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Abstract: Regional population forecast and analysis is of essence to urban and regional planning,
and a well-designed plan can effectively construct a sound national infrastructure and stabilize
positive population growth. Traditionally, either urban or regional planning relies on the opinions
of demographers in terms of how the population of a city or a region will grow. Multi-regional
population forecast is currently possible, carried out mainly on the basis of the Interregional Cohort-
Component model. While this model has its unique advantages, several demographic rates are
determined based on the decisions made by primary planners. Hence, the only drawback for cohort-
component type population forecasting is allowing the analyst to specify the demographic rates
of the future, and it goes without saying that this tends to introduce a biased result in forecasting
accuracy. To effectively avoid this problem, this work proposes a machine learning-based method
to forecast multi-regional population growth objectively. Thus, this work, drawing upon the newly
developed machine learning technology, attempts to analyze and forecast the population growth of
major cities in Taiwan. By effectively using the advantage of the XGBoost algorithm, the evaluation
of feature importance and the forecast of multi-regional population growth between the present and
the near future can be observed objectively, and it can further provide an objective reference to the
urban planning of regional population.

Keywords: population growth prediction; boosting regression

1. Introduction

Reliable regional population forecasting can provide important information for urban
planning, especially for decision support in regional planning. Basically, the analysis of
regional population forecasting can be applied to estimate the demand of land for residents,
industries, public facilities, and so on. In general, the scale of population has determined
the demand for land, public infrastructure, and urban services. Meanwhile, it also de-
termines the demand for natural resources and hence may have a negative impact on
the natural environment, and the development process in a densely populated area is
sometimes restricted in accordance with the carrying capacity. Thus, how to accurately
estimate population growth in the near future has become an issue for the pioneering work
of urban planning. The widely applied methods for population forecasting include ex-
pert evaluations (e.g., Delphi method), stochastic population forecasts, cohort-component
method, trend extrapolation, etc. [1]. However, most of the above-mentioned methods
mainly focus on forecasting the population growth of a single region or country. As for the
essence of conventional methods, it is difficult to either model or predict population growth
across regions systematically. A recent contribution by [2] makes county population esti-
mation with an interregional cohort-component model, and the multi-regional population
forecasting is potentially possible under a well-specified cohort-component structure. In
addition, the completeness of migration data of each county plays an essential role in the
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Isserman approach. However, the only drawback for the cohort-component type popula-
tion forecasting is to allow the analyst to specify the demographic rates of the future, and it
goes without saying that this tends to introduce a biased result in forecasting accuracy.

In the booming trend of artificial intelligence, a lot of novel machine learning methods
have been applied to address practical problems in the real world, such as smart healthcare,
smart manufacturing, and smart service, and this promotes quick development of machine
learning. To effectively avoid the bias problem, this work proposes an innovative method
based on machine learning to forecast multi-regional population growth. Firstly, it aims
to discover hidden information between the city population and its potential population-
related features, such as birth, death, and per capital income. To attain a reliable analysis,
the city population is applied as the dependent variable to evaluate feature information
gain toward target features, and which can be positively processed by several machine
learning methods. Secondly, in addition to evaluating feature importance from the existing
population database in the real world, the proposed work also tries to predict the variant of
population feature importance in the near future. To achieve this purpose, machine learning
methods are therefore considered in accordance with their good learning ability. Further,
to reinforce the reliability of this work based on practical evidence, three inference models
are applied in the comparison in Section 4—Simulation Experiment, including Linear
Regression model (conventional method), LSTM model, and XGBoost Regression model.
As for the recurrent neural network models of deep learning, designed for long-range effect
for prediction, a long short-term memory network, also known as LSTM, is also applied
for the comparison in this work. Basically, the above inference models are trained by the
population data from the existing population database to predict the possible population in
the near future, and the corresponding feature importance of predicted future population is
then evaluated by the XGBoost algorithm again. Lastly, it extracts information gain toward
each feature and then ranks the value with the whole-time range, which is presented in
Section 5—Simulation Experiment.

2. Related Works
2.1. Essential Factors of Population Growth

The seminal paper of [3] argues that a consumer-voter (migrant) would choose a
residential area which best satisfies citizen preference pattern for public goods and services,
and this type of migration phenomenon is known as “voting with one’s feet”. The authors
of [4] re-examined the hypothesis of Tiebout by drawing on interstate migration data
of the United States over 1965–1970, and their empirical findings further consolidated
Tiebout’s postulation that consumer-voter moves to the area where public goods are
efficiently supplied to meet citizen needs. Moreover, successive studies with more elaborate
model specification include [5–7], and generally these studies point out that local public
expenditure is a key factor of influencing migration decision. Hence, the level of public
expenditure might play an essential role in contributing to regional population growth
through migration. Income per capita is another economic factor which might affect the
population level of a region, and this variable reflects economic disparities among regions.
Further, labour force tends to move from low-income regions to high-income regions,
and empirical evidences from [8] show that GDP per capita is an important pull factor
explaining the migration flow.

2.2. Deep Learning Application in Decision Support

Deep Learning is a rising field of Machine Learning, and it is popularly applied to
various purposes of Artificial Intelligence. In addition, it often has amazing performance
due to its deep neural-like structure. Due to the high performance of deep learning,
applying deep neural networks (DNNs) to discover the hidden pattern has been considered
a popular approach to study the complex data distribution. Furthermore, the methods
corresponding to the boosting and bagging mechanism are another type of deep learning
structure since each prediction tree is based on fitting the residual of the previous tree.
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For example, boosting and bagging trees are also capable of gaining a robust result by
combining more than two base trees. The XGBoost algorithm was initially a research project
conducted by Chen in 2016 [9], and has now become a popular research field in machine
learning. As it applies residual error to build a boosting tree, the XGBoost algorithm has
also been recognized as another form of a deep learning model. A series of works applying
the XGBoost algorithm to address classification problems [10,11] or process prediction and
estimation works [12–15], and further development of the algorithm is ongoing [16,17]. By
examining feature importance, a lot of works based on XGBoost present good performance
on finding interpretative information from information gain [13,18–20]. Thus, this work
tries to combine the results of prediction with that of feature importance to observe the
change between times, compared with feature ranking based on known and unknown data.

Long short-term memory was proposed by Jürgen Schmidhuber in 1997 [21,22]. In
1999 and 2000, Felix Gers designed the component “forget gate” in the structure of a
recurrent neural network; it is a function of cell memory controlling the weight among
layers in an LSTM model [23]. Afterwards, another famous recurrent residual network-
based model, the gated recurrent unit (GRU), was introduced in 2014 [24]. In addition,
Google and Facebook invested huge efforts in applying the LSTM model to process natural
language processing (NLP) works [25,26]. Instead of applying ARIMA to forecast, the
LSTM model is commonly used to predict time series data in half a decade [27]. Although
the “transformer model” has replaced certain advantages of recurrent networks in the field
of NLPs [28], RNNs still play an important role in processing time series forecasting works
because of its intuitive mechanism to predict a timeframe step by step with memorization.
In addition, the advantage of shrinking residuals in the last step makes boosting trees more
effective in extracting high-impact features, which are already good at measuring feature
by information gain in a leaf.

2.3. Potential Disadvantage of Conventional Models

With regards to time series forecasting, regression and autoregressive integrated
moving average, also known as ARIMA, is a conventional method based on statistics. By
observing data patterns, increasing high-performance function with coefficient or regressor
to fit the data well can be regarded a good approach, but a regression often suffers from
overfitting problems in complex coefficients and regressor settings. In addition, a simple
regression model is not able to fit a non-visible data well. Although the lasso regression
or L2 penalty term might reduce the risk of overfitting, the interpretations of constrain
coefficients are sacrificed. In addition, more disadvantages of applying regression models
to process medical data have been raised in [29]. As for the ARIMA model, there are a
series of necessary processes to define whether the data is suitable for application, such as
seasonality and stationarity. In terms of using multiple variables on the ARIMA model, it is
rare to only apply ARIMA to process multivariable data, although integrating ARIMA with
multivariable regression to address different problems is applicable [30]. Therefore, ARIMA
still mainly focuses on calculating univariables to predict future values in the assumption
of retaining the same mean, variance, and log pattern. However, this hypothesis makes it
hard for ARIMA to handle unexpected incidents as it is against assumptions or is exempted
from pre-processing. Furthermore, it has been mentioned that applying ARIMA requires
more technical knowledge because of mathematical sophistication in theory [31].

3. Boosting Regression-Based Method and Recurrent Neural Network

Firstly, the mechanism of the boosting method and the process of the XGBoost algo-
rithm are described. In addition, the information gain of examining feature importance
toward the target features is described. Furthermore, the prediction model, LSTM, is
described with typical equations in Section 4.
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3.1. Gradient Boosting-Based Method

In processing continuous data toward population growth, the mechanism designed to
approximate the residual between the observed and predicted values is ideal for processing
continuous data in this work. Since it is the algorithm, instead of the analysts, that decide
how important a feature is, it is more objective. The basic loss function of calculating the
residual is presented as follows:

l(yi, ŷi) = (yi − ŷi)
2 (1)

where yi is the observed value, ŷi is the predicted value, and i the index of the data set.
As for the gradient boosting algorithm, the corresponding loss function is presented

in the following equation:

l(yi, ŷi) =
1
2
(yi − ŷi)

2 (2)

where yi is the observed value, ŷi is the predicted value, and i is the index of the data.
Based on Equations (1) and (2), the effect of derivation, 1/2, takes advantage of

decreasing the algorithm complexity by averaging the residual summary in the initial and
last step of the entire procedure of the XGBoost algorithm.

3.2. XGBoost Algorithm

The mechanism of the XGBoost algorithm is designed as a boosting-based algorithm.
With preference to build a stump at each round and then figure up the residual for the pre-
diction, the mechanism of the XGBoost algorithm brings in a medium-sized tree comprising
of leave restriction and normalization for the purpose of avoiding the problems of high
variation and overfitting. Further, the procedure of the XGBoost algorithm is presented by
the Algorithm 1:

Algorithm 1. XGBoost algorithm

Input:
Data {(xi, yi)}n

i=1, and a differentiable Loss Function, as the algorithm (1):
l(yi, ŷi = F(x)) = 1

2 (yi − ŷi)
2

Step 1:
Initialize model with a constant value: F0(x) = argmin ∑n

i=1 L(yi, r)
Step 2:

for m = 1 to M:

(1) Calculate rim = −[ ∂L(yi ,ŷi)
∂ŷi

]
F(x)=Fm−1(x)

for i = 1 . . . n

(2) Fit a regression tree to the rim values and build terminal regions Rjm, for j = 1 . . . Jm

(3) For j = 1 . . . Jm complete γjm = argmin ∑xi∈Rij
L(yi, Fm−1(xi) + γ)

(4) Fm(x) = Fm−1(x) + v ∑Jm
j=1 rjm I

(
x ∈ Rjm

)
Step 3:

Output FM(x)

where i represents the index of data, n is the total number of data, γ certainly refers to the
average of observed data, m means the mth tree, M is the total amount of tree, j means the
jth residual in the mth tree, and v means the learning rate or the distance of moving step
toward the gradient of residual.

The algorithm focuses on reducing the difference between the observed and pre-
dicted values by continually optimizing the loss function, and the output can potentially
prevent the overfitting problem, because of its advantage—restricting the gradient with
learning rate.

l(t) =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT (3)
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where l means the number of leaves, Gj = ∑n
i=1 gi, wj = ft(xi), Hj = ∑i∈Ij

hi, hi =

∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
, λ is the Lagrange multiplier penalizing the L2 norm to prevent the

overfitting problem, wi represents the score on the j-th leaf, γ means the number of leaves,
and T is the number of nodes.

3.3. Gain

As for the functionality, Gain is recognized as the advantage of performing a prediction
capability to either fit or separate data, and the novel tree-based classification algorithm,
classification, and regression tree (CART), works based on Gain mechanism. Moreover, the
algorithm of gain can be presented as follows:

Gain =
1
2

[
G2

L
HL + λ

+
G2

L
HR + λ

− (GL + GR)
2

HL + HL + λ

]
− γ (4)

where G2
L = (∑i∈IL

gi)
2, G2

R = (∑i∈IR
gi)

2, HL = ∑i∈IL
hi, and HR = ∑i∈IR

hi. Moreover,

gi = ∂ŷ(t−1) l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
are first and second order gradient

statistics on the loss function, respectively.
The default value of γ is initially set at 0. Once the gain is presented as a negative

value, the algorithm removes the branch. Moreover, once the gain of the root with two
leaves is presented as a negative value, the algorithm removes the root. In other words, it
therefore implies that the whole tree is abandoned, and the original value will be taken as
the prediction in this step in the output. Thus, this is called “pruned” [32].

3.4. XGBoost Regression Model

The XGBoost Regression model is a tree-like boosting-based algorithm, like the XG-
Boost model, except for the fact that the XGBoost Regression model uses Similarity Score
of the related split points to calculate Information Gain. Further, the equation for Similarity
Score is:

S =
∑nα

k=1 α2

nα + λ
(5)

where S is the Similarity Score, α is the residual of each datapoint in the split point, nα is
the number of the residuals in the split point, and λ is the regularization parameter.

3.5. Long Short-Term Memory Network

Long short-term memory is an exception of recurrent neural networks, and it is tasked
with several challenges, including translation, classification, and time series forecasting.
In time series forecasting, the design of a memory cell can relieve the problem of gradient
vanishing, which is a norm in recurrent network models considering long-time range data.
In this case, an integration effect comprising memory cell, input gate, output gate, and
forget gate can capsulate the previous information into the next LSTM neuron. Since its
first introduction in 1995, there has been a series of variant LSTMs. However, a typical
LSTM network usually consists of an input gate, an output gate, and a forget gate; it has
been applied in this work. Furthermore, compact equations for the forward LSTM network
can be presented as the following:

Ft = σS(WFxt + UFht−1 + bF) (6)

It = σS(WI xt + UIht−1 + bI) (7)

Ot = σS(WOxt + UOht−1 + bO) (8)

C̃t = σT(WCxt + UCht−1 + bC) (9)

Ct = Ft � Ct−1 + It � C̃t (10)
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Ht = Ot � σR(Ct) (11)

where xt ∈ Rd is the input vector, Ft ∈ Rh is the output vector of forget gate, It ∈ Rh is the
output vector of input gate, Ot ∈ Rh is the output vector of output gate, Ht ∈ Rh is the
output vector, C̃t ∈ Rh is the output vector of memory cell, Ct ∈ Rh is the output vector of
current cell, W ∈ Rh×d is the weight metric, U ∈ Rh×h is the recurrent connection metric,
b ∈ Rh×h is the bias metric, d is referred as t× f eatures, t is the time step, S is the Sigmoid
function, and R is the PReLU function.

4. Simulation Experiment
4.1. Data Description

In this work, population data was adopted from the Directorate-General of Budget,
Accounting and Statistics, Executive Yuan, R.O.C. (Taiwan). It is open data managed by
the Taiwan Government and can be found at: https://www.ris.gov.tw/app/portal/346
(accessed on 1 January 2021). The data has six features, including birth population, death
population, net immigration population, per capital income, city annual expend, and total
population. Among these features, total population was selected as the target dependent
output variable to examine feature importance. The time range was from 2009 to 2018,
which is a decade data. In addition, the data is extracted yearly, so there are 10 data for
each city. In total, there are 60 data for six cities, including New Taipei city, Taipei city,
Taoyuan city, Taichung city, Tainan city, and Kaohsiung city. According to Section 3, three
methods were applied in the simulation experiments: Linear Regression model, LSTM
model, and XGBoost Regression model; the result of each model is compared based on
MAPE. Mean absolute percentage error (MAPE) is the relationship between the model loss
and the real value in percentage, and is widely used to evaluate the model. Furthermore,
the MAPE equation is presented as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (12)

where n is the sample size, yi is the actual value, and ŷi is the forecast value. When zero
exists in the actual value, to avoid calculation errors, instead of MAPE, the MAE equation
is used to evaluate the model.

Furthermore, the reason for using MAPE over MAE is because the latter tends to
ignore the meaning of sample mean. For example, it might be acceptable to have MAE = 10
in a sample data with mean = 10,000, but in the case of mean = 0.001, it is obviously
unacceptable. In this work, the mean is different from city to city, so using MAPE for
rescaling each center of error into the same standard can make the comparison clear—the
index range is set from 0 to 100.

4.2. Experiment Design

In accordance with the general modelling validation of machine learning, the original
data is usually divided into two sets: training data and validation data. However, as
the available population data is only from 2009 to 2018, the amount of data is somewhat
insufficient for model training. To overcome this technical difficulty, this simulation applies
the “sliding window” to complete the modelling, and training accuracy is measured by
MAPE, compared to real historical data. Meanwhile, this simulation experiment focuses
on finding changes in the essential features that could affect population growth in the near
future. Therefore, the experiment is divided into two parts: in the first phase, it applies the
XGBoost model to fit the data and then applies Gain to rank the feature towards the total
population. In the second phase, three typical models, the XGBoost Regression model, the
Linear Regression model, and the LSTM model, are applied to predict the data for the near
future with regards to total population and the rest of the features until 2025. Based on
these data formats, the data is fit and then predict until 2025. Later, the feature importance
ranking evaluates the priority of feature importance from 2009 to 2025, processed by the

https://www.ris.gov.tw/app/portal/346
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Linear Regression model, the LSTM model, and the XGBoost Regression model, toward
the total population with the same time range. Thus, this simulation experiment further
observes the ranking difference of feature importance between known data and predicts
data. Thus, the primary essence of this simulation includes:

• The MAPE is applied as the measuring criteria to evaluate modelling performance in
the comparison, as shown in Table 1. By observing a fitting tendency between the real
historical data and the forecasted data from 2009 to 2018, it can further confirm the
reliability of the forecast results from 2019 to 2025.

• Three inference models are applied in the comparison in this work, including the
Linear Regression model (conventional method), the LSTM model, and the XGBoost
Regression model. In addition, the comparisons are summarized in Table 1.

Among different time ranges of training data within six cities, the MAPEs of Linear
Regression, LSTM, and XGBoost Regression were best in a time range of 5, 3, and 5 years,
as shown in Table 1. In the training procedure, the time window of each model contains its
best time range of input data plus one time range output for the prediction. On the ground
of the sliding window, the n-y behind each model means it contains n years in a window.
For example, 3 y indicates prediction for 2012 by considering data for the previous three
years—2009, 2010, and 2011. In the simulation, the six variables of 2009–2011, including
birth, death, immigration, city annual expend, per capital income, and population, are
defined as the input of the training set to predict the population of 2012. As shown in
Figure 1, there are seven training sets from 2009–2018 in this simulation based on a sliding
window, and the performance is measured with MAPE. For each model, the year range of
the sliding window that performs best is then selected as the time range of the model in
the comparison.
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Table 1. The MAPE of each feature and the average MAPE among different model-year-ranges in the Linear Regression
model, the LSTM model, and the XGBoost Regression model were best in a time range of three years, five years, and five
years, respectively. As a whole, the XGBoost Regression model outperformed the other two.

Models in Different Year Range

Feature
Birth City

Annual Death Immigration Income Population Average
MAPE

Linear_Regression_3Y 0.30265 0.36806 0.24133 6.35127 0.17148 0.23123 1.27767

Linear_Regression_4Y 0.36432 0.39890 0.26973 26.03689 0.18115 0.26782 4.58647

Linear_Regression_5Y 0.34876 0.37034 0.28464 11.57862 0.15104 0.25222 2.16427

LSTM_3Y 1.40973 1.47480 1.43107 10.09746 0.29646 1.31306 2.67043

LSTM_4Y 1.34646 1.48777 1.42434 11.45912 0.28670 1.30690 2.88521

LSTM_5Y 1.21405 1.27438 1.41467 13.70877 0.27888 1.30739 3.19969

XGBoost_3Y 0.01310 0.00396 0.00210 0.42950 0.00149 0.00017 0.07505

XGBoost_4Y 0.00725 0.00179 0.00101 0.11286 0.00080 0.00012 0.02064

XGBoost_5Y 0.00201 0.00069 0.00062 0.13376 0.00047 0.00009 0.02294

4.3. Near Future Forecasting with Linear Regression, XGBoost Regression, and LSTM Models

In order to evaluate the change in feature importance ranking from 2019 to 2025,
the prediction of each feature to 2025 is required. As described before, the time window
contains the best year range and the last value of each model for calculating the MAPE
between observed values and predict values. In addition, the time windows sliding
rightward one-column-step after each data value is established. As a result, a complete
time range with 10 data is split into six windows toward the inference models. Furthermore,
near future forecasting toward each feature of the primary inference model—XGBoost
Regression—based on its best time range is illustrated in Figure 2.

As shown in Table 1 and Figure 2, the prediction performance of the XGBoost Regres-
sion model is the most effective among all the inference models in population forecasting
as a whole, as the fitting tendency between the real-world data and the forecasted data
is much more closed than the other inference models in the comparisons, especially by
viewing average MAPE. Moreover, the prediction performance of “immigration” can be
effectively recognized, implying that the XGBoost Regression model has the potential to
possess high consistency with certain hyperparameters.

Moreover, the red belt represented the boundary between the known data and the
predicted data. In other words, data located on the left are the real-world data, and data on
the right are the forecasted data generated by the inference models. The real-world data are
presented with solid lines and the forecasted data with dashed lines. Real-world data and
forecasted data both appear in the year range of 2012–2018 and accuracy is measured by
MAPE for each model. The MAPE of each feature and the average MAPE among different
model-year-ranges were found to be best in the time range of three years, five years, and
five years for the Linear Regression model, the LSTM model, and the XGBoost Regression
model, respectively. Further, the prediction performance of the XGBoost Regression model
was found to be the most effective in population forecasting.

4.4. Feature Importance in the Present, across a Known Time to the Near Future

As described in the previous section, the first part examines the feature importance
ranking for the total population across the cities. The feature importance ranking is shown
in Figures 3 and 4.

In Figure 3, the values of the features are information gain, based on Equation (4). The
simulation results of the XGBoost Regression model help recognize the important features
affecting population growth in the six cities; the features recognized for six major cities
in Taiwan are tabulated in Figure 4. As observed, “birth” possesses the highest feature
importance among the known data (data year range 2009–2018), and “death” possesses
the highest feature importance among the known and unknown data (data year range
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2009–2025). In accordance with the simulation results, the features with the highest feature
importance are different among the known data and the forecasted data, but “immigration”
has the lowest feature importance in both known data and forecasted data, as shown in
Figures 3 and 4.
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to possess high consistency with certain hyperparameters. 

Moreover, the red belt represented the boundary between the known data and the 

predicted data. In other words, data located on the left are the real-world data, and data 

on the right are the forecasted data generated by the inference models. The real-world 

data are presented with solid lines and the forecasted data with dashed lines. Real-world 

data and forecasted data both appear in the year range of 2012–2018 and accuracy is 

measured by MAPE for each model. The MAPE of each feature and the average MAPE 

among different model-year-ranges were found to be best in the time range of three 

years, five years, and five years for the Linear Regression model, the LSTM model, and 

the XGBoost Regression model, respectively. Further, the prediction performance of the 

XGBoost Regression model was found to be the most effective in population forecasting. 

Figure 2. Population forecasting by XGBoost Regression for the near future. Whilst solid lines stand
for the real-world data, the dashed lines stand for the forecasted results, where the six cities are
presented in 12 different colours. NTP is New Taipei, TP is Taipei, TY is Taoyuan, TC is Taichung, TN
is Tainan, and KS is Kaohsiung city.
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5. Conclusions

Regional population forecast and analysis is of essence in urban and regional planning,
and well-designed planning can effectively construct a sound national infrastructure and
stabilize a positive population growth. Traditionally, either urban or regional planning
relies on the opinions of demographers in terms of how the population of a city or a region
will grow. Multi-regional population forecast is currently possible, carried out mainly on
the basis of the Interregional Cohort-Component model. While this model has unique
advantages, several demographic rates are determined by the decisions made by primary
planners. Hence, the only drawback in cohort-component type population forecasting is
that it allows the analyst to specify the demographic rates of the future, and it goes without
saying that this tends to introduce a biased result in forecasting accuracy. To avoid this
problem, this work proposes a machine learning-based method to objectively forecast multi-
regional population growth. Thus, this work, drawing upon newly developed machine
learning technology, attempts to analyze and forecast the population growth of major
cities in Taiwan. By effectively using the XGBoost algorithm, the evaluation of feature
importance and forecast of multi-regional population growth in the present and the near
future can be objectively observed, and can further provide an objective reference for urban
and regional planning.
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