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A B S T R A C T

Objective: This study aimed to verify whether pancreatic steatosis (PS) is an independent risk 
factor for type 2 diabetes mellitus (T2DM). We also developed and validated a deep learning 
model for the diagnosis of PS using ultrasonography (US) images based on histological 
classifications.
Methods: In this retrospective study, we analysed data from 139 patients who underwent US 
imaging of the pancreas followed by pancreatic resection at our medical institution. Logistic 
regression analysis was employed to ascertain the independent predictors of T2DM. The diag-
nostic efficacy of the deep learning model for PS was assessed using receiver operating charac-
teristic curve analysis and compared with traditional visual assessment methodology in US 
imaging.
Results: The incidence rate of PS in the study cohort was 64.7 %. Logistic regression analysis 
revealed that age (P = 0.003) and the presence of PS (P = 0.048) were independent factors 
associated with T2DM. The deep learning model demonstrated robust diagnostic capabilities for 
PS, with areas under the curve of 0.901 and 0.837, sensitivities of 0.895 and 0.920, specificities of 
0.700 and 0.765, accuracies of 0.814 and 0.857, and F1-scores of 0.850 and 0.885 for the training 
and validation cohorts, respectively. These metrics significantly outperformed those of conven-
tional US imaging (P < 0.001 and P = 0.045, respectively).
Conclusion: The deep learning model significantly enhanced the diagnostic accuracy of conven-
tional ultrasound for PS detection. Its high sensitivity could facilitate widespread screening for PS 
in large populations, aiding in the early identification of individuals at an elevated risk for T2DM 
in routine clinical practice.

1. Introduction

Pancreatic steatosis (PS) refers to the excessive accumulation of fat within the pancreas [1], with an estimated prevalence in the 
general population between 16 % and 35 % [2–4]. Emerging studies have suggested that excess fat storage is a potential cause of beta 
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cell dysfunction and apoptosis through lipoapoptosis, ultimately leading to type 2 diabetes mellitus (T2DM) [5,6]. Early diagnosis of 
PS, which includes lifestyle interventions, plays a vital role in improving beta cell function [7,8]. Consequently, developing a reliable, 
non-invasive, and rapid diagnostic method for PS is critical, as it could serve as a screening tool to identify populations at risk for T2DM 
and improve their prognosis.

Histological examination of pancreatic specimens is the gold standard for diagnosing PS and detecting fat deposits within the organ. 
However, given the retroperitoneal location of the pancreas, tissue sampling using surgical approaches or endoscopy is not feasible, 
making it impractical for routine clinical use [9]. Percutaneous tru-cut biopsy is also an applicable method in clinical practice; 
however, it is invasive as well.

Imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) are gaining 
importance in the diagnosis of PS. CT imaging identifies fatty deposits as a decrease in attenuation [10,11], but its use is limited owing 
to ionising radiation exposure, especially in adolescents, where the incidence of PS exceeds 50 % [12]. Additionally, the absence of 
consensus criteria for PS diagnosis on CT and challenges in defining pancreatic margins, particularly in atrophic conditions, further 
complicate the use of CT for this purpose [13]. Proton density fat fraction (PDFF) MRI is an advanced method for fat quantification; 
however, it is primarily designed for hepatic fat measurement, necessitating the optimisation of pancreatic fat quantification. The 
correlation between pancreatic PDFF and diabetes remains a topic of debate [14–17].

Recently, US technology has shown excellent performance in diagnosing liver steatosis, comparable to MRI, and is emerging as a 
reliable, non-radiative, cost-effective, and rapid method for the early diagnosis of hepatic steatosis [18]. PS, similar to hepatic steatosis, 
appears hyperechoic relative to the kidney on US [2]. However, diagnosing PS via US is more challenging because of the inability to 
simultaneously visualise the pancreas and kidneys, thus precluding a direct comparison of their echogenicity [19]. The absence of a 
reference standard in sonograms and the difficulty in obtaining pathological information have limited previous studies from accurately 
assessing the diagnostic efficiency for PS [2,19,20]. To the best of our knowledge, no studies have investigated the sensitivity and 
specificity of US imaging for PS compared with histology [21].

Deep learning, a subset of machine learning inspired by the human nervous system and based on artificial neural networks, offers 
significant advantages for analysing US images. It can identify repetitive texture patterns at the pixel or voxel level that are imper-
ceptible to the naked eye, thereby enhancing US image analysis accuracy [21,22]. Deep learning-based US approaches have been 
successfully applied in hepatic steatosis evaluation [23,24], with one study demonstrating a deep learning model based on a 
two-dimensional convolutional neural network to accurately diagnose hepatic steatosis with high sensitivity and specificity [18]. 
However, the application of deep learning for the accurate diagnosis of PS from US images remains unexplored.

Therefore, the objective of our study was to confirm whether PS is an independent factor in T2DM and develop a deep learning 
model based on histological classification for diagnosing PS using US images.

2. Materials and methods

2.1. Study population

This retrospective study received approval from the Peking University Third Hospital review board, and the requirement for 
informed consent was waived. Between January 2017 and August 2022, 139 patients underwent pancreatic US and subsequent 
pancreatic resection at our institution. The surgeries included pancreatectomy, pylorus-preserving pancreaticoduodenectomy, 
Whipple operation, and enucleation. T2DM was diagnosed based on a fasting blood glucose level ≥7.0 mmol/L or a 2-h plasma glucose 
level ≥11.1 mmol/L following ingestion of 75 g oral glucose. Hypertension was defined as a systolic blood pressure ≥140 mm Hg or 
diastolic blood pressure ≥90 mm Hg. The patients’ weights and heights were recorded to calculate the body mass index, computed as 
weight (kg) divided by height (m) squared. Prior to surgery, patients underwent blood tests, including liver function tests (alanine 
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aminotransferase and aspartate aminotransferase) and lipid profile (total cholesterol, high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, and triglycerides). The exclusion criteria were as follows: (1) absence of non-tumorous pancreatic parenchyma 
for histological analysis and (2) presence of imaging artefacts impeding pancreas recognition on US. A detailed flow diagram of the 
study population is shown in Fig. 1.

Ultimately, 139 patients (78 men and 61 women; mean age 58.8 ± 13.4 years) were included. Clinical indications for pancrea-
tectomy varied, including pancreatic adenocarcinoma (n = 41), pancreatic acinar cell carcinoma (n = 1), pancreatic intraductal 
papillary mucinous neoplasm (n = 10), pancreatic neuroendocrine tumour (n = 17), pancreatic serous cystadenoma (n = 4), 
pancreatic mucinous cystadenoma (n = 2), pancreatic pseudocyst (n = 2), solid pseudopapillary neoplasm (n = 17), chol-
angiocarcinoma (n = 13), bile duct adenoma (n = 1), choledochal cyst (n = 1), carcinoma of the ampulla of Vater (n = 19), adenoma of 
ampulla of Vater (n = 1), duodenal adenocarcinoma (n = 2), metastatic renal cell carcinoma (n = 3), metastatic cervical cancer (n = 1), 
retroperitoneal traumatic neuroma (n = 1), aggressive fibromatosis (n = 2), and gastrointestinal stromal tumour (n = 1).

2.2. Histologic analysis

A pathologist blinded to the clinical and US findings reviewed pancreatic specimens stained with haematoxylin and eosin. The 
pancreatic fat fraction in the non-tumorous pancreatic parenchyma was assessed on slides containing at least 1 cm2 of tissue. The 
degree of PS was quantified as the ratio of intraparenchymal fat to the total pancreatic parenchyma area [25]. PS was defined as 
intraparenchymal fat comprising >10 % of the total pancreatic tissue [26] (Fig. 2a – d).

2.3. Patient grouping

A total of 139 patients were divided into two groups at a ratio of 7:3: Group 1 (97 patients) and Group 2 (42 patients). The initial 
visual diagnosis of PS was conducted, followed by calculation of their respective diagnostic efficacies. Subsequently, a deep learning- 
based diagnosis was performed, using patients in Group 1 as the training set and those in Group 2 as the validation set.

2.4. US image data acquisition and visual assessment

US examinations were performed using various convex array scanners. Patients were positioned supine to obtain clear grayscale 
images of the pancreas. Longitudinal pancreatic scans of the anterior abdominal wall were selected for consistency. PS was diagnosed 
by two observers with more than 5 and 10 years of experience in clinical practice who were blinded to the medical information of the 
examinees. The PS diagnostic criteria included pancreatic body hyperechogenicity relative to the kidneys. As previously described [2], 
because the pancreatic body and kidney could not be displayed in the same window, the observer first compared the differences in 
echogenicity between the liver and kidney and then compared the differences between the liver and pancreatic body. All participants 
were classified into either the PS or non–PS groups.

Fig. 1. Flow diagram of the study population shows selection of patients.
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2.5. Deep learning network construction

In this study, we employed the transfer learning technique. The fundamental idea behind transfer learning is to adapt a pretrained 
model from a general image database (ImageNet, http://www.imagenet.org/) to our specific task. We fine-tuned the model using 
appropriate hyperparameters. Given the available data volume, we selected the well-known AlexNet architecture [27] as the backbone 
network. While keeping the remaining network structures unchanged, we adjusted only the output layer to suit the requirements of our 
task with a small sample size.

Fig. 2. (a) and (b) Histology of the human pancreas. (c) and (d) ultrasound image of pancreas. (a) Minimal adipocytes(arrow) accumulated in the 
pancreatic parenchyma. (b) Pancreatic steatosis. Intraparenchymal fat accounts for >10 % of the total pancreatic tissue. (c) and (d) Ultrasound 
images corresponding to A and B, respectively.

Fig. 3. Schematic diagram of the development of a deep learning network for diagnosing PS.
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2.6. Data amplification and hyperparameter determination

Data augmentation techniques were employed to expand the dataset (Fig. 3). The training set was used to train the deep learning 
network model, update the pre-training parameters, and fine-tune the hyperparameters based on the performance. The ultrasound 
images were resized to 512 × 512 pixels and normalised. The optimal hyperparameters included a batch size of 64, 100 epochs, and a 
learning rate of 0.001. The Adam optimiser was used, with Dropout implemented in the AlexNet architecture to mitigate overfitting. 
The loss function was cross-entropy.

2.7. Statistical analysis

The Shapiro–Wilk test was used to assess continuous data distribution. Normal and skewed data were evaluated utilising the t-test 
and Mann–Whitney U test, respectively. Univariate and multivariate logistic regression analyses were employed to determine the 
independent risk factors for T2DM. The diagnostic performance of conventional US in the visual assessment of PS was assessed through 
the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. The deep learning model 
construction, training, and validation were performed using the PyTorch framework (version 1.13.0) and Python (version 3.9). The 
hardware specifications included an Intel Core i9-10900K CPU, Nvidia RTX 3090 GPU, and Kingston DDR4-3600 with 32 GB RAM. The 
performance of the deep learning model was evaluated using AUC, accuracy, sensitivity, specificity, and F1-score. Cohen’s kappa test 
was utilised to evaluate observer consistency in the PS diagnosis. The AUCs were compared using Delong’s test between conventional 
US and the deep learning model performance.

3. Results

3.1. Baseline data of study patients

Our study comprised 139 participants. Histological analysis revealed that 64.7 % of the patients had PS. Hypertension was present 
in 39.5 % of patients, while 31.7 % were diagnosed with T2DM (Table 1). Logistic regression analysis was used to assess the impact of 
clinical variables on the risk of T2DM. After adjusting for hypertension, multivariate logistic regression analysis indicated that age (P 
= 0.003) and PS (P = 0.048) were significant independent risk factors for T2DM (Table 2).

3.2. Diagnostic performance of conventional US for visual assessment of PS

The agreement between the observers for the diagnosis of PS was excellent, with a kappa value of 0.914 (P < 0.001). The diagnostic 
capability of US for PS based on histological findings was quantified using AUC. In Groups 1 and 2, the ability of conventional US to 
diagnose PS was average, with AUC of 0.616 (95 % confidence interval [CI]: 0.512–0.713), and 0.737 (95 % CI: 0.578–0.861), 
respectively. Table 3 and Fig. 4a summarise the performance of conventional US.

3.3. Diagnostic performance of deep learning for evaluating PS

The deep learning model designed for the automatic diagnosis of pancreatic conditions showed high discriminatory ability. In the 
training set, the model’s performance metrics were outstanding, with an AUC of 0.901 (95 % CI: 0.839 to 0.962), a sensitivity of 0.895, 
a specificity of 0.700, accuracy of 0.814, and an F1-score of 0.850 (Table 3 and Fig. 4b).

Upon evaluation using the validation dataset, the model sustained strong performance, exhibiting an AUC of 0.837 (95 % CI: 0.708 
to 0.966), a sensitivity of 0.920, a specificity of 0.765, an accuracy of 0.857, and an F1-score of 0.885 (Table 3 and Fig. 4b).

Table 1 
Baseline characteristics of all participants.

Characteristic Value

Age (years) 58.8 ± 13.4(n = 139)
Gender, males/females (n) 78/61
BMI (kg/m2) 24.0 (21.3, 26.6) (n = 133)
ALT (U/l) 25.0(15.0, 39.0) (n = 135)
AST (U/l) 22.0(17.0, 35.0) (n = 135)
Total cholesterol(mmol/L) 4.5(3.9, 5.4) (n = 132)
Triglycerides(mmol/L) 1.3(1.0, 1.8) (n = 132)
HDL-C(mmol/L) 1.0(0.8, 1.3) (n = 132)
LDL-C(mmol/L) 2.9(2.4, 3.5) (n = 132)
Hypertension, n (%) 55(39.5) (n = 139)
T2DM, n (%) 44 (31.7) (n = 139)
PS, n (%) 90(64.7) (n = 139)

Note: ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein choles-
terol; T2DM, Type 2 diabetes mellitus; PS, pancreatic steatosis.
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When comparing the diagnostic performance for PS based on histology, the deep learning model outperformed conventional US in 
both the training and validation datasets (0.901 [95 % CI: 0.839 to 0.962] vs. 0.616 [95 % CI: 0.512 to 0.713]; 0.837 [95 % CI: 0.708 to 
0.966] vs. 0.737 [95 % CI: 0.578 to 0.861]; P < 0.001 and P = 0.045, respectively; Fig. 5a, b).

4. Discussion

Our study identified age and PS as independent risk factors for T2DM. Furthermore, we developed a deep learning model to di-
agnose PS that yielded the highest AUCs of 0.901 and 0.837 in the training and validation groups, respectively. These results highlight 
the promising sensitivity of the model in diagnosing PS and its potential as a screening tool to identify populations at risk for T2DM.

Recent studies have suggested a close link between PS and T2DM. However, this conclusion remains controversial [6]. This 
controversy may stem from difficulties in obtaining pancreatic tissue samples, small sample sizes, and imperfections in imaging 
methods for diagnosing PS [1,10,11]. These discrepancies underscore the need for further research and highlight the importance of our 
histological approach, which validates PS as an independent risk factor of T2DM. The observed incidence of PS in our cohort was 64.7 
%, which was markedly higher than the 16 %–35 % reported in the literature [26]. This discrepancy could be attributed to the 
advanced age of our participants, as age is known to correlate with intrapancreatic fat deposition, particularly beyond the age of 60 
[28,29]. Consequently, early screening and diagnosis are imperative for implementing timely interventions to improve outcomes in 
patients at high risk of T2DM.

Previous studies have described the imaging characteristics of PS using US; however, they did not address its sensitivity and 
specificity in relation to histology [2,20]. To the best of our knowledge, this is the first study to evaluate the diagnostic efficacy of US 
imaging for PS based on histology. Our deep learning model outperformed the traditional visual assessment in both the training and 
validation datasets, demonstrating a sensitivity similar to that of MRI examinations [19]. Notably, the deep learning model offers a 
more accessible and cost-effective alternative to MRI for PS diagnosis.

Our study had certain limitations. This study lacked a control group of healthy individuals as pancreatic specimens were available 
only from patients undergoing pancreatectomy. Moreover, the presence of pancreatic tumours may be an additional confounding 
factor that affects PS. To maintain consistency, we primarily chose US images of the pancreatic body, which may have overlooked the 
differences in pancreatic fat deposition in other parts. The retrospective nature of the study introduced the possibility of selection bias, 
and the sample size was relatively small. Because this was a retrospective study, we could not perform quality control during the 
inspection. Furthermore, external validation in a separate centre using the same methodology is required to corroborate our findings.

In conclusion, our study not only corroborates PS as an independent risk factor for T2DM but also introduces a high-performance 
deep learning model based on US imaging for PS diagnosis. This model has the potential to facilitate widespread screening and aid in 
the identification of individuals at high risk of T2DM in routine clinical practice.
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Table 2 
Logistic regression analysis showing factors associated with T2DM.

Univariate Multivariate

OR P OR P

Age 1.056 (1.022, 1.090) 0.001 1.053 (1.018, 1.089) 0.003
Gender 1.489 (0.713, 3.111) 0.290  
BMI 0.930 (0.998, 1.036) 0.836  
ALT 0.996(0.989, 1.004) 0.341  
AST 0.995 (0.983, 1.007) 0.402  
Total cholesterol 1.110 (0.835, 1.475) 0.474  
Triglycerides 0.969 (0.680, 1.379) 0.859  
HDL-C 0.791 (0.349, 1.879) 0.573  
LDL-C 1.060 (0.771, 1.456) 0.721  
PS 3.261 (1.369, 7.769) 0.008 2.491 (1.008, 6.155) 0.048
Hypertension 2.300 (1.104, 4.793) 0.026  

Note: OR, odd ratio; BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL-C, high-density lipoprotein 
cholesterol; LDL-C, low-density lipoprotein cholesterol; T2DM, Type 2 diabetes mellitus; PS, pancreatic steatosis.
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Table 3 
Performance of visual assessment and the deep learning model in diagnosing pancreatic steatosis.

Method Training set (Group 1) Validation set (Group 2)

Accuracy AUC (95 % CI) Sensitivity Specificity F1-score Accuracy AUC (95 % CI) Sensitivity Specificity F1-score

Visual assessment 0.598 0.616 (0.512–0.713) 0.676 0.556  0.738 0.737 (0.578–0.861) 0.733 0.741 
Deep learning 0.814 0.901 (0.839–0.962) 0.895 0.700 0.850 0.857 0.837 (0.708–0.966) 0.920 0.765 0.885

Note: AUC, area under the curve; CI, confidence interval.

Y. Sun et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e37580

8

Shaanxi Province (2022JM-562).

CRediT authorship contribution statement

Yang Sun: Writing – original draft, Investigation, Conceptualization. Li Zhang: Writing – original draft, Formal analysis. Jian-Qiu 
Huang: Writing – original draft, Investigation. Jing Su: Writing – original draft, Supervision. Li-Gang Cui: Writing – review & editing, 
Supervision.
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