future studies, we will implement more complicated simulations 
and explore the usefulness of simulations for causal inference.

Lastly, situations exist that involve more complicated diagnostic approaches, for example clinical case defini-
tions used in outbreak investigations35,36. Case definitions may be applicable to patients experiencing symptoms 
or signs in certain times or places, depending on the diseases of interest37. For example, a clinical malaria case can 
be defined based on the presence of the pathogen in the blood and the occurrence of related symptoms within 
2 days of examination38. These case definitions can be modified to suit outbreak investigations and settings39. 
Our findings help to demonstrate the key epidemiological parameters that researchers need to pay attention to 
when they aim to update case definitions. In an outbreak investigation, the information on these epidemiologi-
cal measures should be systematically collected. We think it possible to improve case definitions using updated 
information on these measures. This finding needs to be studied further in the future.

Limitations.  Our simulation study depended on various assumptions: one disease causing multiple symp-
toms, similar symptom incidence, similar risk ratios causing symptoms, and similar correlations between symp-
toms among those not diseased. A related disease was set up to occur in association with the symptom-causing 
disease. This related disease remains insignificant in the symptoms’ diagnostic accuracy for disease diagnosis 
(AUCs, sensitivities, and specificities). However, the simulations are not likely to match the complex multi-cause 
examples commonly seen in the real world. For example, the symptoms of frailty, a geriatric syndrome, can be 
linked to frailty and many other causes1,6. Due to computational constraints, a limited number of the values of 
the epidemiological measures were simulated. These epidemiological measures have many other values that 
need to be tested. Assuming the epidemiological measures have similar levels across symptoms, variations are 
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due to the random assignment to different simulated populations. These variations may lead to slight differences 
in the simulation results.

Conclusion
Assuming symptoms are caused by a single disease, they occur based on four epidemiological measures: pro-
portions diseased, baseline symptom incidence, risk ratios, and baseline symptom correlations. The symptom 
incidence among those diseased, at-risk incidence, can reach a maximum of 1. The sensitivities and specificities 
of single symptoms for disease diagnosis can be fully predicted by at-risk incidence and 1 minus baseline inci-
dence, respectively. When the disease causes multiple symptoms based on similar epidemiological measures, 
these symptoms can be used for disease diagnosis. Using two symptoms for disease diagnosis—for example, the 
sensitivities and specificities of having 0, 1, or 2 symptoms—can be calculated to draw a ROC and derive its AUC. 
When repeating the same procedures using 1 to 40 symptoms for disease diagnosis, the maximal AUCs can be 
obtained, and the best sets of sensitivities and specificities can be selected from them. The above-mentioned 
epidemiological measures can explain large fractions of the maximal AUCs and the best sets of sensitivities and 
specificities. These findings are important for researchers who want to assess composite diagnostic criteria that 
are subject to biases and lack an evidence base. For example, the recommendations on constructing a frailty index 
have been widely used7. However, these recommendations neglect the role of these epidemiological measures and 
focus on observable measures (overall symptom incidence and numbers of symptoms) that do not well explain 
symptom diagnostic accuracy.
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