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Abstract

Optimal Bayesian models have been highly successful in describing human performance on

perceptual decision-making tasks, such as cue combination and visual search. However,

recent studies have argued that these models are often overly flexible and therefore lack

explanatory power. Moreover, there are indications that neural computation is inherently

imprecise, which makes it implausible that humans would perform optimally on any non-triv-

ial task. Here, we reconsider human performance on a visual-search task by using an

approach that constrains model flexibility and tests for computational imperfections. Sub-

jects performed a target detection task in which targets and distractors were tilted ellipses

with orientations drawn from Gaussian distributions with different means. We varied the

amount of overlap between these distributions to create multiple levels of external uncer-

tainty. We also varied the level of sensory noise, by testing subjects under both short and

unlimited display times. On average, empirical performance—measured as d’—fell 18.1%

short of optimal performance. We found no evidence that the magnitude of this suboptimality

was affected by the level of internal or external uncertainty. The data were well accounted

for by a Bayesian model with imperfections in its computations. This “imperfect Bayesian”

model convincingly outperformed the “flawless Bayesian” model as well as all ten heuristic

models that we tested. These results suggest that perception is founded on Bayesian princi-

ples, but with suboptimalities in the implementation of these principles. The view of percep-

tion as imperfect Bayesian inference can provide a middle ground between traditional

Bayesian and anti-Bayesian views.

Author summary

The main task of perceptual systems is to make truthful inferences about the environment.

The sensory input to these systems is often astonishingly imprecise, which makes human

perception prone to error. Nevertheless, numerous studies have reported that humans

often perform as accurately as is possible given these sensory imprecisions. This suggests

that the brain makes optimal use of the sensory input and computes without error. The

validity of this claim has recently been questioned for two reasons. First, it has been

argued that a lot of the evidence for optimality comes from studies that used overly flexible

models. Second, optimality in human perception is implausible due to limitations
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inherent to neural systems. In this study, we reconsider optimality in a standard visual

perception task by devising a research method that addresses both concerns. In contrast

to previous studies, we find clear indications of suboptimalities. Our data are best

explained by a model that is based on the optimal decision strategy, but with imperfec-

tions in its execution.

Introduction

An important function of the visual system is to make inferences about the environment from

noisy sensory input. It is often claimed that human performance on perceptual inference tasks

is optimal or “Bayesian” [1–5], meaning that subjects supposedly perform as well as theoreti-

cally possible given the amount of sensory noise in their observations. Evidence for this claim

has mainly come from tasks in which subjects integrate two sensory cues to estimate a com-

mon source. The optimal strategy in these tasks is to compute a weighted average of the two

cues, where each weight depends on the cue’s reliability: the more reliable the cue, the more

strongly it weighs in on the decision [6]. Reliability-based weighting is a hallmark of Bayesian

observers and predicts that a subject’s estimates are biased towards the more reliable cue. This

prediction has been confirmed in a wide range of experiments in which two sensory cues need

to be combined to estimate a common source. Examples include integration of a visual and

haptic cue to estimate the height of an object [7], a visual and proprioceptive [8] or auditory

[9] cue to estimate object location, and two visual cues to estimate object depth [10,11] or

object slant [12]. More recent work has reported that optimality in perception extends to tasks

with as many as eight cues and with highly non-linear optimal decision rules, including visual

search [13–17], categorization [18], change detection [19], change localization [20], and same-

ness discrimination [21] tasks.

While these studies have provided valuable insights into basic mechanisms of perception,

they have also been criticized. One criticism is that the emphasis on optimality has led to an

underreporting and underemphasizing of studies that have found violations of optimality

[22,23]. Another, more fundamental criticism is that optimal models often lack explanatory

power due to being overly flexible [23–26]. The risk of too much flexibility is that it may allow

an optimal model to account for data from suboptimal observers. For example, when sensory

noise levels are fitted as free parameters—as in most studies—an optimal model may account

for suboptimalities in inference by overestimating these noise levels. Similarly, a freely fitted

lapse rate may help an optimal model to explain away errors that were in reality caused by

poor decision making. In addition to this methodological concern, several recent studies have

suggested that neural computation is inherently imprecise [27–31], which makes it a priori

implausible that humans perform optimally on any non-trivial task.

Here, we revisit optimality in perception by using a method that takes note of the concerns

described above in three ways. First, we constrain flexibility of the optimal model by imposing

prior distributions on its parameters; this reduces the risk that the optimal model explains

away decision suboptimalities as sensory noise or attentional lapses. Second, for each model

that we test, we also include a variant with computational imperfections. Such imperfections

may produce suboptimal behavior, even when subjects use a decision strategy that is based on

Bayesian principles. By including these models in our analyses, we can distinguish perfor-

mance loss caused by using a wrong decision rule from performance loss due to imperfect exe-

cution of a rule. Third, besides only testing which kind of model accounts best for behavior,
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we will also quantify performance loss and partition this loss into different sources (see [27]

for a similar approach).

We choose visual search as our experimental task. Despite the complexity of the optimal

decision rule for this task, several previous studies have reported that humans perform near-

optimally [13–15]. We include experimental conditions in which stimuli are corrupted by

external noise, which makes the task more consistent with naturalistic conditions, where infer-

ence often involves dealing with both internal and external sources of uncertainty [32,33]. We

fit several Bayesian model variants as well as ten heuristic models to the experimental data. To

preview our main result, we find no evidence for perfect optimality, nor for any of the heuris-

tic-based strategies. Instead, the data are best explained by an “imperfect Bayesian”, in which

decisions are based on Bayesian principles, but subject to imperfections in the implementation

of these principles.

Methods

Ethics statement

The study was approved by the Regional Ethical Review Board in Uppsala and conducted

according to the Declaration of Helsinki Principles. Study subjects gave written informed con-

sent prior to their enrollment in the experiment.

Data and code sharing

The experimental data and Matlab code to reproduce the main figures and to fit the models

are available at https://osf.io/dkavj/.

Subjects

Thirty subjects were recruited via advertisements at the psychology department of Uppsala

University in Sweden and received payment in the form of cinema tickets or gift vouchers. All

subjects had self-reported normal or corrected-to-normal vision and gave informed consent

before the start of the experiment. No subjects were excluded from any of the analyses.

Stimuli

Stimuli were black ellipses (0.35 cd/m2) with an area of 0.60 deg2 presented on a gray back-

ground (71 cd/m2; Fig 1A). The task-relevant feature in all experiments was ellipse orientation,

with 0˚ defined as vertical. The eccentricity of the ellipses differed across stimuli and condi-

tions. Ellipse eccentricity is formally defined as

ffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2

a2

q

, where a and b specify the ellipse’s

semi-major axis and semi-minor axis, respectively. To avoid confusion with visual field eccen-

tricity, we will refer to this eccentricity as “elongation”. Differences in elongation were used to

create differences in the level of sensory noise across stimuli (Fig 1B). Stimuli were generated

using the Psychophysics Toolbox [34] for Matlab and presented at fixed locations along an

invisible circle at the center of the screen and with a radius of 7 degrees of visual angle.

General procedure

Each subject completed multiple experimental sessions that lasted about one hour each. At the

start of the first session, they received general information about the experiment. Thereafter,

they performed a discrimination task (Fig 1A) followed by one condition of the visual search

task. In the remaining sessions, they only performed the visual search task (Fig 1C). We cre-

ated eight conditions for the visual search task by using a 2×4 factorial design (Table 1). The
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Fig 1. Experimental design. (A) Illustration of a trial in the discrimination task. Subjects reported on each trial the tilt direction of a single ellipse

(“clockwise” or “counterclockwise” relative to vertical). The elongation of the stimulus could take two values. We refer to the most elongated type of ellipse

as a “high reliability” stimulus and the less elongated type as a “low reliability” stimulus. Feedback was provided by briefly turning the fixation cross red

(error) or green (correct) after the response was given. (B) The subject-averaged data (filled circles) and model fits (curves) reveal that sensitivity was higher

for stimuli with high reliability (black) compared to those with low reliability (red). Error bars represent 1 s.e.m. (C) Illustration of a trial in the visual search

task with brief stimulus presentation time. (D) Top: examples of target-present displays under the four different levels of external uncertainty. Bottom:

distributions from which the stimuli in the example displays were drawn. In all four examples, the ellipse at the “north” location is a target and the other

three are distractors.

https://doi.org/10.1371/journal.pcbi.1006465.g001

Table 1. Overview of visual search task conditions and experimental subject groups. Each group consisted of 10 subjects. The condition with unlimited stimulus time

and no external uncertainty was excluded from the experiment, because subjects are expected to perform 100% correct on it.

Level of external uncertainty

None 5% 10% 15%

Stimulus display time Short (67 ms) A B C D

Group 1 Group 2 Group 1 Group 3

Unlimited - E F G

Group 2 Group 1 Group 3

https://doi.org/10.1371/journal.pcbi.1006465.t001
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factors specify the stimulus presentation time (short vs. unlimited) and the level of external

uncertainty (none, 5%, 10%, and 15%; explained below). Different groups of subjects per-

formed different subsets of these conditions.

Discrimination task

On each trial, the subject was presented with a single ellipse (67 ms) and reported whether it

was tilted clockwise or counterclockwise with respect to vertical (Fig 1A). Trial-to-trial feed-

back was provided by briefly turning the fixation cross in the inter-trial screen green (correct)

or red (incorrect). The elongation of the stimulus was 0.80 on half of the trials (“low reliabil-

ity”) and 0.94 on the other half (“high reliability”), randomly intermixed. The stimulus location

was randomly drawn on each trial from the set of four cardinal locations (“north”, “east”,

“south”, and “west”). On the first 20 trials, the orientation of the stimulus was drawn from a

uniform distribution on the range −5˚ to +5˚. In the remaining trials, a cumulative Gaussian

was fitted to the data collected thus far and the orientation for the next trial was then randomly

drawn from the domain corresponding to the 55–95% correct range. This adaptive procedure

increased the information obtained from each trial by reducing the number of extremely easy

and difficult trials. Subjects completed 500 trials of this task.

Visual search without external uncertainty (condition A)

In this condition, subjects were on each trial presented with four oriented ellipses. On half of

the trials, all ellipses were distractors. On the other half, three ellipses were distractors and one

was a target. The task was to report whether a target was present. Targets were tilted μtarget

degrees in clockwise direction from vertical and distractors were tilted μtarget degrees in coun-
terclockwise direction. The value of μtarget was customized for each subject (Table 2) such that

an optimal observer with sensory-noise levels equal to the ones estimated from the subject’s

discrimination-task data had a predicted accuracy of 85% correct (averaged over trials with

different combinations of low and high reliability stimuli). Stimulus display time was 67 ms

and each stimulus was presented with an ellipse elongation of either 0.80 (“low reliability”) or

0.94 (“high reliability”). On each trial, the number of high-reliability stimuli was drawn from a

uniform distribution on integers 0 to 4 and reliability values were then randomly distributed

across the four stimuli. The four stimuli always appeared at the four cardinal locations

(“north”, “east”, “south”, and “west”). Feedback was provided in the same way as in the dis-

crimination task. The task consisted of 1500 trials divided equally over 12 blocks with short

forced breaks between blocks.

Visual search with external uncertainty and short display time (conditions

B-D)

The three visual search conditions with external uncertainty and short display time were iden-

tical to condition A, except that the orientations of the target and distractors were not fixed,

but instead drawn from partly overlapping Gaussian distributions (Fig 1D). These distribu-

tions had means μtarget and −μtarget (see above), respectively, and a standard deviation σexternal.

The value of σexternal was customized for each subject (Table 2) such that the accuracy of an

optimal observer would drop by 5, 10, or 15% compared to the same condition with σexternal =

0 (no external uncertainty). We refer to these percentages as levels of external uncertainty. Sub-

jects completed 1500 trials divided equally over 12 blocks with short forced breaks between

blocks.

Imperfect Bayesian inference in visual perception
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Visual search with external uncertainty and unlimited display time

(conditions E-G)

These three conditions were identical to conditions B-D, except for the following two differ-

ences. First, stimuli were presented with an ellipse elongation of 0.97 and stayed on the screen

Table 2. Estimated sensory noise levels in the discrimination task (~s low, ~shigh) and the customized experimental parameters (μtarget, σexternal) in the visual search

task.

Level of external uncertainty (%) Subj ID ~s low(˚) ~shigh(˚) μtarget (˚) σexternal(˚)

0 1 7.1 4.6 8.0 0

0 2 5.5 2.0 5.0 0

0 3 6.4 2.3 5.8 0

0 4 3.8 1.8 3.8 0

0 5 4.6 2.2 4.5 0

0 6 4.0 3.3 5.0 0

0 7 3.1 1.3 2.9 0

0 8 6.8 2.8 6.4 0

0 9 3.3 2.4 3.9 0

0 10 4.5 3.0 5.1 0

5 11 4.4 3.4 5.3 2.4

5 12 3.7 3.0 4.5 2.1

5 13 4.2 2.6 4.6 2.1

5 14 3.9 2.2 4.1 1.9

5 15 4.3 3.1 4.9 2.3

5 16 6.5 2.4 5.9 2.8

5 17 6.2 3.3 6.4 2.9

5 18 3.8 2.0 3.9 1.8

5 19 5.1 3.0 5.4 2.5

5 20 4.6 2.6 4.8 2.2

10 1 7.1 4.6 8.0 5.6

10 2 5.5 2.0 5.0 3.4

10 3 6.4 2.3 5.8 4.1

10 4 3.8 1.8 3.8 2.6

10 5 4.6 2.2 4.5 3.1

10 6 4.0 3.3 5.0 3.4

10 7 3.1 1.3 2.9 2.1

10 8 6.8 2.8 6.4 4.3

10 9 3.3 2.4 3.9 2.7

10 10 4.5 3.0 5.1 3.4

15 21 6.2 2.6 5.9 5.8

15 22 7.7 2.4 6.8 6.7

15 23 6.9 4.2 7.5 7.1

15 24 6.7 4.8 7.9 7.5

15 25 7.5 4.5 8.2 7.8

15 26 5.1 3.6 5.8 5.7

15 27 4.1 2.3 4.3 4.3

15 28 8.1 3.3 7.7 7.4

15 29 7.2 5.2 8.5 8.1

15 30 7.1 3.3 6.9 6.8

https://doi.org/10.1371/journal.pcbi.1006465.t002
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until a response was provided, such that the sensory noise levels were reduced to a presumably

negligible level. Second, this condition contained 500 instead of 1500 trials. Each subject com-

pleted this condition before the equivalent condition with short display times.

Statistical analyses

All statistical tests were performed using the JASP software package [35]. Besides p values we

also report Bayes factors, which specify the ratio between how likely the data are under one

hypothesis (e.g., the null hypothesis) compared to how likely they are under an alternative

hypothesis. An advantage of Bayes factors is that they can be used to both reject and support a

hypothesis, whereas p values can only reject. All reported Bayes factors were computed using

the default settings for the effect size priors (Cauchy scale parameter = 0.707; r scale for fixed

effects = 0.5).

Models

This section describes the models that we will fit to the data from the visual search task. An

overview of these models is presented in Table 3.

Optimal Bayesian decision variable

Before introducing the models, we derive the Bayesian decision variable for our visual search

task. We denote target presence by a binary variable T (0 = absent, 1 = present), set size by N,

the stimulus values by s = {s1, s2, . . ., sN}, and the observer’s noisy observations of the stimulus

values by x = {x1, x2, . . ., xN}. We make the common assumption that each stimulus observa-

tion, xi, is corrupted by zero-mean Gaussian noise, i.e., xi = si+ε, where ε is a Gaussian random

variable with a mean of zero. The standard deviation of this noise distribution, denoted σi, is

assumed to depend on the reliability of the stimulus, which in our experiment differed across

locations (low vs. high reliability). The Bayesian observer reports “target present” if the poste-

rior probability of target presence exceeds that of target absence, p(T = 1|x)>p(T = 0|x). This

Table 3. Overview of models and their free parameters for the visual search task with short display time. Parame-

ters σlow and σhigh only exist when the models are applied to conditions with short display time; in conditions with

unlimited display time, the sensory noise level is fixed to a prespecified value (explained in Results).

Model ID Label Free parameters #

1 Flawless Bayesian σlow, σhigh, λ 3

2 Imperfect Bayesian σlow, σhigh, λ, μlate, σlate 5

3 Ignorant Bayesian σlow, σhigh, λ, σsingle 4

4 Imperfect ignorant Bayesian σlow, σhigh, λ, σsingle, μlate, σlate 6

5 Maximum of observations σlow, σhigh, λ, c 4

6 Minimum deviation from target σlow, σhigh, λ, c 4

7 Minkowski distance from target σlow, σhigh, λ, c, β 5

8 Mean of observations σlow, σhigh, λ, c 4

9 Variance of observations σlow, σhigh, λ, c 4

10 Imperfect maximum-of-observations σlow, σhigh, λ, c, σlate 5

11 Imperfect minimum-deviation-from-target σlow, σhigh, λ, c, σlate 5

12 Imperfect Minkowski-distance-from-target σlow, σhigh, λ, c, β, σlate 6

13 Imperfect mean-of-observations σlow, σhigh, λ, c, σlate 5

14 Imperfect variance-of-observations σlow, σhigh, λ, c, σlate 5

https://doi.org/10.1371/journal.pcbi.1006465.t003
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strategy is equivalent to reporting “target present” if the log posterior ratio exceeds 0,

dðxÞ � log
pðT ¼ 1jxÞ
pðT ¼ 0jxÞ

> 0;

where d(x) is referred to as the global decision variable. Under the generative model for our

task (S1 Fig) this evaluates to

dðxÞ ¼ log
1

N

XN

i¼1

dlocalðxiÞ

 !

; ð1Þ

where

dlocalðxiÞ ¼ exp
ðxi þ mTÞ

2
� ðxi � mTÞ

2

2ðs2
i þ s

2
externalÞ

� �

ð2Þ

is referred to as the local decision variable (see S1 Appendix for a derivation). Hence, the opti-

mal decision variable is the log of an average of local decision variables, each of which repre-

sents the evidence (posterior ratio) for target presence: dlocal(xi)<1 is evidence for a distractor

at location i and dlocal(xi)>1 is evidence for a target; a value of exactly 1 represents equal evi-

dence for both options. We mentioned earlier that optimal observers weight each cue by its

reliability. In (Eq 2), this weighting occurs through sensory noise levels σi: the larger σi, the

closer the local evidence associated to stimulus xi is to 1.

Note about the sensory noise distribution. Since our stimulus domain is circular, the

choice of a non-circular (Gaussian) noise distribution may seem poorly motivated. A theoreti-

cally better choice would have been to use a Von Mises distribution, as we have done in previ-

ous work (e.g., [15,19]). However, the sensory noise levels in our study are relatively low, in

which case the Gaussian is a near-perfect approximation to the Von Mises. Because of its ana-

lytical and computational convenience, we decided to use a Gaussian rather than Von Mises

noise distribution.

Model 1: The flawless Bayesian

The first model that we consider is the Bayesian observer without any imperfections beyond

sensory noise. This observer—which we refer to as the “flawless Bayesian”—is assumed to have

perfect knowledge of the statistical structure of the task and to use (Eq 1) to compute its deci-

sion variable. Moreover, the flawless Bayesian is assumed to compute without error. The mod-

el’s only free parameters are the sensory noise levels σi. In conditions with unlimited display

time, we fix σi either to 0 (no noise) or to a value obtained from a control experiment

(explained in Results). In conditions with short display time, we fit σi separately for stimuli

with low reliability (σlow) and stimuli with high reliability (σhigh). Heeding the concern that an

excess of flexibility in optimal models can make suboptimal behavior look optimal [23], we

constrain these parameters by imposing prior distributions on their values (see S1 Appendix).

Moreover, we refrain from adding a bias parameter to this model, for two reasons. First, while

many previous studies—including some of our own (e.g. [19,21])–have not considered it prob-

lematic to allow for bias when testing for optimality, being biased is strictly speaking a viola-

tion of optimality. Second, and more importantly, a response bias can be confounded with

biases caused by other, less obvious kinds of suboptimalities, as we will explain in our presenta-

tion of Model 2.
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Model 2: The imperfect Bayesian

Our second model is a Bayesian observer with imperfections in the computation of the deci-

sion variable. Such imperfections may produce suboptimalities in performance and could be

caused by many different factors, such as noise in the neural mechanisms that compute the

decision variable, incomplete knowledge of the statistical structure of the task, uncertainty

about the experimental parameters, and suboptimal cue weighting. To get an idea of how

computational imperfections affect a Bayesian observer’s decisions, we perform simulations

with imperfect variants of Model 1. The imperfections in these variants create errors in the

model’s decision variable, as compared to the decision variable of the flawless Bayesian

observer. We simulate a large number of trials and find that for all tested imperfections, the

distribution of this error is reasonably well approximated by a Gaussian distribution (Fig 2).

Importantly, the mean of this Gaussian is not always zero, which indicates that computational

imperfections may produce a systematic error in the decision variable, i.e., a bias. Since this

computational bias is indistinguishable from a simple response bias, the two can easily be con-

founded, which is the main reason why we did not include a response bias in the flawless

Bayesian model.

The finding that different kinds of suboptimality produce similar errors in the decision var-

iable implies that it will be difficult to distinguish between them in model comparison. How-

ever, the upside of this similarity is that it allows us to test for computational imperfections in

a rather general way: instead of implementing a separate model for each possible computa-

tional imperfection, we can test for a range of different imperfections by using a single model

with Gaussian noise on the optimal decision variable. We implement this “imperfect Bayesian”

model by adding a noise term η to (Eq 1),

dðxÞ ¼ log
1

N

XN

i¼1

dlocalðxiÞ

 !

þ Z: ð3Þ

We denote the mean (bias) and standard deviation of this “late” noise by μlate and σlate,

respectively, which are fitted as free parameters.

Models 3 and 4: The ignorant Bayesian

The first two models weight each stimulus by its reliability, which is a hallmark of Bayesian

observers. Model 3 is a variant that ignores differences in cue reliabilities and instead weighs

them equally. In this model, (Eq 2) is replaced with

dlocalðxiÞ ¼ exp
ðxi þ mTÞ

2
� ðxi � mTÞ

2

2ðs2
single þ s

2
externalÞ

" #

; ð4Þ

where σsingle is a free parameter that determines the weight assigned to every stimulus. For lack

of a better term, we refer to this model as the “ignorant Bayesian”. Model 4 is a variant of this

model in which we add computational imperfections in the same way as in Model 2, i.e., by

adding biased Gaussian noise to the global decision variable.

Models 5–9: Heuristic models

In Models 1–4, decisions were made based on the optimal decision variable or an impover-

ished variant of it. We next introduce five models with heuristic decision strategies. Just as in

the Bayesian models, the decision rule in these models consists of comparing a decision vari-

able d(x) with some criterion c. However, d(x) is now computed using simple heuristics rather
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than being derived from Bayesian decision theory. Moreover, criterion c is fitted as a free

parameter in the heuristic models, while in the Bayesian models the optimal criterion was 0 by

construction.

The first heuristic model that we consider uses the maximum-of-output or “max” decision

rule, which has its origin in signal detection theory [36] and is a commonly used heuristic in

models of visual search (e.g., [16,37–39]). In the present task, the rationale is that since target

orientations are on average larger than distractor orientations, one might perform well by

reporting “target present” whenever the maximum observation, xi, exceeds some threshold, c.
The decision variable of the Max model is thus simply the maximum stimulus observation,

dðxÞ ¼ max xi:

The next two heuristic models make decisions based on how much the stimulus observa-

tions deviate from the expected target value, which on average is smaller when a target is pres-

ent. Model 6 uses the minimum absolute deviation as its decision variable,

dðxÞ ¼ minjxi � mtargetj;

which again is compared with a decision criterion c. Similarly, Model 7 uses the Minkowski

Fig 2. Simulated effects of four computational imperfections. (A) Schematic illustration of a single trial in the simulation that was aimed at assessing how

computational imperfections affect the optimal observer’s decision variable. On each trial, a stimulus set s and stimulus observations x were drawn from the

generative model for the visual search task with 10% external uncertainty. Next, x was provided as input to the Flawless Bayesian model and to a variant of this

model with a computational imperfection (e.g., a wrong belief about experimental parameter σexternal). Both models produce a decision variable, d(x). We denote

the difference between these two decision variables by Δd(x), which can be thought of as a computational error. A total of 1 million trials were simulated using four

different types of computational imperfection: (1) Gaussian noise on the local decision variables; (2) an overestimated value of σexternal; (3) overestimated values of

σlow and σhigh; (4) item-to-item and trial-to-trial noise on σlow and σhigh. (B) The distribution of Δd(x) under each simulated computational imperfection (gray

areas). In all four cases, this distribution is reasonably well approximated by a Gaussian distribution (black curves). The percentages indicate the accuracy loss

caused by the computational imperfection; parameters μ and σ indicate the mean and standard deviation of the Gaussian fitted to each distribution. (C) The

distribution of Δd(x) in a model that contains all four tested imperfections simultaneously.

https://doi.org/10.1371/journal.pcbi.1006465.g002
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distance between any stimulus observation and the expected target value as its decision vari-

able,

dðxÞ ¼
XN

i¼1

xi � mtarget

�
�
�

�
�
�
b

 !1=b

;

where β is a free parameter. Since Models 6 and 7 are both based on absolute deviations from

the target, the sign of the deviation does not matter for the amount of evidence that an obser-

vation gives for target presence. This differs from the decision strategy in the Bayesian models,

where a deviation in the direction of the distractor always constitutes less evidence for a target

than a deviation in the direction away from the distractor.

The next and final two heuristics are inspired by previous findings that the visual system

represents summary statistics of the stimuli that it observes, including their mean and variance

[40–42]. These statistics could be used to solve detection tasks of the kind used in our experi-

ment, where both the mean and variance of the stimulus observations are expected to be larger

on trials with a target compared to trials without a target. Therefore, Model 8 uses the mean of

observations as the decision variable,

dðxÞ ¼
1

N

XN

i¼1

xi;

and Model 9 uses the variance,

dðxÞ ¼
1

N

XN

i¼1

ðxi � �xÞ2;

where �x is the average of the stimulus observations.

Free parameters. Just as in the Bayesian models, sensory noise levels σlow and σhigh are

fitted as free parameters. In addition, since heuristic strategies do not dictate the value of the

decision criterion, c, it is fitted as a free parameter as well (in Bayesian models, the decision

criterion is 0 by design). The Minkowski model has an additional free parameter β. We fit

all these parameters in an entirely unconstrained way. This means that we give more flexi-

bility to the heuristic models than to the Bayesian models, in which parameters are con-

strained by imposing prior distributions. This way, we ensure that if we find evidence for

Bayesian models, then it is unlikely to be due to them being more flexible than alternative

models.

Models 10–14: Imperfect heuristic models

The final five models that we consider are imperfect variants of the heuristic models. In these

models, the decision variable is corrupted in the same way as in the imperfect Bayesian models.

However, since bias in heuristic models is already captured in the criterion value, c, we fix μlate

to 0 and only fit σlate as a free parameter.

Lapse rate

Models of perceptual decision-making tasks often include a lapse rate to account for ran-

dom guesses caused by attentional lapses. In such models, it is assumed that responses on

some of the trials were the result of guessing rather than a decision strategy. The lapse rate

parameter specifies the estimated proportion of guessing trials. If we do not include a lapse

rate in our models, then we run the risk of underestimating how good the subjects’ decision
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strategies were, because guessing behavior can then only be accounted for as suboptimalities

in their decision strategies. On the other hand, if we do include a lapse rate, then we give

models a possibility to explain away decision suboptimalities as lapses, which brings along

the opposite risk: we might overestimate how good subjects’ decision strategies were. In an

attempt to minimize both risks, we include a lapse rate in all models, but in the Bayesian

models we constrain this parameter by imposing a prior distribution on its values (see S1

Appendix).

Model fitting and model comparison

We use an adaptive Bayesian optimization method [43] to find maximum-likelihood estimates

of model parameters, at the level of individual subjects. Model evidence is measured as the

Akaike Information Criterion [44] and interpreted using the rules of thumb provided by Burn-

ham & Anderson [45]. We performed a model recovery analysis [46] to verify that the models

make sufficiently diverging predictions to distinguish them in a model comparison (see S2

Fig).

Results

Discrimination task

Under the assumption that stimulus observations are corrupted by Gaussian noise, the pre-

dicted proportion of “clockwise” responses in the discrimination task is a cumulative Gauss-

ian function of stimulus orientation. We refer to the standard deviation of this Gaussian as

the sensory noise level. To verify that differences in stimulus elongation caused differences

in sensory noise levels, we fitted two cumulative Gaussian models to the data. In the first

model, the noise level is independent of ellipse elongation and fitted as a single free parame-

ter. In the second model, the sensory noise levels are fitted as separate parameters for the

low- and high-reliability stimuli, which we denote by ~s low and ~shigh, respectively. The second

model accounts well for the data (Fig 1B) and model comparison favors this model for every

subject (ΔAIC range: 0.50 to 22.3; mean±sem: 8.6±1.3). Moreover, for every subject the esti-

mated noise level is higher for the low-reliability stimulus than for the high-reliability stimu-

lus (Table 2). Hence, the stimulus-reliability manipulation works as intended. We use noise

estimates ~s low and ~shigh to customize the target and distractor distributions in the visual

search experiment (Table 2) and to constrain the Bayesian models fitted to the data from that

experiment (S1 Appendix).

While previous studies (e.g., [47]) have reported that performance on discrimination tasks

is sometimes better for stimuli at the vertical meridian (“north”/“south” locations) than for sti-

muli at the horizontal meridian (“east”/“west” locations), we do not find evidence for such an

effect in the present experiment. Performance differed little across locations, ranging from

74.3±1.1% correct at the “east” location to 75.0±1.0% at the “north” location. A Bayesian one-

way ANOVA provides strong evidence for the null hypothesis of there being no effect (BF01 =

20.5, p = .97).

Visual search with unlimited display time

We assume for the moment that sensory noise in the visual search conditions with unlimited

display time was negligible, i.e., σi = 0. Under this assumption, the stimulus observations are

identical to the true stimulus values, x = s, which allows us to write the optimal decision
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variable, (Eq 1), directly as a function of s,

dðsÞ ¼ log
1

N

XN

i¼1

exp
ðsi þ mtargetÞ

2
� ðsi � mtargetÞ

2

2s2
external

" # !

: ð5Þ

Since there are no unknowns in this equation, we can compute the optimal decision vari-

able for each trial that was presented to a subject. The flawless Bayesian responds “target pres-

ent” on each trial with d(s)>0 and “target absent” otherwise. Hence, if subjects are optimal,

Fig 3. Results from the visual search conditions with unlimited display time. (A) Left: AIC-based model comparison at the level of single subjects. Each

column is a subject and each row is a model. The best model for each subject is indicated in dark blue (ΔAIC = 0). Right: Subject-averaged AIC values relative to

the overall best model. The red dashed line indicates the ΔAIC�10, which is interpreted as “no support”. (B) The subject data (black markers) are well accounted

for by the “Imperfect Bayesian” and “Imperfect Max” models (black curves; the fits of both models are visually indistinguishable). Note that the distribution of d
(s) (purple areas) becomes more concentrated around zero as the level of external uncertainty increases, due to the evidence generally being weaker in the tasks

with more external uncertainty. (C) In all three conditions, the empirical d’ values (black) are lower than the values predicted by the Flawless Bayesian model

(red). The average ratio between the d’ values is 0.834±0.017.

https://doi.org/10.1371/journal.pcbi.1006465.g003
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then their proportion of “target present” responses should be a step function of d(s), transi-

tioning from 0 to 1 at d(s) = 0. In all three conditions, subjects clearly deviate from this predic-

tion (Fig 3B, circles).

Model fits. To obtain insight into the possible nature of this apparent suboptimality, we

fit the models listed in Table 3 to the individual datasets. Assuming that sensory noise is absent

in these conditions, we set σi = 0 for all stimuli. Models 3 and 4 are excluded from the analysis,

because they are identical to Models 1 and 2, respectively, when there is no sensory noise.

Model comparison (Fig 3A) selects the Imperfect Max model as the preferred model, closely

followed by the Imperfect Bayesian model (ΔAIC = 4.4±1.5). Both models account well for the

data (Fig 3B, curves) and all other models are rejected (ΔAIC�48.0±3.1 relative to the selected

model). The slight advantage of the Max model in model comparison seems to be entirely due

to its flexibility in fitting the lapse rate parameter: when constraining this parameter in the

same way as in the Bayesian model, the difference changes to ΔAIC = 2.7±2.1 in favor of the

Bayesian model.

We draw three conclusions from these model comparison results. First, the Max and Bayes-

ian models are indistinguishable in these conditions (which was expected, as explained below).

Second, the results provide strong evidence against the other four heuristics as well as against

the flawless Bayesian. Third, whichever decision strategy was used, it seems that there were

computational imperfections in its execution. Model comparison using cross validation

instead of AIC gives the same results and conclusion (S3 Fig).

Optimality index. While the above analysis suggests a deviation from optimality, it does

not quantify the magnitude of this deviation. To estimate this magnitude, we introduce an

optimality index I based on sensitivity indices,

I ¼
d 0empirical

d 0optimal
: ð6Þ

The numerator is the empirical sensitivity index, which we compute as the difference

between the z-scores of the hit and false alarm rates in the subject data. The denominator is the

sensitivity index of the optimal observer, which we compute in the same way, but based on

simulated response data from the Flawless Bayesian model. In these simulations, we set the val-

ues of μtarget and σexternal to the subject’s customized values (Table 2) and lapse rate λ to the

maximum-likelihood estimate of the best-fitting model.

The subject-averaged optimality index across all three conditions is 0.834±0.017 (Fig 3C,

bottom), which corresponds to a deviation of 16.6±1.7% from optimal. A Bayesian one-way

ANOVA provides moderate evidence against the hypothesis that the optimality index depends

on the level of external uncertainty (BF01 = 4.03; p = .79).

Accounting for possible sensory noise. Despite the unlimited display time, it is possible

—and perhaps even likely—that there was still some noise in the subjects’ encoding of stimulus

orientations. If that is the case, then our assumption σi = 0 was wrong and the above analysis

will have underestimated the optimality index. Unfortunately, we cannot fit σi as a free param-

eter, because that creates identifiability problems in models with a σlate parameter. Therefore,

we instead estimate it using a separate experiment. This control experiment is identical to the

discrimination experiment (Fig 1A), except that the stimulus has an ellipse elongation of 0.97

and stays on the screen until a response is given. By fitting a cumulative Gaussian to the data

from twelve (new) observers, we find an estimate σi = 0.875±0.097.

We fit the models again, but now with σi fixed to 0.875 instead of 0. Model comparison

gives very similar results as before: the imperfect variants of the Max and Bayesian models are

very close to each other (ΔAIC = 5.0±1.5 in favor of the Max model) and none of the other
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models is supported (ΔAIC>47.8±8.2 relative to the best-fitting model). However, we now

find a slightly higher optimality index, I = 0.879±0.019, which corresponds to a 12.1±1.9%

deviation from optimal. A Bayesian one-way ANOVA again suggests that there is no effect of

the level of external uncertainty on the optimality index (BF01 = 2.40; p = .36).

Visual search with short display times

Next, we fit the models to the data from the conditions with short display times. Model com-

parison (Fig 4A) selects the Imperfect Bayesian as the preferred model and rejects all other

models with large margins (ΔAIC�19.6±4.0). This result is consistent with the results above,

except that both Max models are now convincingly rejected. The main conclusion that we

draw from this model-comparison result is that subjects neither seem to behave optimally, nor

do they seem to use a heuristic decision strategy. Instead, their decisions seem to be based on

Bayesian principles that are implemented or executed imperfectly. Model comparison using

cross-validation gives near-identical results (S3 Fig).

The reason why the Max and Bayesian model were tied in the conditions with unlimited

display time is that they make near-identical predictions when all stimuli have the same reli-

ability, as we have observed in earlier work [48]. Therefore, it is important to use mixed-reli-

ability designs when testing these two models against each other: while reliability-based

weighting is an inherent property of Bayesian decision making, there is no natural way to

incorporate such weighting in a Max model. Our finding that only a Bayesian model accounts

well for data from mixed-reliability conditions strongly suggests that humans take stimulus

reliability into account during perceptual decision making.

It is worth noting that it is unlikely that the superiority of the Imperfect Bayesian was due to

it being overly flexible. First, it does not have more parameters than most of the heuristic mod-

els (Table 3). Second, while parameters in the heuristic models were entirely unconstrained,

we imposed prior distribution on parameters of the Bayesian models. Third, a model recovery

analysis (S2 Fig) showed that the Imperfect Bayesian is never selected when data are generated

from one of the other 13 models.

Optimality index. We use the earlier introduced optimality index, (Eq 6), to estimate

how much subjects deviate from optimality. We again use the Flawless Bayesian to compute

d0optimal, with σlow, σhigh, and lapse rate λ set to the subject’s maximum-likelihood estimates in

the best-fitting model. Averaged across all subjects in the conditions with brief display times,

we find I = 0.808±0.037, which corresponds to a 19.2±3.7% deviation from optimal perfor-

mance (Fig 4C). A one-way ANOVA reveals moderate evidence against an effect of the level of

external uncertainty (BF01 = 5.05; p = .70). A two-way Bayesian ANOVA that also includes the

optimality indices from the conditions with unlimited display time reveals moderate evidence

against an effect of the level of internal uncertainty (BFinclusion = 0.20; p = .47) and strong evi-

dence against an effect of the level of external uncertainty (BFinclusion = 0.07; p = .79). Averaged

across all 7 experimental conditions, we find an optimality index of 0.819±0.022, which corre-

sponds to an 18.1±2.2% deviation from optimality.

Comparison with effects of sensory noise

The optimality indices reported above estimate how much performance was lost due to

computational imperfections. For comparison, we also estimate performance loss caused by

sensory noise. To this end, we compute a variant of the earlier introduced optimality index,

(Eq 6). In this variant, we “turn off” the sensory noise when computing d0optimal, by fixing σi to 0.

This new optimality index expresses empirical performance relative to an optimal observer

without sensory noise. We refer to our original index as the “relative optimality” index and to
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Fig 4. Results from the visual search conditions with short display time. (A) Left: AIC-based model comparison at the level of single subjects. Each column is a

subject and each row is a model. The best model for each subject is indicated in dark blue (ΔAIC = 0). Right: Subject-averaged AIC values relative to the overall best

model. The red dashed line indicates the ΔAIC�10, which is interpreted as “no support”. (B) False-alarm rates (red) and hit rates conditioned on whether the target

had high reliability (blue) or low reliability (green). The subject data (markers) are well accounted for by the Imperfect Bayesian (curves). (C) In all four conditions,

the empirical d’ values (black) are lower than the values predicted by the Flawless Bayesian model (red). The average ratio between the d’ values is 0.808±0.037.

https://doi.org/10.1371/journal.pcbi.1006465.g004
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this new index as the “absolute optimality” index [3]. The difference between these two indices

gives an estimate of the amount of optimality loss due to sensory noise. To illustrate this, con-

sider an example in which a subject has a relative optimality index Irelative = 0.80 and an abso-

lute optimality index Iabsolute = 0.70. In this example, the subject has an optimality loss of 0.20

when sensory noise is not considered to be a form of suboptimality and a loss of 0.30 when it

is. We would in this case conclude that sensory noise accounted for 33.3% of the optimality

loss (0.10 out of a total loss of 0.30) and computational imperfections for 66.7% (0.20 out of

0.30).

When applying this method to the data from conditions with unlimited display time, we

find that computational imperfections account for an estimated 92.6±3.8% of the performance

loss and sensory noise for the remaining 7.4±3.8%. In conditions with short display time, we

find that computational imperfections account for 27.0±5.1% of the performance loss and sen-

sory noise for 73.0±5.1%. As expected, when sensory noise levels are low, performance loss is

almost entirely attributed to computational imperfections. Nevertheless, even in conditions

with considerable levels of sensory noise, we estimate that almost a third of the performance

loss was due to computational imperfections.

Analysis of parameter estimates

Next, we have a look at the best-fitting parameter estimates in the Imperfect Bayesian model.

One-way ANOVAs suggest that there is an effect of the level of external uncertainty on both

σlow (BF10 = 9.06; p = .005) and σhigh (BF10 = 1.78; p = .042). Visual inspection of the parameter

estimates (Fig 5) reveals that this is mainly due to the condition with the highest level of exter-

nal uncertainty, in which the sensory noise estimates are visibly higher than in the other condi-

tions. However, the stimuli were extremely similar between the different conditions, which

makes it implausible that there were large differences in sensory noise levels. Hence, despite

our efforts to constrain these parameters, they may still have been overestimated in the condi-

tion with the highest level of external uncertainty. This means that we might have underesti-

mated the magnitude of the deviation from optimality in that condition. For the two

parameters that control the late noise distribution, we find neither an effect of the level of

internal uncertainty (BFinclusion = 0.25 for both μlate and σlate) nor of the level of external uncer-

tainty (μlate: BFinclusion = 0.52; σlate: BFinclusion = 0.10). Finally, for the lapse rate parameter we

find evidence against an effect of the level of internal uncertainty (BFinclusion = 0.56) and in

favor of an effect of the level of external uncertainty (BFinclusion = 1.22). However, the evidence

for this effect is very weak and the estimated lapse rates are very small in all conditions, so we

do not consider this finding to be of any significance.

Reanalysis without pop-out trials

While the use of mixed reliabilities is a powerful way to test predictions that are unique to

Bayesian models, it has the side effect that a stimulus may “pop out” when its reliability differs

from that of all other stimuli. Stimuli that pop out may inadvertently draw attention and be

given more weight, which would cause a suboptimality in performance, because the optimal

weight is entirely determined by the reliability of a stimulus. We find that accuracy was slightly

higher on trials in which the target popped out (72.5% correct) than on trials in which it did

not (69.4% correct), which suggests that pop-out items indeed drew subjects’ attention. A t-

test supports that there is a difference in accuracy between these two groups of trials (BF10 =

4.92; p = .008). To verify that the deviation from optimality in the conditions with short display

time were not entirely caused by this pop-out effect, we fit the models again after filtering out

pop-out trials. In this analysis, we thus only consider trials with 0, 2, or 4 high-reliability
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stimuli (60% of the data). Note that only a third of the trials in this modified dataset has mixed

reliability.

As before, we find that model comparison selects the Imperfect Bayesian as the preferred

model. However, the difference with the Max models is smaller now (Flawless Max:

ΔAIC = 7.0±2.2; Imperfect Max: ΔAIC = 9.3±2.3; the difference with all other heuristic models

is still large, ΔAIC�48.8±7.9). This was to be expected, because we filtered out most of the

mixed-reliability trials and we already established that the Max and Bayesian decision rules are

indistinguishable on single-reliability data. When we constrain the parameters in the Max

model in the same way as in the Bayesian models—which makes a fairer comparison—the

Imperfect Bayesian outperforms both Max models with decent margins (Flawless Max:

ΔAIC = 10.3±2.5; Imperfect Max: ΔAIC = 15.6±2.6). The optimality index in this analysis is

0.797±0.026, which is nearly identical to the value we obtained in the analysis that included all

trials (0.808±0.037). Indeed, a t-test provides moderate evidence for the null hypothesis that

there is no difference (BF01 = 3.58, p = .52). Altogether, our conclusions are largely the same

under inclusion and exclusion of pop-out trials, which suggests that pop-out effects play a rela-

tively minor role in explaining the identified suboptimalities.

Reanalysis without a lapse rate

So far, we have included a lapse rate in all our models. To assess whether our conclusions

would have been different if we had not included a lapse rate, we rerun all analyses with lapse

rates fixed to 0. The model comparison results are very similar to the results reported above: in

conditions with unlimited display time, the imperfect Max and Bayesian models are indistin-

guishable (ΔAIC = 1.29±0.95 in favor of Bayes) and all other models are strongly rejected

(ΔAIC�96±12); in conditions with short display time, the imperfect Bayesian is selected as the

preferred model and all other models are again strongly rejected (ΔAIC�32.2±4.4). However,

the optimality indices are now slightly lower: I = 0.876±0.018 (13.3±1.8% deviation from opti-

mality) in conditions with unlimited display time and I = 0.796±0.037 (20.4±3.7% deviation

from optimality) in conditions with brief display time. This was to be expected, because errors

that were explained as lapses in our original analysis can now only be explained by suboptimal-

ities in the decision strategy. As before, a two-way Bayesian ANOVA suggests that there is no

effect of the level of external uncertainty (BFinclusion = 0.167) nor of the level of internal uncer-

tainty (BFinclusion = 0.842) on the optimality index. Altogether, we conclude that removing the

lapse rate from the models does not significantly change our conclusions.

Fig 5. Maximum likelihood estimates of the parameters in the imperfect Bayesian model. The reported parameters for conditions with unlimited display

time were obtained with the model variant in which σi was fixed to 0.875.

https://doi.org/10.1371/journal.pcbi.1006465.g005
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Reanalysis without constraints on model parameters

Finally, we check what happens to the results when we remove the constraints on the parame-

ters of the Bayesian models, by refitting Models 1–4 without prior distributions on parameters

σlow, σhigh, and λ. The model comparison result is again very similar to our previous results: in

conditions with unlimited display time, the imperfect Max and Bayesian models are indistin-

guishable (ΔAIC = 1.4±1.1 in favor of Bayes) and all other models are strongly rejected

(ΔAIC�49.4±3.7); in conditions with short display time, the imperfect Bayesian model con-

vincingly outperforms all other models, including the Max models (ΔAIC�21.9±3.9). Also, we

again find no evidence for an effect of the level of internal or external uncertainty on the opti-

mality index (BFinclusion = 0.56 and 0.19, respectively). However, the estimated deviation from

optimality is now 11.7±2.1%, which is substantially lower than the 18.1±2.2% that we found

with constrained parameter fits. This was to be expected, because without parameter con-

straints, models may explain away some of the computational suboptimalities by overestimat-

ing the lapse rate and/or sensory noise levels. Indeed, the average estimated lapse rate is now

13.7±2.2%, compared to 3.7±1.1% in the constrained fits (BF+0 = 582; p<.001). For some sub-

jects the estimated lapse rate is now even over 50%, which seems unrealistically high. Hence, it

appears that lapse rates are overestimated in the unconstrained fit. The estimated sensory

noise levels, on the other hand, are very similar to the estimates obtained with the constrained

fitting method (σlow = 6.58±0.55 vs. 6.75±0.54; σhigh = 2.67±0.38 vs. 3.35±0.37). Indeed, a t-test

supports the hypothesis that there is no difference (BF01 = 4.43; p = 0.44). We speculate that

the richness of data from mixed-reliability experiments is itself a sufficient constraint on the

parameter values, in particular when subjects use a decision strategy that is sensitive to reliabil-

ity differences between stimuli.

Comparison with a Bayesian sampling model

A summary of our results so far is presented in Table 4. Taken together, these results strongly

suggest that our experimental subjects used a strategy that resembles the Bayesian one, but

with imperfections in its execution. While model identifiability problems (Fig 2) discouraged

us from testing specific theories about the origin of such imperfections, there is one proposal

that we believe is worth testing explicitly here, because it has some precedence in the literature.

It has been argued that instead of performing exact Bayesian inference, humans may be draw-

ing samples from the posterior distribution, which often is computationally cheaper and more

tractable [49–54]. In the limit of an unlimited number of samples, Bayesian sampling is equiva-

lent to exact Bayesian inference. However, for finite numbers of samples, Bayesian sampling

leads to imperfections and biases in the observer’s decisions.

To test whether Bayesian sampling may explain the decision imperfections that we observed

in our data, we implemented a variant of the Flawless Bayesian model in which d(x) is trans-

formed into the posterior probabilities for “target presence” and “target absent” through

Table 4. Summary of results. Models 2 and 10 are the Imperfect Bayesian and Imperfect Max models, respectively. Bayes factor BFinclusion indicates whether there is evi-

dence for an effect of internal or external uncertainty on the optimality index. All Bayes factors are smaller than 1, indicating evidence against an effect.

Preferred model(s) Optimality index, I Two-way ANOVA results on I (BFinclusion)

t =1 t = 67ms t =1 t = 67ms All Internal uncertainty External uncertainty

Main analysis 2, 10 2 0.834 0.808 0.818 0.200 0.076

No pop-out trials 2, 10 2 0.827 0.770 0.794 0.306 0.134

No lapse rate 2, 10 2 0.867 0.796 0.827 0.487 0.191

No parameter constraints 2, 10 2 0.922 0.854 0.883 0.565 0.183

https://doi.org/10.1371/journal.pcbi.1006465.t004
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pðT ¼ 1jxÞ ¼ edðxÞ
1þedðxÞ and pðT ¼ 0jxÞ ¼ 1 � pðT ¼ 1jxÞ. While the Flawless Bayesian reports

“target present” whenever p(T = 1|x)>p(T = 0|x), the Bayesian sampling model draws n sam-

ples from a Bernoulli distribution with a success rate equal to p(T = 1|x) and reports “target

present” when the number of success samples exceeds the number of failures, where n is a free

integer parameter. We find that the Bayesian sampling model convincingly outperforms the

Flawless Bayesian (Model 1) with an AIC difference of 20.6±3.2. However, it does not account

for the data as well as the Imperfect Bayesian (Model 2) does (ΔAIC = 20.3±8.4 in favor of the

Imperfect Bayesian). Therefore, we conclude that while Bayesian sampling may explain some

of the decision imperfections, it cannot explain all of it.

Discussion

In this study we re-examined optimality of human perception by using a standard visual search

task. In contrast to previous claims that humans perform near-optimally on this task [13–16],

we found no support for the Flawless Bayesian model. More specifically, we estimated that

empirical performance deviated on average 18.1% from optimal performance. Interestingly,

the estimated magnitude of this deviation did not depend on the level of internal uncertainty,

nor on the level of external uncertainty. This stability may be a sign that the estimates were

accurate, which would mean that our method successfully dissociated computational sources

of suboptimality from sensory sources. Our data are best described by a model that is based on

Bayesian principles, but with imperfections in the implementation of these principles. We

believe that such “Imperfect Bayesian” models can provide a fruitful middle ground in the

debate between Bayesian and anti-Bayesian views on human perception.

Suboptimal behavior does not necessarily imply heuristic-based decision

making

Deviations from optimality are often taken as evidence for heuristic decision making. How-

ever, this is not necessarily true: Bayesian observers can also be suboptimal. In particular, it has

been argued that imprecisions in neural systems and the need to use deterministic approxima-

tions in complex computations may be the main reason why humans are unable to perform

optimally on many tasks [27–31]. Such imperfections are orthogonal to the underlying deci-

sion strategy, because they may apply to both Bayesian and heuristic decision strategies. How-

ever, most previous work has only compared models with the optimal decision strategy against

models with heuristic strategies, without testing for computational imprecisions. Claims of

optimality made in those works are probably too strong, because evidence for a Bayesian deci-

sion strategy does not imply optimality. To avoid such overly strong claims, we advocate using

a factorial modeling approach by crossing the decision strategy (Bayesian vs. heuristic-based

strategies) with the absence or presence of computational imprecisions. Such an approach can

decompose suboptimality into two different sources: using a fundamentally wrong decision

strategy and having imperfections in the execution of this strategy. Only evidence for Bayesian

decision-making without imprecisions should be considered as evidence for optimal behavior.

Decomposing sources of suboptimality

It has recently been argued that instead of focusing on the binary question whether or not a

particular behavior is optimal, it would be more fruitful to start building process models that

precisely characterize the sources that make humans prone to errors [23]. The approach that

we took here can be seen as a step in this direction, as it aims at distinguishing between differ-

ent kinds of suboptimality and quantifying the amount of performance loss caused by each of
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them. A similar approach was recently developed by Drugowitsch and colleagues [27], who

examined sources of suboptimality in a visual categorization task. They estimated that about

90% of the performance loss was caused by imprecisions in mental inference and the remain-

ing 10% by stochasticity in sensory input and response selection. In our visual search task, we

found a numerically similar contribution of computational imprecisions in the conditions

with unlimited display time (92.6%). However, in the conditions with brief display time, we

found that only about a third of the optimality loss was due to computational imprecisions.

This can be understood by considering that sensory noise levels were probably higher in our

experiment, due to a difference in stimulus presentation time (67 ms to encode four stimuli in

our study vs. 333 ms per stimulus in the study by Drugowitsch et al.). We tried to further

decompose suboptimalities into more specific sources, such as “noise in the computation of

local decision variables”, “incorrect knowledge of the experimental parameters”, and “subopti-

mal cue weighting”. However, as demonstrated by the simulation results presented in Fig 2,

different types of suboptimalities have near-identical effects on the response data, due to

which we were unable to reliably distinguish between them using model comparison. Future

studies may try to solve this model-identifiability problem by using experimental paradigms

that provide a richer kind of behavioral data to further constrain the models (e.g., by collecting

confidence ratings [55,56]). Moreover, we believe that it may be fruitful to further investigate

the Bayesian sampling hypothesis as a possible source of suboptimality in our task. Although

we found that Bayesian sampling alone cannot explain the observed decision imperfections,

we did not test any models that combine sampling with other sources of suboptimality.

The importance of using mixed reliability designs

While reliability-based cue weighting is an inherent property of Bayesian observers, heuristic

models do not have a natural way of taking reliability into account. Therefore, within-display

manipulation of stimulus reliability provides a strong tool to distinguish between the Bayesian

model and heuristic-based models in model comparison. Indeed, we found that we were

unable to distinguish between the Bayesian and Max models in conditions with fixed stimulus

reliability, while the Max model was convincingly rejected in conditions with mixed reliabili-

ties. These results strongly suggest that humans—just like Bayesians—take into account stimu-

lus reliability during perceptual decision making. This finding is consistent with previous

studies that have drawn a similar conclusion in the context of not only visual search [13], but

also categorization [18], change detection [19], and same/different discrimination [21] tasks.

However, unlike those previous studies, we do not interpret this finding as evidence for near-

optimality, because we also found evidence for substantial suboptimalities that are seemingly

caused by computational imperfections.

Suboptimality in perceptual decision making

Although reports of optimality have dominated perceptual decision-making literature, we are

certainly not the first to report evidence for suboptimalities. For example, numerous sensory

cue combination studies have reported overweighting of one of the sensory cues [57–64];

Bhardwaj et al. [65] found that visual search performance is suboptimal when stimuli are cor-

related; Ackermann and Landy [66] reported that subjects fail to maximize reward in a visual

search task with unequal rewards across target locations; and Qamar et al. [67] found that both

humans and monkeys performed suboptimally in a relatively simple visual categorization task.

However, none of those studies used the factorial modeling design that we proposed and,

therefore, could not distinguish between suboptimalities due to a fundamentally wrong deci-

sion strategy and suboptimalities due to computational precisions.
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Late noise in models of perceptual decision making

An important aspect of our analysis is that we included models with “late noise” on the deci-

sion variable. We are not the first to do so. An example of our own previous work—in which

we referred to it as “decision noise”—is the change detection study by Keshvari et al. [19],

where we found that inclusion of late noise did not substantially improve the model fits. How-

ever, sensory noise levels in that study were fitted in an entirely unconstrained way, while it is

conceivable that there was a trade-off between effects of noise on the decision variable and

effects of sensory noise on model predictions. Moreover, in that study we assumed random

variability in encoding precision, which a later study showed may be confounded with decision

noise [68]. Therefore, it is possible that computational imperfections in the study by Keshvari

et al. went unnoticed due to confounding them with sensory noise or variability in precision.

Another body of work that has considered noise on the decision variable are the studies by

Summerfield and colleagues (e.g., [69,70]). They have shown that in the presence of late noise,

subjects can—and often do—obtain performance benefits by using “robust averaging”, i.e.,

down-weighting outlier cues when computing the global decision variable. From an optimal-

observer perspective, our task can also be conceived of as an averaging task, even though the

averaging is over local posterior evidence values, (Eq 2), rather than directly over stimulus val-

ues. We performed simulations to examine whether robust averaging also gives performance

benefits in our task, but we did not find any evidence for this.

While late noise seems to be an important factor in explaining behavior on our visual search

task, it seems to play no role in explaining behavior on classical cue combination tasks [12,63].

There are two differences between these tasks that may explain the difference in findings. First,

subjects in our task had to combine four cues instead of two. Second, and perhaps more

importantly, the optimal decision rule in our task is substantially more complex: while opti-

mality on cue combination tasks can be achieved using only linear operations, our visual

search task required non-linear computations, (Eq 2). Previous work has suggested that infor-

mation processing in the human brain proceeds mostly by linear additive integration (e.g.,

[71,72]), which would lead to suboptimalities if the optimal strategy requires non-linear com-

putations. It would be interesting to investigate in future work whether subjects are perhaps

using linear approximations to optimal decision rules in complex tasks such as visual search.

The effect of external uncertainty on performance

A difference between most laboratory stimuli and naturalistic stimuli is that the former are

typically deterministic, while the latter are often probabilistic [32]. In the present study, we

mimicked the probabilistic character of naturalistic stimuli by adding external uncertainty.

While we are not the first to do so in a perceptual decision-making task (e.g., [27,67,73,74]),

we are unaware of any previous work that has systematically varied this level of uncertainty to

them. Moreover, previous work did not examine the relation between the magnitude of the

external uncertainty and the magnitude of deviations from optimality. None of our analyses

provided evidence that external uncertainty affects how much performance deviates from opti-

mality. This is somewhat surprising, because the stimulus distributions in our experiment

were arbitrary and entirely novel to our subjects. It is worth noting, however, that this robust-

ness of the degree of suboptimality under different stimulus conditions is similar to findings in

an earlier study by Acerbi, Vijayakumar, and Wolpert [54]. A possible explanation could be

that the brain may be familiar with Gaussian-like stimulus ambiguity and can therefore quickly

incorporate novel kinds of external uncertainty, as long as it follows a Gaussian distribution.

An interesting direction for future work would be to further investigate the relation between

different types of external uncertainty and optimality in human decision making.
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Supporting information

S1 Appendix. Supplementary methods.

(DOCX)

S1 Fig. Generative model for the visual search task. Circles represent random variables, rect-

angles represent constants, and arrows represent causal relationships. Gray shades represent

variables and constants that are under control of the experimenter. On each trial, N = 4 stimuli

are presented to the observer. A target is either absent (T = 0) or present (T = 1) among these

stimuli. Each location L � {1, 2, . . ., N} has equal probability of containing the target on target-

present trials. On target-absent trials, each stimulus orientation, si, is drawn from the distractor

distribution, which is a Gaussian with a mean −μtarget and a standard deviation σexternal. On tar-

get-present trials, the stimulus at the target location is drawn from a Gaussian distribution

with mean μtarget and standard deviation σexternal, while the remaining N−1 stimuli are drawn

from the distractor distribution. We assume that stimulus observations are corrupted by

Gaussian noise, such that each observation, xi, is a Gaussian random variable with mean si and

standard deviation σi.
(TIF)

S2 Fig. Model recovery results. Ten synthetic datasets were generated from each model, by

simulating its responses in trials from the condition with 10% external uncertainty. Each data-

set had the same number of trials as a subject dataset. Parameter values were drawn from a

multivariate Gaussian distribution with the same mean and covariance as the maximum-likeli-

hood estimates obtained from fitting subject data. Hence, the synthetic datasets had the same

size and similar statistics as empirical datasets. Each model was fitted to each of the 140 syn-

thetic datasets. The matrix shows for each generating model the average AIC value (across all

ten generated datasets from the model) relative to the best-fitting model. In each row, the over-

all best-fitting model is indicated with a red dot. In most cases, the generating model is the

best-fitting model (red dots on diagonal) and most other models are rejected. There are a few

wrong classifications (red dots off-diagonal), which indicates that some model pairs cannot

reliably be distinguished from each other. Importantly, the model that was most successful in

accounting for subject data—the Imperfect Bayesian model—never is selected as the preferred

model when data were generated from another model. Hence, it is unlikely that the success of

the Imperfect Bayesian model on empirical data was caused by it being overly flexible.

(TIF)

S3 Fig. Model comparison results based on five-fold cross validation. Each individual data-

set was fitted 5 times. In each of these fits, a different subset of 20% of the trials was left out.

The log likelihood of these left out data were computed using the maximum-likelihood esti-

mates obtained from fitting the other 80% of the data. We summed the 5 log likelihood

obtained for each subject to compute a single “cross-validated log likelihood” (CVLL). (A)

Results from fitting the conditions with unlimited display time. (B) Results from fitting the

conditions with brief display time.

(TIF)
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