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The repair of DNA breaks takes place in the context of chromatin and

thus involves the activity of chromatin remodelers. The nucleosome acetyl-

transferase of H4 (NuA4) remodeler complex enables DNA break repair

by relaxing flanking chromatin. Here, we show that MRG domain binding

protein (MRGBP), a member of this complex, acts as a general inhibitor

of DNA double-strand break repair. Upon its downregulation, repair is

generally increased. This is particularly evident for the stimulation of early

events of homologous recombination. Thus, MRGBP has an opposing role

to the main catalytic subunits of the NuA4 complex. Our data suggest that

MRGBP acts by limiting the activity of this complex in DNA repair,

specifically by narrowing the extent of DNA-end resection.

The stability of the genomic material is essential for

cell and organismal fitness and survival. Thus, it is not

surprising that a plethora of repair mechanisms have

appeared in evolution to deal with chemical or

physical alterations of the DNA. Among the possible

DNA lesions, the breakage of the molecule, the so-

called DNA double-strand break (DSBs), is known to

be the most challenging to be repaired. Indeed, such
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DNA lesions can be repaired by several different

mechanisms, including the error-prone nonhomologous

end-joining (NHEJ) pathway and the error-free homol-

ogous recombination (HR) pathway [1,2]. Whereas

NHEJ requires no homology and very little processing

of the DNA ends, HR needs long tails of single-

stranded DNA (ssDNA) that are used to invade a

homologous template during repair [1,2]. Thus, it is

the formation of this ssDNA, the so-called DNA-end

resection, what effectively controls the choice between

each DSB repair pathway. Mechanistically, resection is

achieved by the combined action of several nucleases

that degrade one strand at each side of the break in a

50–30 polarity [3]. But more importantly, a complex

regulatory network controls if and when DNA resec-

tion machinery is activated [4,5]. This requires the inte-

gration of multiple cellular signals and, mainly, the

activation of the core resection factor CtBP Interacting

protein (CtIP) [6]. Many different proteins are known

to be involved in this network, including among many

others the antagonistic roles of the pro-resection factor

breast cancer 1 (BRCA1) and the anti-resection pro-

tein p53 Binding Protein 1 (53BP1) [7].

Additionally to the repair machinery itself, the effi-

cient detection and repair of DSBs require the reorga-

nization of the chromatin before and after repair takes

place [8]. Indeed, different remodeling factors and his-

tone-modifying enzymes are involved in creating open

chromatin structures at DSBs sites that are permissive

for repair. This is the case of the highly conserved

nucleosome acetyltransferase of H4 (NuA4) complex,

that is specifically recruited to DSBs where it mediates

the transition from compacted to open, relaxed chro-

matin to permit an adequate DSB repair [9–12]. This
role requires the action of different activities within

the complex, catalyzed by the ATPase p400 and the

histone acetyltransferase tat interacting protein,

60 kDa (TIP60) [9]. First, the p400 ATPase remodels

the nucleosome organization by rapidly substituting

the histone H2A for the H2A.Z variant [13]. This

dynamic exchange is required for the creation of open

chromatin domains at DSBs and for the subsequent

acetylation of histone H4 by TIP60 [13,14] that pre-

cedes the recruitment of several DNA repair proteins

[15]. Moreover, TIP60 has also a direct role in damage

signaling promoting ATM activation and the subse-

quent H2AX phosphorylation [16,17] and has been

proposed to be a key regulator of DSB repair pathway

choice, favoring HR over NHEJ due to its capacity of

inhibiting the local recruitment of 53BP1 [18]. In

agreement, depletion of different human NuA4 sub-

units, including p400 or transformation/transcription

domain associated protein, impairs the recruitment of

HR proteins, including BRCA1 and the recombinase

Rad51 [homologue to yeast Radiation sensitive 51

(RAD51)] [13,15,19]. The function of other hNuA4

subunits in this context is, however, less known. One

of the less characterized members of the complex is

MRG domain binding protein (MRGBP) [20]. This

protein was recently identified in a genomewide screen-

ing for factors that regulate the balance between HR

and NHEJ [21]. Strikingly, and contrary to the expec-

tations for a NuA4 member, MRGBP depletion

shifted the balance between HR and NHEJ toward the

former.

Here, we show that MRGBP acts as a general inhi-

bitor of DNA repair. Indeed, both NHEJ and HR

seem to be repressed by this factor. However, the

effect is particularly strong for HR. Specifically,

MRGBP presence limits DNA-end resection and,

therefore, HR.

Material and methods

Cell lines and growth conditions

U2OS cells were grown in Dulbecco’s modified Eagle’s

medium (DMEM; Sigma-Aldrich, St Louis, MO, USA)

supplemented with 10% FBS (Sigma-Aldrich), 2 mM L-glu-

tamine (Sigma-Aldrich), and 100 units�mL�1 penicillin and

100 lg�mL�1 streptomycin (Sigma-Aldrich). U2OS cells

bearing a copy of the DR-GFP, SA-GFP, or EJ5-GFP

reporter systems were grown in standard DMEM described

above supplemented with 1 lg�mL�1 puromycin (Sigma-

Aldrich).

siRNA transfection

siRNA duplexes were obtained from Sigma-Aldrich or

Dharmacon (Lafayette, CO, USA; Table S1) and were

transfected using RNAiMax Lipofectamine Reagent Mix

(Life Technologies, Carlsbad, CA, USA), according to the

manufacturer’s instructions.

HR and NHEJ analysis

U2OS cells bearing a single copy integration of the repor-

ters DR-GFP (Gene conversion), SA-GFP (SSA), or EJ5-

GFP (NHEJ) [22,23] were used to analyze the different

DSB repair pathways as previously described [24]. Four dif-

ferent parameters were considered: side scatter (SSC), for-

ward scatter (FSC), blue fluorescence (407 nm violet laser

BP, Filter 450/40), and green fluorescence (488 nm blue

laser BP Filter 530/30). Finally, the number of green cells

from at least 10 000 events positives for blue fluorescence

(infected with the I-SceI–BFP construct) was scored, con-

sidering the background of green fluorescence obtained in
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the samples without transduction with lentivirus harboring

pBFP-I-SceI plasmid as previously described [23,25,26]. To

facilitate the comparison between experiments, this ratio

was normalized with siRNA control. At least three com-

pletely independent experiments were carried out for each

condition and the average and standard deviation is repre-

sented.

SDS/PAGE, western blot analysis, and

immunoprecipitation

As described previously [24], protein extracts were prepared

in 29 Laemmli buffer (4% SDS, 20% glycerol, 125 mM

Tris/HCl, pH 6.8) and passed 10 times through a 0.5-mm

needle-mounted syringe to reduce viscosity. Proteins were

resolved by SDS/PAGE and transferred to low fluorescence

PVDF membranes (Immobilon-FL; Millipore, Billerica,

MA, USA). Membranes were blocked with Odyssey block-

ing buffer (LI-COR, Lincoln, NE, USA) and blotted with

the appropriate primary antibody (Table S2) and infrared

dyed secondary antibodies (LI-COR; Table S3). Antibodies

were prepared in blocking buffer supplemented with 0.1%

Tween-20. Membranes were air-dried in the dark and

scanned in an Odyssey Infrared Imaging System (LI-COR),

and images were analyzed with ImageStudio software (LI-

COR). Co-immunoprecipitation experiments were per-

formed as previously described [27] with the appropriate

antibody (Table S2). Rabbit or mouse purified IgG (Sigma-

Aldrich) was used as a control.

Immunofluorescence and microscopy

Those experiments were performed as previously described

[24]. For replication protein A (RPA) foci visualization,

U2OS cells knocked down for different proteins were seeded

on coverslips. One hour after irradiation (10 Gy), coverslips

were washed once with PBS followed by treatment with pre-

extraction buffer (25 mM Tris/HCl, pH 7.5, 50 mM NaCl,

1 mM EDTA, 3 mM MgCl2, 300 mM sucrose, and 0.2% Tri-

ton X-100) for 5 min on ice. Cells were fixed with 4%

paraformaldehyde (w/v) in PBS for 15 min. Following two

washes with PBS, cells were blocked for 1 h with 5% FBS

in PBS, co-stained with the appropriate primary antibodies

(Table S2) in blocking solution overnight at 4 �C or for 2 h

at room temperature, washed again with PBS, and then co-

immunostained with the appropriate secondary antibodies

for 1 h (Table S3) in blocking buffer. After washing with

PBS and dried with ethanol 70% and 100% washes, cover-

slips were mounted into glass slides using Vectashield

mounting medium with DAPI (Vector Laboratories, Burlin-

game, CA, USA). RPA foci immunofluorescences were ana-

lyzed using a Leica Fluorescence microscope.

For 53BP1 visualization, U2OS cells were seeded and

transfected as previously described. Once collected, cells

were fixed with methanol (VWR, Radnor, PA, USA) for

10 min on ice, followed by treatment with acetone (Sigma)

for 30 s on ice. Then, samples were immunostained as

described above with the appropriate primary (Table S2)

and secondary antibodies (Table S3). Images obtained with

a Leica Fluorescence microscope were then analyzed using

Metamorph to count the number, intensity, and size of the

foci.

SMART (single-molecule analysis of resection

tracks)

Single molecule analysis of resection tracks (SMART) was

performed as described [28]. Briefly, cells were grown in the

presence of 10 lM BrdU for < 24 h. Cultures were then

irradiated (10 Gy) and harvested after 1 h. Cells were

embedded in low-melting agarose (Bio-Rad, Hercules, CA,

USA), followed by DNA extraction. DNA fibers were

stretched on silanized coverslips, and immunofluorescence

was carried out to detect BrdU (Table S2). Samples were

observed with a Nikon NI-E microscope, and images were

taken and processed with the NIS ELEMENTS Nikon Software

(Tokyo, Japan). For each experiment, at least 200 DNA

fibers were analyzed, and the length of the fibers was mea-

sured with ADOBE PHOTOSHOP CS4 (San Jose, CA, USA).

Cell cycle analysis

We used the same protocol previously described in [24].

Briefly, cells were fixed with cold 70% ethanol overnight,

incubated with 250 lg�mL�1 RNase A (Sigma) and

10 lg�mL�1 propidium iodide (Fluka, Buchs, Switzerland)

at 37 �C for 30 min, and analyzed with a FACSCalibur

(BD, Franklin Lakes, NJ, USA). Cell cycle distribution

data were further analyzed using MODFIT LT 3.0 software

(Verity Software House Inc, Topsham, ME, USA).

Proximity ligation assay

Proximity ligation assays (PLA) were performed using the

Duolink PLA Kit (Olink Bioscience, Uppsala, Sweden)

according to the manufacturer’s protocol. Briefly, U2OS

GFP-mediator of DNA damage checkpoint 1 (MDC1)

harboring cells were treated with ionizing radiation (IR;

10 Gy), incubated 1 h, and then collected. Coverslips were

washed with PBS, fixed using PFA diluted in 4% PBS for

15 min at room temperature, and treated with triton 0.1%

in PBS for 15 min. Then, cells were washed three times

with PBS and blocked with Blocking Solution from Duo-

link PLA kit for 1 h at 37 �C. Samples were incubated

with primary antibodies against MRGBP and TIP60

(Table S2) overnight at 4 �C, followed by MINUS and

PLUS secondary PLA probes for 1 h at 37 �C. Detection

was carried out with the Duolink Detection Kit Red
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(Olink Bioscience). Cells were analyzed using a Leica

fluorescence microscope.

Statistical analysis

Statistical significance was determined with a Student’s

t-test or ANOVA as indicated using PRISM software (Graph-

Pad Software Inc., San Diego, CA, USA). Statistically signif-

icant differences were labeled with one, two, or three

asterisks if P < 0.05, P < 0.01, or P < 0.001, respectively.

Results

MRGBP is involved in DNA DSB repair

As mentioned, previously we performed a genomewide

study in human cells to identify candidate genes

involved in the regulation of DSB repair pathway

choice [21]. Among others, we found that MRGBP, a

member of the NuA4 complex, seemed to favor NHEJ

over HR [21]. Indeed, downregulation of MRGBP

skewed the balance of DSB repair toward an increase

in recombination [21]. So, we decided to study in detail

the possible role of this protein in this essential pro-

cess.

Thus, first, in order to validate the genomewide

results, we analyzed the impact of MRGBP depletion

in specific DNA repair pathways using previously

described, GFP-based, DSB repair assays [22,23]. We

used the depletion of the bona fide DNA resection fac-

tor CtIP as a positive control, as it is known to increase

NHEJ and decrease all types of HR [29,30]. MRGBP

and CtIP depletion is documented in Fig. S1A. In

agreement with our published results, MRGBP deple-

tion caused a general upregulation of HR, both the

RAD51-dependent gene conversion and the RAD51-in-

dependent single-strand annealing (Fig. 1A,B). Surpris-

ingly, NHEJ was also upregulated after MRGBP

downregulation (Fig. 1C), suggesting that MRGBP acts

as a general suppressor of any type of DSB repair. As

position in the cell cycle plays a crucial role in the

DNA repair pathway choice, we checked that our

results were not caused by a change in cell cycle distri-

bution upon MRGBP depletion (Fig. 1B).

MRGBP depletion leads to an increased

recruitment of DNA repair proteins

We then wondered if this increases in both NHEJ

and HR rates correlated with a higher recruitment of

different repair factors to sites of DNA damage.

Thus, we analyzed the local recruitment of 53BP1,

commonly associated with NHEJ [7,31], and BRCA1,

related to HR [7,31], after MRGBP downregulation.

The phosphorylation of histone H2AX (cH2AX) was

used as a marker of DSBs. Again, depletion of CtIP

was used as a positive control of altered DNA repair

and foci formation. One hour after irradiation,

MRGBP-depleted cells exhibited a marked increase in

53BP1 foci, in line with the rise in NHEJ repair

observed with the NHEJ reporter system (Fig. 2A,B).

Similarly, accumulation of BRCA1 was also mildly

but statistically significantly increased in MRGBP-de-

ficient cells, in agreement with the hyper-recombina-

tion phenotype observed in SA-GFP and DR-GFP

HR reporters (Fig. 2C,D). No changes were observed

in nonirradiated samples (data not shown), arguing

that such increase was not due to accumulation of

endogenously created DNA damage.

MRGBP inhibits resection

As mentioned, the balance between NHEJ and HR is

maintained mainly at the level of DNA-end resection

initiation. Thus, it is not surprising that this process is

heavily controlled by multiple layers of regulation.

Among them, the interplay between 53BP1 and

BRCA1, that show antagonistic roles, is one of the

best defined [7]. Considering that the recruitment of

both proteins is enhanced upon MRGBP depletion, we

wondered if resection was inhibited, increased, or

maintained to similar levels on such conditions. First,

we checked the formation of RPA foci in cells exposed

to DNA damage. As shown in Fig. S3, panels A and

B, downregulation of MRGBP slightly but signifi-

cantly increased the number of cells that were positive

for RPA foci 1 h after exposing them to IR, in stark

contrast with the effect of the depletion of the canoni-

cal resection factor CtIP. This result was confirmed

using a second, independent siRNA targeting MRGBP

(Fig. S2). The minimal increase we observed in RPA-

positive cells agreed with a role as an inhibitor of

resection and explained why this factor appeared in

our screening as favoring NHEJ [21]. So, albeit both

NHEJ and HR are enhanced upon its downregulation,

it seems that also the balance between both pathways

is mildly skewed to favor NHEJ. To further resolve

the changes in resection upon MRGBP depletion, we

used SMART, a high-resolution method to study

DNA-end resection in single DNA fibers [32]. Remark-

ably, downregulation of MRGBP did increase the

median length of resected DNA (Fig. 3C). Moreover,

we could also observe unusually long ssDNA fibers

(Fig. 3D,E) in agreement with a hyper-resection phe-

notype. These results support the implication of

MRGBP in hampering all types of DNA repair, but
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with a greater effect on limiting the extent of

DNA-end resection.

MRGBP antagonizes TIP60 and p400 in

homologous recombination

MRGBP has been described as a component of the

NuA4 complex, which strikingly has been shown to

play the opposite role and to be required for the repair

of DSBs by HR [15,19,33–35]. Thus, we decided to

establish the genetic relationship for DNA-end resec-

tion between MRGBP and the acetyltransferase TIP60

and the chromatin remodeler p400 ATPase, the two

main subunits of the complex. As expected, and in

agreement with the requirement of NuA4 in recombi-

nation, both TIP60 and p400 depletion slightly

decreased the number of RPA-positive cells after irra-

diation (Fig. 4). As previously observed, MRGBP

downregulation had the opposite effect (Fig. 4).

Importantly, depletion of TIP60 was epistatic over

MRGBP downregulation, as the co-depletion of both

showed a phenotype similar to TIP60 simple depletion.

Thus, our data indicated that MRGBP acted in the

same genetic pathway as TIP60, likely by inhibiting its

stimulatory role on resection.

MRGBP interacts with NuA4 complex

independently of DNA damage

One possibility to explain this opposite role of differ-

ent components of the same complex was that

MRGBP might be sequestering the NuA4 complex

that would be released in a controlled manner in

response to DNA damage. To test this hypothesis, we

analyzed the composition of the complex in U2OS

cells before and after irradiation. However, and as

shown in Fig. 5A,B, MRGBP interacted with both

TIP60 and p400 similarly both in the presence and

absence of DBSs. To establish the cellular localization

of such interaction, we used a PLA in irradiated cells
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expressing GFP-MDC1, which is recruited to damaged

DNA (Fig. 5C,D; controls for the specificity of the

technique are shown in Fig. S3). Interestingly, despite

the fact that both proteins continued interacting upon

DNA damage appearance, they rarely do so on dam-

aged chromatin, as revealed by co-localization with

MDC1 foci (Fig. 5D). The interaction between p400

and TIP60 was monitored as a positive control

(Fig. 5D), showing a similar pattern.

Discussion

Here, we show that MRGBP, a poorly studied mem-

ber of the NuA4 complex, seemed to reduce TIP60

pro-resection function. MRGBP depletion increases

resection extension causing hyper-resection, in a man-

ner that is completely dependent on the presence of

TIP60. Strikingly, such depletion favors the quantity

of DSB repair by both HR and NHEJ, what is depen-

dent on a hyper-accumulation of repair factors

involved in either pathway. We could wonder why

such protein has appeared in evolution and what could

be the benefit of a general limitation of repair. Our

hypothesis is that the efficiency of the repair must be

governed mostly by the quality rather than by the

quantity of the process. Indeed, MRGBP presence

might limit the activity of the NuA4 complex at sites

of DSBs, favoring a chromatin environment in which

repair can happen at a controlled pace. In this scenar-

io, the absence of MRGBP would deregulate TIP60
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activity, creating a chromatin landscape that facilitates

the accumulation of repair factors. This unchecked

repair might be faster, therefore increasing the number

of breaks sealed at a given time, but probably less

effective and most likely will result in an increased

genomic instability due to a reduction of the quality of

the repair. Indeed, the role of the NuA4 complex in

facilitating repair, mainly by stimulating DNA-end

resection and HR is well established [9–13,17,35]. So,
its untamed and unlimited activity agrees with the

hyper-resection phenotype observed upon MRGBP

depletion. While it might be possible that hyper-resec-

tion does not generally block repair, it could render

fundamental changes in the type of repair event that

takes place. In fact, classical NHEJ will be mostly

blocked by resection, but the exposure of short micro-

homologies during resection will hyper-stimulate the

micro-homology-mediated end joining, a highly muta-

genic pathway. Regarding HR, that is completely

dependent on DNA-end processing, hyper-resection

can also shift the balance between the different sub-

pathways. On the one hand, it will favor longer gene
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conversion tracks, as the extent of ssDNA will

increase. On the other hand, it will also difficult the

capture of the second DNA end required for the for-

mation of a double Holiday Junction during classical

recombination [36]. Finally, hyper-resection will

greatly facilitate the exposure of intrachromosomal

repeats, favoring the single-strand annealing homol-

ogy-mediated repair, thus increasing intrachromatid

events and the deletion of big regions on the DNA [1].

Therefore, we speculate with the idea that MRGBP is

responsible of taming the activity of the NuA4 com-

plex, favoring slower but more accurate repair path-

ways, thus increasing the stability of the genome.
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