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Radiomics is a novel image analysis technique, whereby voxel-level information is extracted from digital images and used to derive multiple
numerical quantifiers of shape and tissue character. Cardiac magnetic resonance (CMR) is the reference imaging modality for assessment
of cardiac structure and function. Conventional analysis of CMR scans is mostly reliant on qualitative image analysis and basic geometric
quantifiers. Small proof-of-concept studies have demonstrated the feasibility and superior diagnostic accuracy of CMR radiomics analysis
over conventional reporting. CMR radiomics has the potential to transform our approach to defining image phenotypes and, through this,
improve diagnostic accuracy, treatment selection, and prognostication. The purpose of this article is to provide an overview of radiomics
concepts for clinicians, with particular consideration of application to CMR. We will also review existing literature on CMR radiomics, dis-
cuss challenges, and consider directions for future work.
...................................................................................................................................................................................................

Keywords radiomics • texture analysis • cardiac magnetic resonance • image-based diagnosis • machine learning

Introduction

Cardiac magnetic resonance (CMR) is the reference imaging modality
for assessment of cardiac structure and function; accordingly, its use in
clinical practice is increasingly widespread. Clinical reporting of CMR is
mostly reliant on qualitative descriptors and basic geometric quanti-
fiers. Existing quantitative measures of tissue character, such as T1/T2
mapping are limited by ongoing technical challenges and poor discrim-
inatory power due to broad overlap between health and disease. As
such, currently, much of the information available from CMR images is
not optimally utilized. There are shortcomings with this approach. For
instance, through existing analysis approaches, it may not be possible
to distinguish with certainty between disease entities that appear mor-
phologically similar, such as hypertensive heart disease and hyper-
trophic cardiomyopathy (HCM) or athletic cardiac remodelling and
dilated cardiomyopathy. Such distinctions are important, as manage-
ment for these conditions is very different. Furthermore, our ability to
accurately predict important outcomes is suboptimal. For instance,

many patients with prophylactic intracardiac defibrillators based on
low ejection fraction never require therapies from their device,1 whilst
only 30% of sudden cardiac death patients would qualify for a primary
prevention device based on current guidelines.2 Therefore, novel
imaging biomarkers that improve the diagnostic accuracy and predict-
ive capabilities of CMR are needed and highly desirable.

Radiomics is a novel image analysis technique, whereby digital
images are converted to data that can be analysed to derive multiple
numerical quantifiers of shape and tissue character—referred to as
‘radiomics features’. It has been shown that disease conditions or clinic-
al outcomes may be identified with high accuracy based on the features
observed.3 Thus, radiomics features may be used as predictor variables
in statistical models for diagnosis or outcome prediction. Radiomics
models have had notable success in oncology, where their utility in
classification of tumours,4 prediction of treatment response,5,6 and
prognostication7 has been demonstrated in multiple cohorts.

Within cardiology, experience with radiomics is limited. Early
descriptions from echocardiography demonstrate the utility of
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radiomics models in distinguishing conditions such as cardiac amyl-
oid8 and haemochromatosis.9 However, application of radiomics to
echocardiography was halted due to difficulties with reproducibility.
More recently, there has been interest in application of radiomics
analysis to cardiac computed tomography images, where radiomics
analysis for characterization of coronary plaques and perivascular fat
has produced promising results.10,11 Limited proof-of-concept stud-
ies have demonstrated the feasibility and potential clinical value of
CMR radiomics.12–21 Radiomics analysis can be applied to existing
routinely acquired images and does not require dedicated acquisi-
tions or significant post-processing. As such, it has real potential to
transition into the routine clinical workflow as an adjunct to conven-
tional CMR measures. CMR radiomics has the potential to transform
our approach to defining image phenotypes, and through this, im-
prove diagnostic accuracy, treatment selection, and prognostication.

The purpose of this article is to provide an overview of radiomics
concepts for clinicians, with particular consideration of application to
CMR. We will review basic radiomics concepts and workflow
(Figure 7), existing literature on CMR radiomics, and discuss chal-
lenges and directions for future work.

The radiomics workflow

Image acquisition
Radiomics analysis can be applied to standard, routinely acquired clin-
ical images. There is no requirement for dedicated acquisitions or
imaging protocols. Any image from the CMR scan can be selected for
radiomics analysis; however, the short-axis stack is the most conveni-
ent as existing endocardial and epicardial contours can be used to de-
fine the regions of interest (ROI), avoiding extra segmentation steps.
Whilst still images are used for radiomics analysis, information relat-
ing to motion may be gauged through analysis of temporally related
images, e.g. analysis of images in end-systole and end-diastole, or as-
sessment of images from all phases of the cardiac cycle.

Volume segmentation
Once the image to be used is selected, the area for radiomics analysis
is defined by contouring an ROI. The ROI may be a limited area [a sin-
gle region of suspected abnormality within the left ventricular (LV)
myocardium] or multiple areas. Typically, we delineate the endocar-
dial and epicardial borders of the left ventricle and the endocardial
border of the right ventricular (RV) in one phase of the short-axis
stack—this defines the boundaries of the LV myocardium, and the
RV/LV blood pool (three areas, Figure 1). Once defined, you may
apply radiomics analysis to the any of these regions. As the radiomics
features are extracted from the defined areas, variations in contour-
ing that alter the ROI will change the values of the radiomics features.
Therefore, it is key to have a consistent contouring technique defined
through a standard operating procedure (SOP). Our approach is to
use standard epicardial and endocardial contouring of the ventricles
as would be used for conventional volume quantification according
to a previously described SOP.22 We advocate automated contour-
ing with limited manual correction as this produces the most repro-
ducible segmentation. Automated segmentation can also allow rapid
contouring of the entire cardiac cycle, which may yield more informa-
tion in comparison to analysis of a single image/slice or analysis at two

time points (e.g. end-systole/diastole). Automated segmentation is
now integrated into many commonly used CMR post-processing
packages and will likely become increasingly common-place with con-
tinued advancement of artificial intelligence technologies.

Radiomics feature extraction
Extraction of radiomics features from the segmented ROI can be per-
formed through dedicated pipelines developed by individual centres
or using open-source packages, such as Py-radiomics.23,24 Radiomics
features include numerical quantifiers of the geometry of the ROI,
the global signal intensity (SI) distribution, and the spatial complexity
of SIs within the segmented volume (Figure 2).

Radiomics shape features
Radiomics shape features quantify the 3D size and shape of the seg-
mented volume. Shape features are derived from an image mesh/
mask approximating the defined edges of the ROI,25 in our case, this
would be the endocardial contours (Figure 1). Radiomics shape fea-
tures include conventional indices (e.g. volume), as well as additional
parameters, such as surface area and dimensions in multiple planes.
There are also descriptors of the overall shape of the ROI, such as
compactness, sphericity, elongation, and flatness.

Radiomics signal intensity-based features
(texture analysis)
The remainder of the analysis is focused on describing the distribu-
tion and pattern of SIs within the segmented ROI, which is a slightly
more abstract concept in comparison to the shape analysis. It is
thought that the pattern of SIs in the ROI may reflect underlying tis-
sue characteristics which would indicate particular diseases. For in-
stance, a heterogeneous SI pattern in the myocardium may reflect
irregular arrangement of myofibrils which may in turn indicate under-
lying pathology such as HCM. The purpose of radiomics texture

Volume 

Surface area 

Surface area to volume ratio  

Sphericity 

Spherical Disproportion  

Compactness 

Max 3D diameter 

Max 2D diameter 

Major Axis 

Minor Axis 

Least Axis  

Elongation 

Flatness 

Figure 1 Image mesh derived from segmented volume and
selected radiomics shape features.a aAn image mask is derived from
contours of the ventricles in the short-axis cine stack. The mask is
an approximation to the 3D shape of the contour. In this example,
the blood pool of the right (purple) and left (yellow) ventricles, and
the left ventricular myocardium (turquoise) are represented.
Radiomics shape features are derived from these masks and include
conventional and more advanced geometric quantifiers.
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analysis is to recognize and quantitatively describe various SI patterns
within the selected ROI. This is achieved by numerically defining the
SIs within the segmented volume and describing observed patterns
using mathematical definitions. These SI-based texture features are
often given descriptive names such as ‘busyness’ or ‘randomness’ to
denote the underlying property they aim to represent. The ultimate
goal with radiomics modelling is to define unique SI patterns (radio-
mics signatures) for important cardiac diseases, which may be used
to improve diagnostic accuracy or perhaps allow automated gener-
ation of diagnoses in a manner that would not be possible through
qualitative inspection of images.

The first step to performing radiomics texture analysis is construc-
tion of a ‘SI matrix’, whereby each voxel within the ROI is assigned a
number (level/value) depending on the intensity of signal in that
voxel. The SI value for every voxel in the ROI is then tabulated to
form a simple matrix (Figure 3A). All SI-based radiomics features are
derived from analysis of the SI matrix.

Descriptors of global signal intensity

The most straightforward analysis of the SI matrix involves creating a
histogram of the SI levels identified in the ROI and the frequency with

which they are observed. From this, first-order histogram-based sta-
tistics can be computed (Figure 4). This includes simple descriptive
summary statistics, such as mean, median, and standard deviation, as
well as less familiar measures of skewness, kurtosis (pointiness), and
entropy (randomness or disorder). These histogram-based texture
features provide a global summary of the SIs within the segmented
volume; however, they do not describe the relationship of the voxel
SIs to each other.

Descriptors of spatial distribution of signal intensities

In order to consider the relationship of neighbouring voxel SIs, more
complex mathematical approaches to analysis of the SI matrix are
required. These features are derived by considering the spatial distri-
bution of SIs within the ROI and aim to quantify heterogeneity,

Figure 2 Summary of the types of radiomics features.a aShape fea-
tures: An image mask is an approximation of the 3D shape of the re-
gion of interest, in this case, it is derived from the ventricular
contours. The radiomics shape features are derived from this image
mask and include conventional and more advanced geometric quan-
tifiers. Texture features: Texture features are derived by assigning a
signal intensity level to each voxel in the region of interest and con-
sidering the pattern and relationships between different voxel signal
intensities through application of various mathematical processes.
Histogram-based features: The signal intensities observed in the ana-
lyzed region of interest may be described by plotting a histogram
with voxel signal intensity value on the x axis and frequency on the y
axis. Summary statistics derived from the histogram such as mean,
median, and standard deviation may be used to describe the global
signal intensity distribution.
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Figure 3 Simplified worked example of grey-level co-occurrence
and run–length matrices. (A) A signal intensity (SI) level is assigned
to each voxel within the selected region of interest and tabulated in
a matrix. In this example, we suppose a 4 � 4 matrix with 16 vox-
els at four signal intensity levels. (B) Grey-level co-occurrence ma-
trix corresponding to Panel A. In this example, we will consider any
voxel with SI j, that appears to the right of a reference voxel with SI
of i. For example to fill the orange cell (j = 1, i = 0), we count one in-
stance in the Panel A matrix, where a voxel with signal intensity level
of 1 (j = 1) appears to the right of a voxel with signal intensity of 0 (i
= 0). Hence, we fill the cell in the GLCM matrix with the number
one. Similarly, for the green cell (j = 2, i = 2), we observe that in the
whole of the matrix in Panel A, there are three instances where a
voxel with SI value of 2 (j = 2) appears to the right of a voxel with
the SI of 2 (i = 2), hence cell (2, 2) is filled with the number 3. In the
same way, the rest of the matrix is completed. (C) Grey-level run-
length matrix corresponding to Panel A. To complete this matrix,
we consider the number of times Panel A contains an uninterrupted
train of length j (measured in number of voxels, e.g. one voxel=run
length of zero, two voxels=run length of one) with SI of i. For ex-
ample, consider the pink cell (j = 1, i = 1); in the matrix of Panel A,
we count two instances of voxels with SI of 1 (i = 1) occurring in an
uninterrupted run of length 1 (j = 1), hence the cell is filled with the
number 2. Similarly, consider the blue cell (j = 2, i = 2), in our SI ma-
trix, we count one instance where SI of 2 (i = 2) appears in an un-
interrupted run of three voxels (j = 2), hence this cell is filled with
the number 1.
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repeatability, and complexity of the SI matrix.26,27 They are com-
puted through application of various mathematical processes to new
matrices which are constructed according to specified rules from the
original SI matrix. For instance, a common approach for considering
the relationship between voxel pairs is through construction of a
grey-level co-occurrence matrix (GLCM). The GLCM is constructed
by tabulating the frequency of different SI pairings occurring within
the SI matrix (Figure 3B). Different mathematical processes are then
applied to the GLCM to compute, according to agreed definitions,
measures, such as angular second moment (homogeneity), contrast
(local variation), and entropy (disorder or randomness).28 These fea-
tures reflect the probability of certain SI pairings, the level of grey-
level variation interdependencies, and the extent of disorder within
the ROI. The grey-level run length matrix (GLRLM) is another com-
monly constructed matrix.29–32 It can be used to consider the spatial
relationship of any number of voxels (not just pairs). A GLRLM is
constructed by recording the number of times a voxel with a specific
SI is seen in an uninterrupted run within the image SI matrix in a speci-
fied direction (Figure 3C). The GLRLM is used to calculate a number
of features such as short-run emphasis, run-length non-uniformity,
and run entropy.

A number of other matrices, tabulated according to different rules,
are also available for calculation of additional features [grey-level size
zone matrix (GLSZM), grey-level difference matrix (GLDM), and
neighbouring grey tone difference matrix (NGTDM)].
Supplementary data online, Table S1 shows a selection of available
grey-level matrices and their related features. For each ROI many
matrices may be constructed with consideration of matrix rules in
different directions within the three-dimensional space of the seg-
mented volume.

Pre-processing options
In some cases, there is need for pre-processing of images to ensure
that the observed variations in brightness and contrast reflect differ-
ences in tissue character rather than differences in scaling or matrix
size. This involves processes such as grey-level normalization, non-
uniformity corrections, and reshaping of images. In addition, filters/
transforms may be applied to the original images to derive ‘filtered/
transformed’ images that may then be used for radiomics analysis as
per the standard workflow.

Feature selection and dimensionality
reduction
The process of feature extraction will yield a large number of radio-
mics features (100–1000 s). The aim is to use the extracted features
as predictor variables within a statistical model for disease classifica-
tion or outcome prediction. The number of extracted radiomics fea-
tures often far exceeds the sample size of cohorts used for model
building. Using all the extracted features in a statistical model would
lead to overfitting, where the model corresponds too closely to the
training dataset, such that it picks up noise and performs poorly in in-
ternal and external validation. Therefore, we need to select a
reduced number of features for model building. This process of ‘fea-
ture selection’ occurs after extraction of features from the test data-
set (the sample of cases from which the model will be built), but
precedes the model building stage (Figure 7). The purpose of feature

selection is to identify the optimal set of radiomics features to be
taken forward for model building. We would aim to include in the
model features that are most informative and robust and remove
those that are unstable or provide repetitive information.

Robustness of features can be assessed through test–retest, with
removal of those with poor repeatability. It is expected that many
radiomics features will reflect duplicate information; for instance,
consider an ROI in the shape of a sphere—the volume, diameter, and
surface area will be highly correlated and inclusion of all these shape
features is unnecessary. Various methods may be used to identify
such highly correlated features and select the most informative.33,34

The most popular approaches are unsupervised machine learning
methods such as clustering and principal component analysis.
Clustering algorithms group features into clusters based on high cor-
relation with each other (inter-cluster correlation) and low correl-
ation with other features (extra-cluster correlation). The algorithm
then identifies the most defining feature from each cluster for inclu-
sion in the model and removes the rest (Figure 5). Principal compo-
nent analysis through different methods reduces the extracted
features to a subset that provides nearly as much information as the
whole feature-set.35

Minimum Robust mean absolute deviation 

Maximum Root mean squared 

10th Percentile Standard deviation 

90th Percentile Skewness 

sisotruKnaeM

ecnairaVnaideM

Interquartile Range Uniformity 

ygrenEegnaR

Mean absolute deviation Entropy 

Figure 4 Selected first-order histogram-based statistics to de-
scribe global signal intensity distribution within the selected region
of interest.a aThe figure depicts a histogram of signal intensity values
observed in the region of interest selected for radiomics analysis.
The x axis represents the signal intensity value of the voxels within
the region of interest and the y axis the frequency with which these
signal intensities values are observed. Below the figure, we present a
selection of the summary statistics derived from the histogram
(histogram-based statistics) that describe the global signal intensity
distribution within the analysed region.
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Feature selection requires substantial computational power and
time and can be a rate-limiting step in building of radiomics models.
Regardless of the method used for feature selection, the common
goal is identification of a reduced set of radiomics features that are
robust, informative, and non-redundant for inclusion in the predictive
model.

Model building
Once we have identified the final set of radiomics features through
feature selection, we can begin to build our classification model
(Figure 7). The predictor/discriminatory variables will be the radio-
mics features (input) and the output will be the desired label (e.g.
HCM vs. healthy subject). To build the model, we require a sample
(training set) of example cases (training examples) with known inputs
and outputs, from which we have extracted and selected our features
(Table 1). In some cases, logistic regression will be adequate to ad-
dress a simple classification problem. More commonly, machine
learning algorithms are used to train different models, from these, the
model with the best performance is selected. Support vector
machines (SVMs) are a commonly used machine learning algorithm
for addressing classification problems with capability of modelling
both linear and non-linear (SVM with kernels) relationships. The SVM
identifies all the hyperplanes that could separate the different classes
within the training set (e.g. HCM vs. healthy) and selects the one that
maximizes the margins between classes (Figure 6). Other commonly
used algorithms include decision tress and random forests.

Validation
The classification accuracy of the model built using the training set
should be assessed on an internal dataset that has not mixed with the
training data during the model building or feature selection process.

External validation with an independent external dataset is important
for assessment of model performance and generalizability. The mod-
els are able to output a probability of belonging to a class and not
only a discrete value. Model performance is thus assessed using meas-
ures of sensitivity, specificity, receiver operating curves, and area
under the curve (AUC). Noting high inconsistency in reporting of
multivariate classification tasks in medicine, researchers should take
care to follow guidelines set forth by TRIPOD (Transparent
Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis) and the Radiomics Quality Score.36,37

Clinical implementation
The main overarching motivator driving radiomics analysis is that cer-
tain radiomics features will correspond to particular disease states,
and therefore, once identified, blueprints of radiomics features
(radiomics signatures) may be used to accurately classify disease enti-
ties and clinical outcomes.

Literature review

Several studies have demonstrated the feasibility and potential clinical
utility of CMR radiomics and CMR texture analysis. In a small, proof-
of-concept study Baessler et al.12 demonstrate the ability of CMR
texture analysis to accurately differentiate between myocardial dis-
ease states and healthy hearts from still non-contrast cine images.
They report significant differences in texture parameters of individu-
als with HCM and healthy controls (n = 32, n = 30, respectively).
They identify GLevNonU (Grey-level non-uniformity), a parameter
derived from the GLRLM indicative of high heterogeneity, as the best
discriminator of the two subgroups. Their findings suggest, that in
addition to accurate disease classification, radiomics analysis may
have value in reflecting alterations of the myocardium at a tissue level.
In support of these suppositions, Cetin et al.13 demonstrate the ability
of radiomics analysis to detect alterations in myocardial architecture

Figure 5 Clustering as a method for feature selection. In this ex-
ample, the clustering algorithm has grouped radiomics features into
three clusters (red, orange, and blue) based on high inter-cluster
correlation and low extra-cluster correlation. The algorithm will
then select the most representative feature from each cluster and
remove the remaining features.

.................................................................................................

Table 1 Example of training set for model buildinga

Training

example

Output (label) Input (radiomics

features)

1 Hypertrophic cardiomyopathy x1, x2, x3, x4, . . . xn

2 Hypertrophic cardiomyopathy x1, x2, x3, x4, . . . xn

3 Healthy x1, x2, x3, x4, . . . xn

. . . . . . . . .

n Healthy/hypertrophic

cardiomyopathy

x1, x2, x3, x4, . . . xn

aIn order to build a radiomics predictor model a training set is required. The
trainings set is a sample of example cases (or training examples), which are cor-
rectly labelled with the desired model output (e.g. hypertrophic cardiomyopathy)
and have CMR images available. Radiomics features are extracted from the CMR
images of all example cases in the training set. From these, a reduced number of
features is selected, limiting to features that are most robust and informative,
which are taken forward for model building often using machine learning algo-
rithms. The algorithms determine how much weight (importance) is placed on
each feature to achieve optimal model performance. The model developed from
the training set should then undergo internal validation with a sample of cases
which has not mixed with the training set.
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that are not apparent through visual inspection of CMR images. The
presented radiomics model was able to discriminate with good ac-
curacy (AUC 0.76 ± 0.13) between the hearts of individuals with
hypertension, but apparently normal hearts, and those of healthy
controls. The 11 radiomics features selected for inclusion in their
model were LV texture features (vs. shape features), supporting the
idea that individuals with hypertension have subtle changes at the
myocardial level, which may be detected with radiomics analysis but
not through existing image analysis techniques.

In addition to differentiating disease from healthy states, studies
have demonstrated the ability of radiomics models to make more
challenging distinctions between different disease states. For instance,
Neisius et al.14 demonstrate that radiomics analysis applied to native
T1 maps provides incremental classification accuracy over global T1
measures in distinction of HCM from hypertensive heart disease. In
another study, Baessler et al.15 demonstrate the superior diagnostic
accuracy of radiomics texture analysis applied to T1 and T2 maps in
discriminating biopsy proven infarct-like acute myocarditis in com-
parison to mean T1, mean T2, and Lake Louise diagnostic criteria.

Assessment for myocardial infarction and myocardial viability are
two major strengths of CMR and account for a substantial proportion
of clinical CMR referrals. Several radiomics studies have demon-
strated the possibility of making such clinical distinctions through ana-
lysis of gadolinium-free images. This is a highly attractive prospect
both from a safety and time efficiency perspective. Baessler et al.16

demonstrate the possibility of accurately distinguishing individuals
with myocardial infarction from healthy controls through texture
analysis of non-contrast cine images. Similarly, Larroza et al.17 were
able to discriminate non-viable myocardium (as per late gadolinium
enhancement, LGE) using texture analysis of non-contrast cine
images. In another study, Larroza et al.18 demonstrate the ability of
texture analysis to accurately identify myocardial infarction from
non-contrast cine images, in cases where the infarction was mostly
visually imperceptible. Further to this, they demonstrate the ability to
distinguish acute myocardial infarction (occurring within 1 week)
from chronic myocardial infarction (occurring >6 months prior to
imaging) from radiomics analysis of LGE CMR images.

Limited studies report on the ability of radiomics analysis in pre-
dicting important clinical outcomes. In a study of 34 individuals with
chronic myocardial infarction, Kotu et al.19 demonstrate that textural
features extracted from LGE scar provide incremental value over
scar size and location in determining the risk of life-threatening
arrhythmias. Amano et al.20 demonstrate differences in textural fea-
tures of LGE images in HCM patients with a history of ventricular
tachycardia compared to those without history of arrhythmia.
Furthermore, Cheng et al.21 demonstrate strong association of LGE
textural features with a composite of several adverse clinical out-
comes (including death and life-threatening arrhythmias) in individuals
with HCM and reduced LV systolic function.

These studies demonstrate the potential of CMR radiomics to aug-
ment current image analysis approaches and provide superior disease
classification and prognostication. The possibility of deriving from
radiomics analysis of non-contrast images equivalent information to
gadolinium-enhanced images is a hugely desirable prospect.
Furthermore, the limited CMR radiomics literature and the more ex-
tensive work from oncology suggest that decoding image phenotype
through radiomics texture analysis may provide additional value in
reflecting pathology at the tissue level, with the potential to provide
insights into disease pathophysiology.38 However, there are many
limitations to these studies which must be addressed in future work
to allow drawing of robust conclusions.

Challenges and directions for
future research

There are many sources of heterogeneity in acquisition and post-
processing of CMR images occurring at all stages of the workflow
such as, scanner vendor, position and number of receiver coils, plan-
ning and positioning of cut-planes, pulse sequence variables [flip angle,
relaxation time (TR), echo time (TE), field of view, slice thickness],
and many more. Whilst these variations do not alter images to a de-
gree that would impact current image analysis techniques, they be-
come highly significant when we attempt to numerically quantify all
aspects of the image as in radiomics. It then becomes difficult to as-
certain whether differences in radiomics features reflect biological
differences or variations in image acquisition and processing. Lack of
reproducibility presents a serious problem for radiomics and limits
the reliability of radiomics models. A potential solution would be to
promote standardization of image acquisition and post-processing.
This would be extremely challenging due to the high degree of vari-
ability at all levels of image acquisition, reconstruction, and post-
processing. Imposing strict uniformity to this scale is impractical.
Therefore, for radiomics to transition to routine practice, it must
adapt to existing practices. Uncertainty about reproducibility of
radiomics features and hence the reliability of models constructed
from these features is one of the most important challenges for
radiomics. There is urgent need to identify radiomics features that
are robust to real-life variations in CMR images, so that future studies
may prioritize inclusion of these features in radiomics models.
Furthermore, there remain unanswered technical questions sur-
rounding size dependency and need for normalization of radiomics
features, particularly in the setting of whole organ radiomics as with
CMR.

Figure 6 Simplified depiction of model building using a support
vector machine. The support vector machine (SVM) algorithm iden-
tifies all potential hyperplanes that could separate the two data cate-
gories (orange vs. blue). The plane offering the greatest margins
with the categories is selected as the optimal model. Both linear
(right) and non-linear models (left) may be considered.
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..An important limitation of existing CMR radiomics studies is ab-
sence of external (and sometimes also internal) validation of the pro-
posed models. Therefore, we cannot comment on the
generalizability of these findings. It is likely that the performance of
these models applied to external datasets will be extremely poor,
due to both heterogeneity in image acquisitions and the small size of
the training datasets. The small samples used in these studies do not
adequately capture the variation in phenotype of studied conditions.
For example, there are many phenotypic variants of HCM that would
not be covered in existing sample sizes. Therefore, there is need to
build models on large high-quality training datasets and to demon-
strate generalizability through meticulous internal and external
validation.

Performance of existing clinical models for prediction of important
outcomes such as death, or life-threatening arrhythmias is largely in-
adequate. Whilst there is value in the radiomic models as diagnostic
tools, there is greater need for better prediction of important clinical
outcomes. The potential superior risk stratification of radiomics
models is reported with paucity in the literature and represents an
important knowledge gap. In addition to disease/outcome classifica-
tion models, radiomics texture features may reflect characteristics of
the myocardial architecture and as such provide insights into disease
pathophysiology. Therefore, there is value in linking what is seen on
radiomics analysis with tissue histopathology and studies reporting
such findings would be of great interest. As radiomics may be applied
retrospectively to previously acquired images, such studies may be
carried out on existing datasets that have paired imaging-
histopathology data.

Finally, radiomics models would be greatly enhanced by incorpor-
ation of relevant clinical data, biomarkers, and genomics. Integration
of data in this way can facilitate development of powerful tools for
personalized medicine, which serves as an ambitious, but achievable
aim. To enable development of such approaches we must ensure

appropriate infrastructure within research and clinical teams to sup-
port the high computational power required to build and implement
these all-encompassing clinical models. Furthermore, storage and ac-
cess to these large volumes of data must be safeguarded vigilantly
through purpose-built security systems.

Conclusion

Radiomics presents a novel quantitative image analysis technique
with potential to greatly augment CMR phenotyping in a manner that
enhances our diagnostic and predictive capabilities. CMR radiomics
features may also provide unique insights into pathophysiology at the
tissue level aiding understanding of disease mechanisms. However,
existing studies are limited to small select datasets and there are
many unresolved technical challenges. The availability of big data and
high computational power mean that addressing these challenges is
achievable through an organized approach with positive interdiscip-
linary collaborations.

Supplementary data

Supplementary data are available at European Heart Journal - Cardiovascular
Imaging online.
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Figure 7 Stepwise depiction of the cardiac magnetic resonance radiomics workflow. Image acquisition: Routinely acquired cardiac magnetic reson-
ance images may be used for radiomics analysis. There is no need for dedicated acquisition protocols. Volume segmentation: The areas to be analysed
are contoured. This may be a single area (e.g. region of suspected abnormality in the myocardium) or multiple areas. In this example the left (blue)
and right (red) ventricular blood pool regions, and the left ventricular myocardium (green) have been segmented and will be analysed. Radiomics fea-
ture extraction: Radiomics features are extracted from the segmented region of interest. Feature selection: Features that are most robust and inform-
ative are selected from the extracted features using methods such as clustering and principal component analysis. Model building: The selected
radiomics features are used as predictor variables to build statistical models for disease discrimination or outcome prediction. Models are built using
a training set with labelled training examples. Diagnosis, risk stratification: Models undergo internal and external validation and may ultimately be incor-
porated into clinical care for improved diagnostic accuracy and/or outcome prediction.
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