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Background: Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the digestive
system that is associated with a poor prognosis in patients owing to its rapid progression
and high invasiveness.

Methods: Ninety-seven invasive-related genes obtained from the CancerSEA database
were clustered to obtain the molecular subtype of pancreatic cancer based on the RNA-
sequencing (RNA-seq) data of The Cancer Genome Atlas (TCGA). The differentially
expressed genes (DEGs) between subtypes were obtained using the limma package in
R, and the multi-gene risk model based on DEGs was constructed by Lasso regression
analysis. Independent datasets GSE57495 and GSE62452 were used to validate the
prognostic value of the risk model. To further explore the expression of the hub genes,
immunohistochemistry was performed on PAAD tissues obtained from a large cohort.

Results: The TCGA-PAAD samples were divided into two subtypes based on the
expression of the invasion-related genes: C1 and C2. Most genes were overexpressed
in the C1 subtype. The C1 subtype was mainly enriched in tumor-related signaling
pathways, and the prognosis of patients with the C1 subtype was significantly worse than
those with the C2 subtype. A 3-gene signature consisting of LY6D, BCAT1, and ITGB6
based on 538 DEGs between both subtypes serves as a stable prognostic marker in
patients with pancreatic cancer across multiple cohorts. LY6D, BCAT1, and ITGB6 were
over-expressed in 120 PAAD samples compared to normal samples.

Conclusions: The constructed 3-gene signature can be used as a molecular marker to
assess the prognostic risk in patients with PAAD.

Keywords: Pancreatic adenocarcinoma (PAAD), invasive-related genes, LY6D, BCAT1, ITGB6, prognosis
Abbreviations: PAAD, Pancreatic adenocarcinoma; DEGs, Differentially expressed genes; TCGA, The Cancer Genome Atlas;
GEO, Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; FDR, False discovery rate; AIC, Akaike Information
Criterion;KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, Biological Process; CC, Cellular
Component; MF, Molecular Function; OS, Overall survival; CDF, Cumulative distribution function; ROC, Receiver
operating characteristic.
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BACKGROUND

Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the
digestive tract and is the fourth leading cause of cancer-related
deaths worldwide (1). Since the early symptoms of PAAD are not
obvious, its diagnosis is often difficult, and the primary tumor
exhibits vascular invasion. Approximately 80-85% of patients
with pancreatic cancer present with distant metastases at the
time of diagnosis, thus making radical resection ineffective (2).
Therefore, the search for more accurate and effective diagnostic
and prognostic markers is of great significance for the
stratification and individualization of patients with pancreatic
cancer in the clinical setting.

At present, the prognostic prediction of patients with
pancreatic cancer is mainly based on clinicopathologic features.
However, the prognosis of patients with the same clinical stage
and grade differs because of the high heterogeneity of pancreatic
cancer. Moreover, the malignant progression of pancreatic
cancer is accompanied by genetic changes. Therefore, the study
of the molecular mechanisms underlying pancreatic cancer
progression is key to prolonging the overall survival of patients
with pancreatic cancer (3). However, the effect of a single gene in
predicting the prognosis of a pancreatic tumor is often
unsatisfactory and presents with some limitations; the
combined detection of multiple genes is expected to facilitate
the prognostic prediction of patients with pancreatic cancer.
With the rapid development of bioinformatics and sequencing
technology, an increasing number of studies have provided
potential prognostic assessments for patients with pancreatic
cancer. Li et al. (4) constructed a 9-gene signature using
macrophage phenotypic switch-related genes in patients with
pancreatic cancer. Wang et al. (5) constructed a 9-gene signature
for predicting PAAD based on the expression of immune-related
genes. However, most prognostic models include a large number
of genes, which greatly increases the cost of medical treatment in
clinical practice. Moreover, most studies are based on a
comprehensive analysis of public databases and lack
experimental data to verify and explore the role of the
identified genes in the development of pancreatic cancer.

In this study, a molecular subtype of pancreatic cancer was
constructed based on invasion-related genes using gene
expression data from The Cancer Genome Atlas (TCGA),
Gene Omnibus Expression (GEO), and other public databases.
The relation between molecular subtypes, prognosis, and clinical
features was further analyzed. A 3-gene prognostic model,
composed of LY6D, BCAT1, and ITGB6, constructed with
differentially expressed genes (DEGs) between the PAAD
subtypes, could be used to evaluate the prognosis of patients
with PAAD.
MATERIALS AND METHODS

Data Source and Preprocessing
RNA-sequencing (RNA-seq) data and clinical follow-up
information data from TCGA-PAAD samples were
Frontiers in Oncology | www.frontiersin.org 2
downloaded from the TCGA database. The expression data
and clinical information from the GSE57495, GSE62452 and
GSE28735 datasets were downloaded from the GEO database. A
total of 97 invasion-related genes were collected from the
CancerSEA website (Supplement Table 1).

The RNA-seq data from the TCGA-PAAD dataset was
processed through the following steps: 1) Samples with no
clinical follow-up information were removed; 2) The
ENSEMBL gene IDs were converted to the Gene Symbol
format; 3) The median value was calculated with multiple
Gene Symbol expressions.

The following steps were used to process the GEO dataset: 1)
Samples without clinical follow-up information were removed;
2) The probe IDs were converted to the Gene Symbol format; 3)
Probes that corresponded to multiple genes were removed. 4)
When multiple probes correspond to one gene, take the average
value as the gene expression.

After preprocessing, we enrolled 176 samples from TCGA-
PAAD, 63 samples from GSE57495 data set, 66 samples from
GSE62452 data set, and 42 samples from GSE28735 dataset. The
clinical characteristics of the patient samples are listed in Table 1.

Consistency Clustering Algorithm and
Gene Set Enrichment Analysis (GSEA)
The expression profiles of 97 invasion-related genes were
extracted from the TCGA-PAAD dataset, and univariate Cox
regression analysis was performed to select significant prognostic
genes using coxph function in R (p < 0.05). Next, the genes with
significant results from the univariate Cox analysis were
clustered using ConsensusClusterPlus (V1.48.0; parameters:
reps = 100, pitem = 0.8, pfeature = 1, and distance =
“Canberra”). The Pam and Canberra distances were used as a
clustering algorithm and distance measure, respectively.

The gene set c2.cp.kegg.v7.0.symbols.gmt was selected, and
significantly enriched pathways between different molecular
subtypes were analyzed by GSEA. PAAD samples were divided
into either a C1 or C2 subtype based on gene expression data
from the TCGA-PAAD dataset in the GSEA input file. The
thresholds for pathway enrichment analysis were p < 0.05 and
false discovery rate (FDR) < 0.25.

Identification of DEGs
DEGs between C1 and C2 subtypes were calculated using the
limma package (6), and the filtering thresholds were FDR < 0.05
and | log 2 fold-change (FC) | > 1. The identified DEGs were
subjected to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis and Gene Ontology (GO)
enrichment analysis using the WebGestaltR (v0.4.2) package in
R software.

Construction of a Risk Model Based on
Invasion-Related Genes
Random Grouping of Training Set Samples
The 176 samples in the TCGA-PAAD dataset were divided into a
training set and validation set. To avoid the effect of random
assignment bias on the stability of subsequent modeling, 200
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samples were assigned to random groups. The samples were
grouped according to a training set: validation set ratio of 3:2.
After dividing the samples, there were 106 samples in the
training set and 70 samples in the validation set.

Lasso Regression Analysis and Stepwise
Regression Analysis of Training Set Data
Univariate Cox regression analysis was performed for each DEG
(538 in total) using the coxph function in R to identify prognostic
genes, and p < 0.05 was selected as the threshold for filtering.
Lasso regression analysis was performed to further reduce the
number of genes in the risk model using the glmnet package in R
(7). In stepwise regression analysis, the selection of the model
starts with the most complex model from which one variable is
Frontiers in Oncology | www.frontiersin.org 3
removed at a time to reduce the number of parameters according
to the Akaike Information Criterion (AIC). The smaller the p-
value of the regression model, the more superior the model. This
indicates that the regression model fits the data well with fewer
parameters. The prognostic model is made fit for clinical
applications by performing stepwise regression to further
reduce the number of genes.

The prognostic model was constructed based on the following
equation:

risk score =on
i=1bi� exp (Gi)

where n refers to the number of genes identified for the
multivariate Cox regression model; exp(Gi) is the expression
value of gene i; and bi is the coefficient for gene i.

Immunohistochemistry
To verify the expression of the candidate three genes, tissue
microarrays (TMA) comprised of 120 PAAD tissues and 30
normal samples were obtained from Shanghai Outdo Biotech
Co., Ltd. (Shanghai, China). The clinicopathological details of
120 PAAD tissues were shown in Table 2. The studies were
conducted in accordance with the International Ethical
Guidelines for Biomedical Research Involving Human Subjects
(CIOMS), and the research protocols were approved by the
TABLE 1 | Clinical characteristics of patient samples.

Clinical Features TCGA-PAAD GSE57495 GSE62452 GSE28735

OS
0 84 21 16 13
1 92 42 50 29
T Stage
T1 7
T2 24
T3 140
T4 3
TX 2
N Stage
N0 49
N1 122
NX 5
M Stage
M0 79
M1 4
MX 93
Stage
I 21
II 145
III 3
IV 4
X 3
Grade
G1 30
G2 94
G3 48
G4 2
GX 2
Gender
Male 96
Female 80
Age
≤65 93
>65 83
Alcohol
YES 100
NO 64
Unknown 12
Chemotherapy
YES 116
NO 60
Radiation therapy
YES 32
NO 101
Unknown 43
TABLE 2 | The clinicopathological details of 120 PAAD tissues.

Clinical Features PAAD-IHC

T Stage
T1 4
T2 30
T3 61
T4 1
TX 24
N Stage
N0 54
N1 63
NX 3
M Stage
M0 112
M1 8
MX 0
Stage
I 21
II 90
III 1
IV 8
X 0
Grade
G1 1
G2 76
G3 38
G4 0
GX 5
Gender
Male 66
Female 54
Age
≤65 77
>65 43
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Ethics Committee of Hainan General Hospital, Hainan Affiliated
Hospital of Hainan Medical University.

The TMA slides were dried overnight at 37°C, dewaxed in
xylene, and dehydrated in a gradient ethanol series. Antigens
retrieval was performed by heating the tissue sections in a
microwave oven inside a vessel filled with EDTA antigen
retrieval buffer (pH 9.0). Subsequently, the tissue sections were
immersed in 3% hydrogen peroxide for 25 min to block the
activity of endogenous peroxides. Next, the TMA tissues were
coated with 3% bovine serum albumin (BSA) and sealed at room
temperature for 30 min to reduce non-specific staining. Then,
the TMA slides were incubated with anti-LY6D (1: 200 dilution;
Novus Biologicals, NBP1-84029), anti-BCAT1 (1:50 dilution;
Abcam, ab197941), and anti-ITGB6 (1:10 dilution; Abcam,
ab197672) overnight at 4°C.

The tissues were rinsed with 0.01 mol/L phosphate buffer
saline (PBS; pH = 7.4) for 5 min each. The tissues were incubated
at room temperature for 50 min with horseradish peroxidase
(HRP)-labeled goat anti-rabbit secondary antibody (1:200
dilution, ServiceBio, GB23303). Then, the tissues were washed
in PBS and stained with 3,3-diaminobenzidine (DAB). Finally,
the TMA sections were counterstained with Mayer’s
hematoxylin, dehydrated, and fixed. To evaluate IHC staining,
semi-quantitative scoring criteria were used.

The stained sections were scored by three pathologists who
were blinded to the patients’ clinical characteristics. The scoring
system was based on the proportion of positively stained cells in all
tissues and the staining intensity of these positively stained cells.
The staining intensity was classified as follows: 0 (negative), 1
(weak), 2 (moderate), or 3 (strong). The staining ratio of positive
cells was classified as follows: 0 (<5%), 1 (5%-25%), 2 (26%-50%),
3 (51%-75%), or 4 (> 75%). According to the staining intensity and
the proportion of positively stained cells, the tissues were graded as
follows: 0-1 grade, negative (-); > 1-4, weakly positive (+); > 4-8,
moderately positive (++), and > 8- 12, strongly positive (+++).
RESULTS

Identification of Molecular Subtypes
Based on Invasion-Related Genes
Thirty-five genes were found to be significantly associated with
the prognosis of pancreatic cancer using univariate Cox analysis
(Supplement Table 2). Consistent cluster analysis showed that
the samples could be clustered together at k=2 (Figures 1A, B).
The expression levels of the invasion-related genes were
significantly different between the C1 and C2 subtypes, and
most genes were overexpressed in the C1 subtype (Figure 1C).
The relationship between the subtypes and prognosis was further
analyzed, and results showed that there were significant
differences in survival times between the C1 and C2 subtypes
(Figures 1D, E, log-rank p < 0.05).

The results of the GSEA analysis showed the activation of
more tumor-related pathways in the C1 subtype, such as
pathways in cancer, notch signaling pathway, focal adhesion,
extracellular matrix (ECM)-receptor interaction, and TGF-b
Frontiers in Oncology | www.frontiersin.org 4
signaling pathway (Figure 1F), suggesting that the C1 subtype
is more closely related to cancer than the C2 subtype.

Analysis of DEGs Between Subtypes
According to the thresholds mentioned in the methods section,
538 DEGs were obtained, of which 531 genes were upregulated
and 7 genes were downregulated (Supplement Table 3). The
results demonstrated that the C1 subtype contains more
upregulated genes than the C2 subtype. The volcano map of
upregulated and downregulated DEGs between the two subtypes
is shown in Supplementary Figure 1A. The expression patterns
of the top 50 upregulated DEGs and all the downregulated DEGs
were shown in a heatmap (Supplementary Figure 1B). The
results of the GO enrichment analysis of DEGs showed that 548
Biological Process (BP) terms were significantly different
between the two subtypes (FDR < 0.05). The first 15 BP terms
were plotted (FDR < 0.05), as shown in Supplementary
Figure 1C. The first 15 Cellular Component (CC) terms were
plotted, as shown in Supplementary Figure 1D. Fifty-two
Molecular Function (MF) terms were significantly different
between the two subtypes (FDR < 0.05). The results of the first
15 MF terms are shown in Supplementary Figure 1E. The
KEGG pathway analysis of DEGs showed 27 significantly
enriched pathways (FDR < 0.05). Further visualization of the
top 10 enriched pathways showed that genes were significantly
enriched in tumor-related pathways such as the ECM-receptor
interaction pathway, focal adhesion, and the PI3K-Akt signaling
pathway (Supplementary Figure 1F).

Comparison of Immune Score Between
Molecular Subtypes
To identify the relationship between molecular subtypes and
immune scores in the TCGA-PADD dataset, the ESTIMATE
package was used to evaluate the three immune scores: stromal,
immune, and estimate scores. MCPcounter was used to evaluate
10 types of immune cells, and the single-sample GSEA (ssGSEA)
method in the GSCA package was used to evaluate 28 types of
immune cells (8). Meanwhile, the difference in immune scores
between the two molecular subtypes was compared. The results
showed that the immune scores of the C1 subtype were higher
than those of the C2 subtype (Figures 2A–C). The heatmap of
the immune scores of the two subtypes is shown in Figure 2D.

Risk Model of Pancreatic Cancer Based
on Invasion-Related Genes
By performing univariate Cox analysis of the DEGs between the C1
and C2 subtypes, 18 prognostic genes were identified. Lasso
regression analysis was performed to further reduce the number
of prognostic genes. The locus of each independent variable is
shown in Supplementary Figure 2A. As the value of lambda (l)
increased, the number of independent variables tending to zero also
increased. A 10-fold cross-validation was performed to construct
the model, and the confidence interval under each l is shown in
Supplementary Figure 2B. The model was found to be optimal
when l = 0.05667557, so a l of 0.0567557 was chosen for further
analysis of the prognostic genes. Six genes, namely LY6D, DKK1,
December 2021 | Volume 11 | Article 759586
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BICC1, BCAT1, ITGB6, and PTGESwere identified as the hub genes
when l = 0.0567557. The number of model genes was further
reduced by stepwise regression, and finally, three genes were
obtained: LY6D, BCAT1, and ITGB6. The risk score based on the
final 3-gene prognostic model was calculated as follows: Risk score =
0.1627483 * LY6D + 0.2210480 * BCAT1 + 0.2005339 * ITGB6.

Risk scores of each sample were calculated based on the
expression level of LY6D, BCAT1, and ITGB6, and a risk score
distribution was plotted for each sample, as shown in Figure 3A.
The results showed that a higher risk score was associated with
worse outcomes, and high expression levels of LY6D, BCAT1,
and ITGB6 were associated with a higher risk score. The
timeROC package was used to analyze the receiver operating
characteristic (ROC) curve of risk score; the 1-, 2-, and 3-year
predictive classification efficiencies were 0.76, 0.78, and 0.75,
respectively, as shown in Figure 3B. The samples were divided
into a high-risk group and a low-risk group based on the risk
scores. Finally, 50 and 56 samples were placed into the high- and
low-risk groups, respectively. The KM curve showed a significant
difference in the expression of DEGs between the high- and low-
risk groups (p < 0.01) (Figure 3C).

Verification of Robustness of the 3-Gene
Prognostic Model Using Internal and
External Datasets
Verification of the Robustness of the 3-Gene
Prognostic Model Using Internal Datasets
To determine the robustness of the model, the risk score
distribution of the TCGA validation set and all dataset samples
was calculated using the same coefficients as those of the
Frontiers in Oncology | www.frontiersin.org 5
training set. The risk score distribution of the TCGA validation
set suggested that samples with a high risk score are associated
with a worse prognosis, as shown in Figure 4A. The 1-, 2-, and
3-year predictive classification efficiencies of the risk scores
were 0.67, 0.76, and 0.87, respectively (Figure 4B). These
results demonstrated that the prognosis of the high-risk
group was significantly worse than that of the low-risk
group (Figure 4C).

The risk score distribution trend of all TCGA datasets was
consistent with those of the training set (Figure 5A). The
predictive classification efficiencies of the 1-, 2-, and 3-year
ROCs were 0.73, 0.77, and 0.81, respectively (Figure 5B).
According to the above classification, 89 and 87 samples were
categorized into the high- and low-risk groups, respectively, in all
TGGA datasets. The prognosis of the high-risk group was
significantly worse than that of the low-risk group (Figure 5C).

Validation of the Robustness of the 3-Gene
Prognostic Model Using Three Independent Cohorts
The robustness of the model was further verified with three
independent validation cohorts GSE57495, GSE62452 and
GSE28735. The 1-, 3-, and 5-year ROCs in the GSE57495
dataset were 0.63, 0.74, and 0.78, respectively (Figure 6A). The
1-, 3-, and 5-year ROCs in the GSE62452 were 0.56, 0.71, and
0.84, respectively (Figure 6C). The 1-, 3-, and 5-year ROCs in the
GSE28735 were 0.61, 0.72, and 0.68, respectively (Figure 6E).
Therefore, the predictive performance of the model was stable in
different cohorts. Finally, the samples with a risk score greater
than zero after zscore method were classified into the high-risk
group and those with a risk score less than 0 were classified into
A B

D E F

C

FIGURE 1 | (A) Cumulative distribution function (CDF); (B) Consistent clustering heatmap when k = 2; (C) Cluster heatmap of 35 prognostic genes; (D) Overall
survival (OS) curve based on molecular subtypes in all samples of The Cancer Genome Atlas-pancreatic adenocarcinoma (TCGA-PAAD) dataset; (E) Progression-
free survival (PFS) curve based on molecular subtypes in all TCGA-PAAD samples; (F) Involvement of tumor-related pathways between molecular subtypes of the
TCGA dataset.
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the low-risk group. In the GSE57495 cohort, 30 and 33 samples
were categorized into the high- and low-risk groups, respectively,
with significant prognostic differences between the two groups
(Figure 6B). In the GSE62452 cohort, 33 samples each were
categorized into the high and low-risk groups, respectively, with
significant prognostic differences between the two groups
(Figure 6D). In the GSE28735 cohort, 21 samples each were
categorized into the high and low-risk groups, respectively, with
significant prognostic differences between the two
groups (Figure 6F).
Frontiers in Oncology | www.frontiersin.org 6
Risk Model and Prognostic Analysis of
Clinical Features
Further analysis of the relationship between the risk score and
clinical features showed that the 3-gene prognostic model could
significantly distinguish between age, sex, TNM stage, clinical
stage, tumor grade, alcohol consumption, chemotherapy, and
radiation therapy between the high- and low-risk groups
(Figures 7A–P, p < 0.05). This suggests that the model also
has good predictive power in distinguishing different
clinical features.
A

B

D

C

FIGURE 2 | (A) Comparison of single-sample gene set enrichment analysis (ssGSEA) immune scores between molecular subtypes in all samples of The Cancer
Genome Atlas-pancreatic adenocarcinoma (TCGA-PAAD) dataset; (B) Comparison of MCPcounter immune scores between molecular subtypes of the TCGA
dataset; (C) Comparison of estimated immune scores between molecular subtypes of the TCGA dataset; (D) Heat map comparing three software immune scores
among molecular subtypes of the TCGA dataset. *P < 0.05; **P < 0.01; ***P < 0.001.
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A B

C

FIGURE 3 | (A) The risk score, survival time and state, and expression of the 3-gene signature were studied in The Cancer Genome Atlas (TCGA) training set.
(B) Receiver operating characteristic (ROC) curve and area under the curve (AUC) of the 3-gene signature; (C) The Kaplan-Meier (KM) survival curve distribution of
the 3-gene signature in the training set.
A B

C

FIGURE 4 | (A) Risk score, survival time, survival status, and 3-gene signature expression in The Cancer Genome Atlas (TCGA) training set; (B) ROC curve and area
under the curve (AUC) of the 3-gene signature; (C) Distribution of the Kaplan-Meier (KM) survival curve of the 3-gene signature in the TCGA validation set.
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A B

C

FIGURE 5 | (A) Risk score, survival time, and 3-gene signature expression in all The Cancer Genome Atlas (TCGA) datasets; (B) Receiver operating characteristic (ROC)
curve and area under the curve (AUC) of the 3-gene signature; (C) Distribution of the Kaplan-Meier (KM) survival curve of 3-gene signature in all TCGA datasets.
A

B D

E

F

C

FIGURE 6 | (A) Receiver operating characteristic (ROC) curve and area under the curve (AUC) of the 3-gene signature; (B) Distribution of the Kaplan-Meier (KM)
survival curve of the 3-gene signature in the GSE57495 dataset; (C) Receiver operating characteristic (ROC) curve and area under the curve (AUC) of the 3-gene
signature; (D) Distribution of the Kaplan-Meier (KM) survival curve of the 3-gene signature in the GSE62452 independent validation set; (E) Receiver operating
characteristic (ROC) curve and area under the curve (AUC) of the 3-gene signature; (F) Distribution of the Kaplan-Meier (KM) survival curve of the 3-gene signature in
the GSE28735 independent validation set.
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The distribution of the risk score among the clinical features of
the two groups was further compared. The results demonstrated
that the risk score is significantly different between the N-stage and
tumor grade (p < 0.05). The higher the tumor grade, the higher the
risk score (Figure 7Q). The risk score of N1 was significantly
higher than that of N0 (Figure 7R). The risk score of the C1
subtype with a poor prognosis was significantly higher than that of
the C2 subtype with a good prognosis (Figure 7T). Moreover, the
risk score was significantly different among existing immune
molecular subtypes (Figure 7S).

Construction of the Nomogram
In the TCGA-PAAD dataset, the univariate Cox regression
analysis showed a significant correlation between the risk type
and survival, while the multivariate Cox regression analysis
showed a significant correlation between the risk score (Hazard
ratio [HR] = 1.94, 95% confidence interval [CI] = 1.25–3.01, and
p = 0.003) and survival. These results demonstrate the good
predictive performance of the identified 3-gene prognostic model
in clinical applications. Furthermore, the N stage (HR = 4.17,
Frontiers in Oncology | www.frontiersin.org 9
95% 1.16–14.93, and p = 0.028) and grade (HR = 3.06, 95% CI =
1.3–7.21, and p = 0.011) were identified as independent
prognostic risk factors for patients with pancreatic cancer.
Chemotherapy (HR = 0.13, 5% CI = 0.05–0.36, and p < 0.001)
was identified as an independent prognostic protective factor
(Figures 8A, B).

The nomogram, which displays the results of the risk model
directly and effectively, can be conveniently applied to the
prediction of an outcome. The nomogram uses the length of
the line to indicate the degree of influence that different variables
have on the result and the influence of different values of
variables on the result. According to the results of the
univariate and multivariate analyses, the nomogram was
constructed with the following clinical features: N stage, tumor
grade, chemotherapy, and risk score (Figure 8C). The results
showed that the risk score has the greatest effect on survival
prediction, indicating that the risk model based on the 3-gene
signature can accurately predict the prognosis of patients with
pancreatic cancer. A calibration diagram was used to visualize
the nomogram. The results showed that the nomogram
A B D

E F G

I

H

J K L

M N

C

O P

Q

R

S

T

FIGURE 7 | (A–P) Performance of the risk model in distinguishing different clinical characteristics of patients; (Q) Comparison of the risk score between the samples
grouped according to the tumor grade; (R) Comparison of the risk score comparison between the samples grouped according to the N-Stage; (S) Comparison of
the risk score in existing immune molecular subtypes between grouped samples; (T) Comparison of the risk score between samples of the molecular subtypes
identified in this study.
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performed well in determining the prognostic risk of patients
with pancreatic cancer (Figure 8D).

Comparison of Risk Model With
Other Models
Four prognostic risk models, including 15-gene signature (Chen)
(9), 7-gene signature (Cheng) (10), and 6-gene signature
(Stratford) (11) models, were compared with the identified 3-
gene prognostic model. To facilitate comparison among the
models, the risk score of each TCGA-PAAD sample was
calculated using the same method, and the risk score was
Frontiers in Oncology | www.frontiersin.org 10
zscored according to the corresponding gene in all three models.
Genes with a risk score greater than zero were categorized into a
high-risk group and those with a risk score less than zero were
categorized into a low-risk group. The prognosis difference
between the two groups was further analyzed. There were
significant differences in outcomes between the high-risk and
low-risk groups in all three risk models (Figures 9B, D, F, log-
rank p < 0.05), the area under the curve (AUC)s at 1-, 2-, and 3-
year of Cheng and Stratford models were lower than that of our
model (Figures 9C, E). Although our 1-year AUC is smaller than
the Chen model (0.73 vs 0.74), the AUC at 2 and 3 years is larger
A

B

D
C

FIGURE 8 | (A) Results of univariate analysis of clinical characteristics and risk scores; (B) Results of multivariate analysis clinical characteristics and risk scores; (C)
Nomogram based on clinical characteristics and risk scores; (D) Nomogram for predicting survival rate of patients with pancreatic cancer along with correction factors.
*P < 0.05; ***P < 0.001.
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than his (0.77 vs 0.76, 0.81 vs 0.78, respectively) (Figure 9A)
(Supplement Table 4). Therefore, the 3-gene signature identified
in this study represents a more reasonable and efficient model to
determine the prognostic risk of patients with pancreatic cancer
with the use of fewer genes.

Expression of LY6D, BCAT1, and ITGB6 in
Pancreatic Cancer
The differences in the expression of the LY6D, BCAT1, and
ITGB6 genes in PAAD and adjacent tissues were investigated.
The expressions of LY6D, BCAT1, and ITGB6 in 120 cases of
pancreatic cancer and 30 cases of para-carcinoma were detected
by immunohistochemistry. The results showed that BCAT1,
LY6D, and ITGB6 were significantly overexpressed in cancer
tissues (Figures 10A–C). Many cases in the TMA cohort were
not effectively followed up. Therefore, to compensate for this
limitation, the Kaplan-Meier plotter database was used to obtain
177 samples with overall survival data and 69 cases with
recurrence-free survival data. The results showed that patients
with high expression of LY6D, BCAT1, and ITGB6 genes have a
significantly worse prognosis than those with a low expression
both in terms of overall survival and recurrence-free survival
(Figures 10D–I). Our immunohistochemical results
demonstrated that LY6D, BCAT1, and ITGB6 proteins were all
overexpressed in PAAD samples compared to normal samples.
Therefore, it can be speculated that these genes act as oncogenes
in pancreatic cancer, and the upregulation of these genes is
associated with a significantly worse prognosis in patients with
pancreatic cancer.
Frontiers in Oncology | www.frontiersin.org 11
Flow Chart of Research Methodology
A flowchart has been drawn to allow readers to better understand
the research process of this study (Figure 11).
DISCUSSION

Pancreatic cancer is a highly aggressive malignancy that is
associated with a high mortality rate and poor prognosis. The
5-year survival rate for patients with pancreatic cancer is less
than 10% (12). In 2021, 60,430 new pancreatic cancer cases and
48,220 pancreatic cancer-related deaths are expected in the
United States (12). By 2030, pancreatic cancer is estimated to
be the second most common cause of cancer-related deaths in
the United States (13). The malignant progression of pancreatic
cancer is often accompanied by changes in the expression of
multiple genes, and the abnormal expression of specific genes
may affect the prognosis of patients with pancreatic cancer.
These genes may also serve as effective targets for personalized
cancer therapy (14, 15). In recent years, with the rapid
development of sequencing technology, high-throughput
genomics has allowed for the exploration of key genes involved
in cancer tumorigenesis and development. Moreover, high-
throughput genomics allows for further analysis of the
mechanisms related to tumorigenesis and development.

In this study, 176 TCGA-PAAD samples were genotyped
based on 97 invasion-related genes, and two subtypes (C1 and
C2) were obtained. The C1 subtype with a poor prognosis was
more associated with the involvement of tumor-related pathways
A
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F

C

FIGURE 9 | (A, B) Receiver operating characteristic (ROC) curve of the 15-gene signature (Chen) risk model and KM curve of High/Low-risk samples; (C, D) ROC
of the 7-gene signature (Cheng) risk model and the Kaplan-Meier (KM) curve of samples from high- and low-risk groups; (E, F) ROC of 6-gene signature (Stratford)
risk model and the KM curve of samples from high- and low-risk groups.
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such as the Notch signaling pathway and ECM-receptor
interaction. The Notch signaling pathway plays an important
role in the maintenance of pancreatic tumor phenotypes (16),
and the downregulation of the Notch receptor is associated with
decreased proliferation, increased apoptosis, anchor-dependent
growth, and decreased invasiveness of pancreatic cancer cells
(17). However, matrix proteins derived from tumor cells may
promote the development and metastasis of ductal
adenocarcinoma of the pancreas (18). Five hundred and thirty-
eight DEGs between the C1 and C2 subtypes were identified
using the limma package, of which 531 genes were upregulated,
and 7 genes were downregulated. We constructed a 3-gene
signature using the LY6D, BCAT1, and ITGB6 genes out of the
538 identified DEGs.

Lymphocyte 6 (Ly6) complex is a group of alloantigens, and
LY6D is an important member of the Ly6 family. LY6D plays an
important role in the maintenance of phenotypic and
transcriptome heterogeneity of progenitor cells and the
proliferation and differentiation of lymphocyte B during the
early stages of lymphogenesis (19, 20). LY6D also plays an
important role in cancer; it serves as a prognostic marker for
advanced prostate cancer (21) and stage I non-small cell lung
carcinoma (NSCLC) (22), drug resistance-associated marker for
laryngeal squamous cell carcinoma (23), long-range metastasis
marker for patients with ESR1-positive breast cancer (24), and a
marker of urothelial and squamous cell differentiation (25).
Apart from its involvement in cell adhesion, LY6D also
regulates important interactions between endothelial cells and
head and neck squamous cell carcinoma cells (26). In addition to
glucose and fatty acid metabolism, amino acid metabolism plays
an important role in tumor metabolic reprogramming.
Frontiers in Oncology | www.frontiersin.org 12
The study has shown that the metabolism of Branched-
chain amino acids (BCAA) is potentially linked with
development of pancreatic ductal adenocarcinoma (27), and
BCAT1, an enzyme involved in the degradation of branched-
chain amino acids, is responsible for initiating the catabolism of
such amino acids (28).
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FIGURE 10 | Association of the expression of invasion-related genes with prognosis of pancreatic cancer. Expression of (A) BCAT1, (B) LY6D, and (C) ITGB6
genes in pancreatic cancer and normal tissues. The relationship between the expressions of (D) BCAT1, (E) LY6D, and (F) ITGB6 genes with overall survival. The
relationship between the expressions of (G) BCAT1, (H) LY6D, and (I) ITGB6 genes with recurrence-free survival. ***p < 0.001, *p < 0.05.
FIGURE 11 | Flow chart of research methodology.
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It has been reported that pancreatic ductal adenocarcinoma
cells reprogram fibroblasts to upregulate the expression of
BCAT1, to meet the cancer cells’ demand for branched-chain
a-ketoacid (BCKAs) under BCAA deprivation (29).

The expression of BCAT1 is also upregulated in
hepatocellular carcinoma (HCC) (30), breast cancer (31), and
NSCLC (32), and indicates a poor prognosis. In HCC, BCAT1
plays a pathogenic role by promoting cell proliferation and
chemoresistance (33). BCAT1 regulates mTOR-mediated
autophagy via branched-chain amino acid metabolism, thus
reducing the sensitivity of cancer cells to cisplatin (34).

As a member of the integrin b (ITGB) superfamily, the
overexpression of ITGB6 is associated with the upregulation of the
Notch signaling pathway in pancreatic cancer and is associated with
immunosuppression in pancreatic cancer (35). Nine genetic
markers, including ITGB6, can be used to predict the overall
survival of patients with pancreatic cancer (36). ITGB6, which is
highly expressed in colorectal cancer, is associated with a poor
prognosis (37). ITGB6 can also be used as a tumor-specific surface
antigen (TSA) to identify cell surface targets of CAR-T cell therapy
and antibody-drug conjugates in breast cancer (38). Studies have
shown that ITGB6 was a liver-metastasis-related gene for PAAD
patients (39) and the overexpression of ITGB6 was significantly
associated with advanced AJCC stage and histologic grade, and
wor s e prognos i s i n panc r e a t i c c ance r ( 40 ) . Our
immunohistochemical results showed that LY6D, BCAT1, and
ITGB6 were all overexpressed in pancreatic cancer, which was
consistent with the previous results.

Although there are many multi-gene prognostic models for
PAAD, there is no model based on invasion-related gene
signature to predict the prognosis of pancreatic cancer.
Invasion genes play an important role in metastasis as well as
the development of cancer. Moreover, some prognostic
signatures contain multiple genes (15-gene signature, 7-gene
signature, and 6-gene signature), indicating that it is necessary
to assess the expression profile of more genes in a patient-specific
manner, which adds extra cost to medical care. Our 3-gene
prognostic model has a higher ROC than the above models in
terms of prediction of 1-, 2-, and 3-year survival rates of patients
with pancreatic cancer, while having fewer genes. Therefore, our
model has certain advantages in PAAD.

However, our model also presents certain limitations. First,
information in the TCGA database is primarily limited to
Caucasian and African populations; therefore, and data from the
Asian population are missing from this study. Additionally, our
study was a retrospective study of patients with pancreatic cancer,
and prospective studies should be conducted to validate the
prognostic characteristic and confirm the stable performance of
the 3-gene prognostic model. Finally, the molecular mechanisms
by which LY6D, BCAT1, and ITGB6 drive the malignant
progression of pancreatic cancer require further verification.
Frontiers in Oncology | www.frontiersin.org 13
CONCLUSIONS

In this study, we divided the TCGA-PAAD samples into two
subtypes based on the differential expression of the invasion-
related genes and constructed a prognostic molecular signature
consisting of three genes, including LY6D, BCAT1, and ITGB6,
based on the DEGs between the two subtypes. The LY6D,
BCAT1, and ITGB6 genes were upregulated in pancreatic
cancer samples. The 3-gene prognostic model also exhibited a
good AUC in both the training and validation sets. Therefore,
this 3-gene prognostic model, based on the expression of three
invasion-related genes, may be used to assess the prognosis of
patients with pancreatic cancer. This will help in the stratification
of patients for personalized cancer therapy.
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