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Genetic and environmental factors strongly influence risk,
severity and progression of age-related macular degeneration
Wenqiu Wang1, Katarzyna Gawlik2, Joe Lopez2, Cindy Wen1, Jie Zhu1, Frances Wu1, William Shi1, Samuel Scheibler1, Huimin Cai3,4,
Ram Vairavan2, Alexander Shi1, Weldon Haw1,5, Henry Ferreyra1, Ming Zhang3, Sherman Chang2 and Kang Zhang1,3,5

Age-related macular degeneration (AMD) is characterized by complex interactions between genetic and environmental factors.
Here we genotyped the selected 25 single-nucleotide polymorphisms (SNPs) in 983 cases with advanced AMD and 271 cases with
intermediate AMD and build an AMD life-risk score model for assessment of progression from intermediate to advanced AMD. We
analyzed the performance of the prediction model for geographic atrophy progressors or choroidal neovascularization progressors
versus non-progressors based on the 25 SNPs plus body mass index and smoking status. Our results suggest that a class prediction
algorithm can be used for the risk assessment of progression from intermediate to late AMD stages. The algorithm could also be
potentially applied for therapeutic response, and toward personalized care and precision medicine.
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INTRODUCTION
Age-related macular degeneration, an ocular degenerative dis-
ease, is regarded as the leading cause for irreversible vision loss in
people age 55 or older in developed countries.1 The typical clinical
signs of early AMD are drusen and retinal pigmental epithelium
changes. The natural history of AMD is progressive, with gradual
loss of visual function that may span over many years’ time. In 10–
15% of patients with dry AMD, the deterioration is more rapid and
extensive and they suffer significant vision loss due to geographic
atrophy (GA). In another approximately 10–15% of patients, the
condition progresses to the ‘wet’ or neovascular form (also known
as choroidal neovascularization, CNV). Approximately eight million
people in the United States suffer symptoms of early or
intermediate AMD, of whom almost one million will develop late
AMD within the next 5 years. As aging population booms globally,
AMD appears to be a significant public concern for the health care
departments and scientific researchers.2,3

AMD, a heterogeneous and genetically complex disease, is
triggered by multiple environmental and genetic risk factors.4,5

Epidemiological studies provided solid evidence that environ-
mental factors including BMI (body mass index) and smoking
increased risks of AMD. Our previous published study, as wells as
other studies (such as AREDS studies),6–10 showed that several
genetic variants linked strong association with AMD such as CFH,
CFB, HTRA1/ARMS2 and others. A combined risk score including
these multiple genetic loci along with demographic and environ-
mental data was highly predictive of AMD phenotype.11–13

Although GA and CNV are regarded as late AMD suffering poor
visual outcomes, GA and CNV require quite different treatment
strategies accordingly due to their specific and different
histopathological changes. Unfortunately, none of the reported
assessment methods were able to precisely predict progression to
the subtype of late AMD.

In the current study, we reported new prediction models for
assessment of AMD development and disease progression based
on 25 highly associated single-nucleotide polymorphisms (SNPs)
from 15 genes (Supplementary Table 1) and 2 epidemiological
factors. Each genetic or environmental risk factor was previously
evaluated for association with AMD development and/or progres-
sion to different AMD stages. The lifetime risk model is capable to
calculate the probability of developing AMD during the lifespan of
an individual, although risk models for progression are providing
the likelihood of progression from intermediate AMD stage to GA
and CNV. We also proposed, based on the risk score distribution,
the stratification approach that might provide a useful clinical tool.

MATERIALS AND METHODS
Study population
The study was approved by the institutional review boards of the
University of California, San Diego, United states and West China Hospital,
Chengdu, China. Informed written consent was obtained from each
patient, and protocols were reviewed and approved by local ethics
committees. All research adhered to the tenets of the Declaration of
Helsinki. Between 2005 and 2010, patients were enrolled in a prospective
study at Shiley Eye Institute and West China Hospital. All patients were
examined by two experienced ophthalmologists and divided into three
groups: (1) advanced AMD cases with geographic atrophy (anywhere
within the grid and without any record of hemorrhage) or choroidal
neovascularization (hemorrhagic retinal detachment, hemorrhage under
the retina or retinal pigment epithelium, subretinal fibrosis) in the worse
eye; (2) intermediate AMD cases with macular drusen (small, hard, large,
large confluent, semigranual, cuticular, familial, soft confluent and soft no-
confluent)463 μm in the worse eye; (3) controls without known advanced
or intermediate AMD. Smoking history was obtained at the baseline visit
from questionnaires and participants were classified as current smokers,
past smokers, or never smokers. BMI was derived from height and weight
measurements at the baseline visit.
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Genotyping
Genomic DNA was extracted from peripheral blood leukocytes according
to established protocols11 and genotyped by AutoGenomics using INFINITI
High Throughput System (Vista, CA, USA) and AMD Panel (Vista, CA, USA,
for research use only). On the INFINITI platform, dual levels of specificity are
achieved by the multiplexing PCR and allele-specific primer extension
(ASPE) processes. Target regions of relevant genes were amplified and the
amplicons were served as templates for the ASPE, during which, fluorescent-
labeled nucleotides were incorporated for signal amplification. Subsequently,
ASPE primers were captured via hybridization of the primer's Tag-region with
the anti-Tag oligonucleotides addressed on the BioFilmChip (Vista, CA, USA).
The microarray was washed, dried and scanned for the data analysis using
the INFINITI ACE Reader (Vista, CA, USA).

Model building and internal validation
Class prediction model building and testing were performed using TreeNet
software (Salford Systems, San Diego, CA, USA). The binary logistic
regression analysis with a 10-fold cross-validation method was applied in
the algorithm development. TreeNet (https://www.salford-systems.com/
products/TreeNet) randomly assigned 9/10th of the data (learning set) to
the model building to compute the regression equation and thus establish
the risk score model. Remaining 1/10th of the data were used for testing
and served as the internal control. Receiver operating characteristic curve
(ROC) was computed for both, the learning and testing sets. The closer
ROC is between the learning and testing sets, the better class prediction
algorithm is developed.

Statistical analyses
Statistical analyses were performed using SPSS 22.0 (SPSS, Chicago, IL,
USA). All values are reported as the mean± s.d. or 95% confidence interval.
P-valueso0.05 were considered statistically significant.

RESULTS
Patient information
A total of 1677 unrelated individuals (957 Caucasians, 647 Asins,
39 Hispanics and 34 African Americans) were involved in this 7-
year study including 983 patients with advanced AMD (269
diagnosed with geographic atrophy and 714 with choroidal
neovascularization), 271 patients with intermediate AMD, and 423
control patients. Patients with intermediate AMD were followed
up for 7 years and did not progress to advanced stages, thus were
considered non-progressors. Patients diagnosed with late AMD
(geographic atrophy or choroidal neovascularization) were con-
sidered progressors. Table 1 shows the baseline characteristics of
the study participants.

SNPs selection and genotyping
The following 15 loci with 25 common SNPs and established
association with AMD were included in the present study to
develop class prediction algorithms for lifetime risk assessment
and disease progression: ABCA1 (rs1883025); APOE (rs429358, rs7412);
ARMS2 (rs10490924); C3 (rs2230199); CCDC109B (rs17440077); CETP
(rs3764261); CFB (rs4151669, rs522162); CFH (rs1048663, rs1061170,
rs10737680, rs1329428, rs2274700, rs3766405, rs412852); CFI
(rs10033900); COL8A1 (rs13095226); HTRA1 (rs11200638); LIPC
(rs493258, rs10468017); LPL (rs12678919); TIMP3 (rs9621532) and
VEGFA (rs3025000, rs943080). A summary of the selected SNPs
with the risk and non-risk alleles according to the literature, their
affected genes and proposed roles in AMD pathogenesis is
displayed in Supplementary Table 1.
We genotyped the selected 25 SNPs in 983 cases with advanced

AMD, 271 cases with intermediate AMD, and 423 controls. We
implemented stringent quality control criteria for each SNP in our
data set. All variants showed high genotyping quality with an
average call rate 499.5%.

Risk prediction for developing AMD
We first assessed AMD lifetime risk defined as the likelihood of
developing the disease during the individual’s lifespan based only
on genetic factors in our case–control study. We analyzed the
performance of the prediction model in AMD patients (872 cases
consisting of 269 GA and 603 CNV) versus controls (423 cases)
based on the 25 SNPs shown to be associated with the disease.
The receiver operating characteristic curve (ROC) for the test set
was 0.76 with 70% sensitivity and 66% specificity, where the
positive (PPV) and negative (NPV) prediction values were 81% and
52%, respectively (Figure 1).
To improve the performance of the model, we added non-genetic

modifiable risk factors, BMI and smoking history (current, past or
never). For this 27 variable model, the ROC for the test set was 0.79
with 70% sensitivity and 73% specificity, where PPV and NPV values
were 84% and 54%, respectively (Figures 2a and b). The variable
ranking showed the most important SNPs associated with AMD,
along with non-genetic risk factors, at the top including CFH
(rs412852), VEGFA (rs3025000), C3 (rs2230199) and ARMS2
(rs10490924), which is in accordance with previously published
data (Figure 2c). The AMD lifetime risk prediction model developed
based on the 27 predictors (both genetic and non-genetic factors)
was shown to be the most effective. The distribution of AMD lifetime
risk score for cases and controls as observed in our study is given in
Figure 3a. On the basis of the above results, the relative risk score of
developing AMD can be generated and grouped into three risk
categories: (1) low relative risk of o35%; (2) moderate relative risk
of 35–67%; and (3) high relative risk of 467%. These results suggest
that a class prediction algorithm can be used for the risk assessment
of developing AMD successfully.

Risk prediction for progression to geographic atrophy and
choroidal neovascularization
We hypothesized that when applied to a group of patients with
well-characterized intermediate AMD phenotype, a class predic-
tion algorithm might also be used to predict disease progression.
Progression was defined as transition from intermediate AMD to
advanced AMD, either geographic atrophy (GA) or choroidal
neovascularization (CNV), in the worse eye during a follow-up visit.

Table 1. Summary of demographic characteristics for study
participants

Control AMD

n= 423 CNV
(n= 714)

GA
(n= 269)

Intermediate
(n=271)

Age
media (range) 68 (49, 96) 77 (44, 97) 81 (49,101) 82 (47,107)

BMI
Mean± s.d. 26.70± 5.53 26.47± 5.21 26.66± 5.34 26.02± 5.16

Sex (n)
Female 223 (52.7%) 455 (63.7%) 161 (59.8%) 155 (57.2%)
Male 200 (47.3%) 259 (36.3%) 108 (40.2%) 116 (42.8%)

Smoking (n)
Past 143 (33.8%) 318 (44.5%) 79 (29.4%) 75 (27.7%)
Never 256 (60.5%) 282 (39.5%) 102 (37.9%) 141 (52.0%)
Current 17 (4.0%) 42 (5.9%) 8 (3.0%) 5 (1.8%)
NA 7 (1.7%) 72 (10.1%) 80 (29.7%) 50 (18.5%)

Abbreviations: AMD, age-related macular degeneration; BMI, body mass
index; CNV, choroidal neovascularization; GA, geographic atrophy; NA, data
not available.

Age-related macular degeneration
W Wang et al

2

Signal Transduction and Targeted Therapy (2016) e16016

https://www.salford-systems.com/products/TreeNet
https://www.salford-systems.com/products/TreeNet


We selected only patients with intermediate AMD who did not
progress within 7 years to advanced AMD and considered them as
non-progressors. Here we analyzed the performance of the
prediction model for GA progressors (269 cases) or CNV
progressors (714 cases) versus non-progressors (271 cases with
intermediate AMD) based on the 27 variables (25 SNPs, BMI and
smoking status). For both approaches we applied a ‘shaving’
technique, in which the predictors are ranked from top to bottom
(the most important to the least important) at every step when the
bottom predictor is removed and the model is rebuilt. This
technique allowed us to choose the model for risk of progression
to GA based on 10 variables with the best performance (Figure 4).
The ROC for the test set was 0.71 with 67% sensitivity and 66%
specificity, where PPV and NPV values were 66% and 67%,
respectively (Figures 4a and b). The variable ranking (Figure 4c)
showed only genetic factors at the top including APOE (rs7412),
LPL (rs12678919), CFH (rs412852) and CCDC109B (rs17440077).
Using a ‘shaving’ technique for the modeling of progression risk

to CNV, we were not able to narrow down the number of the
predictors and find an algorithm with better performance. Thus
we evaluated the prediction model for risk of progression to CNV
based on 27 variables (genetic and environmental factors). The
ROC for the test set was 0.77 with 87% sensitivity and 62%
specificity, where PPV and NPV values were 86% and 65%,
respectively (Figures 5a and b). The variable ranking (Figure 5c)
showed non-genetic risk factors at the top along with SNPs
including ABCA1 (rs1883025), CETP (rs3764261), CFI (rs10033900)
and CFH (rs1048663). The distribution of GA and CNV progression
risk score for progressors and non-progressors as observed in our
study is given in Figures 3b and c. Our results suggest that a class

prediction algorithm can also be used for the risk assessment of
progression from intermediate to late AMD stages.

DISCUSSION
In the current study, we tested a panel of 25 SNPs for AMD
association in 983 unrelated individuals diagnosed with late AMD,
271 patients with intermediate AMD and 423 controls. We
demonstrated that multiple SNPs were sufficient to assess the
AMD lifetime risk. Along with the non-genetic factors, smoking
status and BMI, the algorithm was shown to be highly predictive
and could differentiate between low, medium and high risk of
developing AMD.
Before the first class prediction algorithm for AMD risk

assessment was developed, we tested if a class prediction
algorithm can be applied to categorical variables such as
genotyping data. We found that a multivariate approach from
the class prediction algorithm allowed the descriptive genotype
data to be used directly for AMD risk prediction model building
with comparable performance to the model built based on the
numeric variables, thus eliminating the necessity of odds ratios
calculations (Supplementary Figure 1).
AMD lifetime risk score is specifically developed to tell the

likelihood of developing AMD during the lifespan of an individual.
At first, we assessed our cases and controls based only on 25
genetic factors and the ROC was 0.76 with 70% sensitivity and
66% specificity. After adjusting for the smoking status and BMI,
the actual lifetime risk ROC increased to 0.79 with 70% sensitivity
and 73% specificity, which indicated that smoking and BMI were
involved as important AMD risk factors. According to our lifetime
risk model, the relative score values of 8 variables: CFH (rs412852),
BMI, VEGFA (rs3025000), SMOKING, C3 (rs2230199), ARMS2
(rs10490924), HTRA1 (rs11200638) and APOE (rs7412) were close
to or 450, what proved their high contribution to the AMD
development and reliability of the prediction model. Although
there are no lifetime risk models reported elsewhere based exactly
on the same combination of risk factors that were used here, they
have been identified to have strong association with increased risk
of AMD.11,14–23 The use of individual lifetime risk prediction might
help to increased awareness of, and interest in, the importance
and prevention of AMD in large population. They can also be used
to guide the allocation of resources to improve public health
services for AMD from both clinicians and the general public.
AMD is a slowly progressive retinal disease, and its course is

variable and individual. In the current study, we defined
progression as transition from intermediate AMD to advanced
AMD, either geographic atrophy (GA) or choroidal neovasculariza-
tion (CNV), in the worse eye during a follow-up visit. To identify
whether association results differ between two subtypes of late
AMD, we built two progression prediction models, respectively. In
GA prediction model, 10 variables had been found to obtain the
best performance and further evaluate with 67% sensitivity and
66% specificity. CNV prediction model was established based on
27 variables with 87% sensitivity and 62% specificity. Contrary to
the CNV model, the GA model comprised none of the non-genetic
factors, which suggests that genetic factors might have a
predominant role in progression to GA.
Surprisingly, in CNV model, BMI and smoking status showed

larger contribution to CNV progression than genetic factors. BMI
and smoking are the most important modifiable environmental
risk factors associated with AMD. Obesity was shown to be
associated with the incidence of AMD (OR= 1.04 per kg m− 2) in
age, gene/environment susceptibility (AGES) study. Seddon,
George et al.24 found that BMI of 25 kg m− 2 or higher was found
to increase the risk of advanced AMD for CT heterozygotes in CFH
Y402H. For smoking, the risk of developing AMD was 3.7-fold
higher in current smokers, and 1.8-fold higher in past smokers
when compared with patients who never smoked.11,25 However,

Figure 1. Performance of the model for AMD lifetime risk assess-
ment based on 25 variables (genetic factors only). (a) Receiver
operating characteristic curve (ROC) for the 25-SNP model was
generated for learning (blue line) and testing (red dashed line) sets
by using the binary logistic regression analysis with a 10-fold cross-
validation method. (b) Prediction success parameters were calcu-
lated for testing set. AMD, age-related macular degeneration cases;
NC, normal control; NPV, negative prediction value; PPV, positive
prediction value.
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Figure 2. Performance of the model for AMD lifetime risk assessment based on 27 variables (genetic and environmental factors). (a) Receiver
operating characteristic curve (ROC) for the 25-SNP plus smoking and BMI (body mass index) model was generated for learning (blue line) and
testing (red dashed line) sets by using the binary logistic regression analysis with a 10-fold cross-validation method. (b) Prediction success
parameters were calculated for testing set. (c) Variable importance ranking is showing relative scores generated by TreeNet software and
positioning the predictors from the most important to the least important. AMD, age-related macular degeneration cases; NC, normal control;
NPV, negative prediction value; PPV, positive prediction value.

Figure 3. Distribution of the risk score computed in the prediction models. (a) AMD lifetime risk score distribution in the study population.
AMD cases are shown in red and controls in blue. (b) GA progression risk score distribution in the study population. GA progressors are shown
in brown and non-progressors in green. (c) CNV progression risk score distribution in the study population. CNV progressors are shown in
purple and non-progressors in green.
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considered as self-estimated factors, weight control and smoking
quitting were usually avoided to be assessed in most studies for
CNV treatments. Although the way how the non-genetic factors
acted on CNV course keeps unclear, our results provide an
evidence for healthy lifestyle in preventing or slow-downing the
progression of CNV.
Four SNPs, CFI (rs10033900), CETP (rs3764261), VEGFA

(rs3025000) and APOE (rs7412), are found to overlap in top 10
variables of GA and CNV prediction. It may not necessarily reflect a
shared etiology, but it may not necessarily reflect a shared
etiology but may represent overlapping risk factors common to
GA and CNV. On the other hand, it cannot be excluded that GA
and CNV share a common etiology with slightly different end-
stage manifestation. In spite of these encouraging prediction

results of individuals with CNV and GA, additional specific gene–
gene and gene–environment interactions are still required to
confirm these findings and to complement the relative weakness
of the GA prediction.
The limitations of the presented models include the restriction

of our analyses to mostly Caucasian population. The same
polymorphism plays a different role in different ethnic populations
or across different studies. The sample size for AMD risk prediction
model is not large. We still need to be careful when extending the
results to other populations. Nevertheless, we successfully built a
prediction algorithm for risk of developing AMD and disease
progression, and provided a strong basis for conducting future
studies with much larger sample size to validate the initial
findings.

Figure 4. Performance of the prediction model for 7-year progression to geographic atrophy (GA) based on 10 genetic variables. (a) Receiver
operating characteristic curve (ROC) for the 10-SNP model was generated for learning (blue line) and testing (red dashed line) sets by using
the binary logistic regression analysis with a 10-fold cross-validation method. (b) Prediction success parameters were calculated for testing set.
(c) Variable importance ranking is showing relative scores generated by TreeNet software and positioning the predictors from the most
important to the least important. NPV, negative prediction value; PPV, positive prediction value.

Figure 5. Performance of the prediction model for 7-year progression to choroidal neovascularization (CNV) based on 27 variables (genetic
and environmental factors). (a) Receiver operating characteristic curve (ROC) for the 25-SNP plus smoking and BMI model was generated for
learning (blue line) and testing (red dashed line) sets by using the binary logistic regression analysis with a 10-fold cross-validation method.
(b) Prediction success parameters were calculated for testing set. (c) Variable importance ranking is showing relative scores generated by
TreeNet software and positioning the predictors from the most important to the least important. NPV, negative prediction value; PPV, positive
prediction value.
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