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ABSTRACT Clostridium difficile is a spore-forming anaerobic bacterium that causes
colitis in patients with disrupted colonic microbiota. While some individuals are
asymptomatic C. difficile carriers, symptomatic disease ranges from mild diarrhea to
potentially lethal toxic megacolon. The wide disease spectrum has been attributed
to the infected host’s age, underlying diseases, immune status, and microbiome
composition. However, strain-specific differences in C. difficile virulence have also
been implicated in determining colitis severity. Because patients infected with C. dif-
ficile are unique in terms of medical history, microbiome composition, and immune
competence, determining the relative contribution of C. difficile virulence to disease
severity has been challenging, and conclusions regarding the virulence of specific
strains have been inconsistent. To address this, we used a mouse model to test 33
clinical C. difficile strains isolated from patients with disease severities ranging from
asymptomatic carriage to severe colitis, and we determined their relative in vivo vir-
ulence in genetically identical, antibiotic-pretreated mice. We found that murine in-
fections with C. difficile clade 2 strains (including multilocus sequence type 1/ri-
botype 027) were associated with higher lethality and that C. difficile strains
associated with greater human disease severity caused more severe disease in mice.
While toxin production was not strongly correlated with in vivo colonic pathology,
the ability of C. difficile strains to grow in the presence of secondary bile acids was
associated with greater disease severity. Whole-genome sequencing and identifica-
tion of core and accessory genes identified a subset of accessory genes that distin-
guish high-virulence from lower-virulence C. difficile strains.

IMPORTANCE Clostridium difficile is an important cause of hospital-associated intes-
tinal infections, and recent years have seen an increase in the number and severity
of cases in the United States. A patient’s antibiotic history, immune status, and med-
ical comorbidities determine, in part, the severity of C. difficile infection. The relative
virulence of different clinical C. difficile strains, although postulated to determine dis-
ease severity in patients, has been more difficult to consistently associate with mild
versus severe colitis. We tested 33 distinct clinical C. difficile isolates for their ability
to cause disease in genetically identical mice and found that C. difficile strains be-
longing to clade 2 were associated with higher mortality. Differences in survival
were not attributed to differences in toxin production but likely resulted from the
distinct gene content in the various clinical isolates.
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Clostridium difficile is an opportunistic, Gram-positive pathogen and the etiologic
agent of most cases of health care-associated intestinal infections (1). C. difficile

exploits intestinal dysbiosis to induce profuse inflammatory diarrhea and colitis which,
in extreme cases, can be lethal (2). Although C. difficile has been recognized as an
important pathogen since the 1970s (3), the past 15 years have seen a rise in the
number and severity of infections (4). These increases are partially attributed to the
emergence of a strain referred to as multilocus sequence type 1 (MLST 1) and ribotype
027 (R027) (5). Today, C. difficile is recognized as an urgent threat to the health care
system, with an estimated half million infections per year in the United States and at
least 3.8 billion dollars in excess medical costs (1, 2).

C. difficile produces two potent cytotoxins, toxin A and toxin B, which disrupt the
actin cytoskeleton of intestinal epithelial cells (6). The toxins compromise the epithelial
barrier, which leads to the translocation of commensal bacteria and influx of inflam-
matory cells. However, not all patients exposed to C. difficile develop colitis; some
patients become asymptomatically colonized or have only self-limited episodes of
diarrhea. For example, one study in a long-term-care facility found that 51% of residents
were colonized with C. difficile despite a lack of apparent clinical illness (7). More
recently, a prospective study of patients receiving bone marrow transplants reported an
asymptomatic carriage rate of 27% (8). It is not clear what distinguishes asymptomatic
patients from those who experience clinical infection, as the colonizing strains are
frequently toxin producers and members of epidemic lineages.

Previous work has highlighted the importance of a healthy gut microbiota and
intact immune system to prevent and recover from C. difficile challenge (9–15). In
contrast, it has been more difficult to identify C. difficile strains that are consistently
associated with severe disease versus mild diarrhea or asymptomatic colonization.
Patients with C. difficile infection have a range of other diseases (comorbidities), variable
states of immune function, and generally have received diverse combinations of
microbiota-disrupting antibiotics (8, 16–20). These complex clinical variables make it
difficult to distinguish the role of strain differences in the severity of colitis.

To circumvent these complexities, we have used a mouse model of C. difficile
infection and disease progression. Mice share with humans many of the key aspects of
C. difficile-associated disease, including antibiotic-induced susceptibility (9, 11, 21, 22),
inflammatory cell recruitment to the colonic mucosa (13), and chronic carriage (23). In
contrast to patient populations, however, our experiments have used genetically
identical mice with similar microbiota compositions that receive identical antibiotic
pretreatment prior to infection with precisely quantified inocula of C. difficile spores.

We obtained 33 phylogenetically diverse C. difficile isolates from patients hospital-
ized at Memorial Sloan Kettering Cancer Center (MSKCC) and Barnes-Jewish Hospital,
infected mice with these C. difficile isolates, and monitored them for signs of symp-
tomatic disease. In vitro assays combined with in silico analyses of whole-genome
sequences revealed bacterial phenotypes and genetic variants associated with viru-
lence. We found that that clinical isolates belonging to C. difficile’s clade 2 (particularly,
the MLST 1/R027 strain) resulted in higher lethality in mice but that these differences
in virulence were not attributable to the amount of toxin production or differences in
toxin gene sequence. Strains with highly similar core genome sequences were found to
cause a range of disease severity in the host, suggesting that in vivo pathology is, at
least in part, attributable to differences in noncore, accessory gene representation.

RESULTS
Clinical isolates produce a range of disease severity and mortality. We obtained

a diverse array of C. difficile clinical isolates from patients hospitalized at MSKCC (n �

21) and Washington University’s (WU) academic medical center affiliate, Barnes-Jewish
Hospital (BJH; n � 12) and classified the isolates by using MLST (24, 25). Of the 33
isolates examined, 24 belonged to C. difficile clade 1 (with MLSTs 2 and 42 most
prevalent), 6 were classified as clade 2 (5 of which were MLST 1/ R027), 1 was classified
as clade 4 (MLST 39), and 2 were classified as clade 5 (both MLST 11).
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Clinical isolates obtained from WU/BJH were assigned human virulence scores as
described previously (26). Briefly, severe disease was recorded if the patient had
clinically significant diarrhea with a white blood cell count of �15,000 cells/mm3 and/or
a serum creatinine level that was �1.5 times the premorbid level at the time of
C. difficile diagnosis. Clinical isolates obtained from MSKCC could not be similarly scored
because samples were collected from patients receiving bone marrow transplants and
cancer chemotherapy, and their disease process results in low white blood cell counts
that do not rise after C. difficile infection. MSKCC patients were classified as “C. difficile
severe” if they had serum creatinine levels that were �1.5 times the premorbid level
and had confirmed colitis, as evidenced by imaging.

Wild-type C57BL/6 mice were rendered susceptible to C. difficile infection by treat-
ment with a cocktail of several antibiotics (see Materials and Methods) (Fig. 1A).
Twenty-four hours after antibiotic cessation (designated day 0), the mice were orally
gavaged with 100 spores from specific C. difficile clinical isolates and then monitored for
the next 2 weeks for measures of disease burden and C. difficile colonization. Maximum
weight loss and peak disease occurred between days 2 and 4 postinfection. Each
clinical isolate was therefore assigned an “acute disease score,” which corresponded
with the average disease score on day 3 after infection (Fig. 1B).

Most mice recovered from the infection (Fig. 1C). For example, only 2/24 strains from
clade 1 and none of the three strains belonging to clades 4 and 5 resulted in mortality.
In contrast, 4/6 strains belonging to clade 2 resulted in mortality. Longitudinal analysis
of the disease score indicated that clade 2 strains caused more severe and more
prolonged morbidity than the other clinical isolates (Fig. 1D). A chi-squared test of
independence revealed that mouse survival is likely dependent on C. difficile clade (P �

0.012). High acute disease scores correlated with poor survival (P � 0.01, based on
linear regression).

Disease severity in mice correlates with disease severity in patients. Use of
genetically identical, inbred C57BL/6 mice that were cohoused and treated with the
same antibiotic combinations equalized host genetic factors and microbiota composi-
tion, thus potentially revealing pathogen-specific variations in virulence. To determine
whether disease severity caused by different C. difficile isolates was similar in mice and
humans, we categorized clinical isolates as “lethal” if they killed at least one mouse in
the cohort and “nonlethal” if they did not result in mouse mortality. We then compared
the murine disease severity to the severity reported in the infected patients (Fig. 2;
Table 1). We found that none of the human nonsevere isolates (0/21) was lethal in mice,
whereas 6/12 human severe isolates caused mortality in mice. Although the severity
correlation was not perfect, these results suggested that factors that lead to severe
disease in humans are also associated with more severe disease and higher mortality in
mice.

Ex vivo and in vitro experiments explain some, but not all, of the observed
differences in acute disease scores. We hypothesized that the range in disease
severity among C. difficile clinical isolates could be due to diversity in their ability to
colonize mice efficiently. To test this hypothesis, we collected fecal pellets from mice on
days 2, 7, and 14 postinfection and quantified the C. difficile burden (9). By day 2, all
mice were colonized in excess of 4.0 � 106 CFU per gram of stool (Fig. 3A), and they
remained colonized for the duration of the experiment (data not shown). The slight
variations observed in C. difficile burden did not explain the differences in acute disease
score (P � 0.21) (Fig. 3D).

We next examined each clinical isolate for its production of toxin in an ex vivo
setting. One commonly cited explanation for the increased virulence of the MLST
1/R027 epidemic strain is that it produces more toxin than preepidemic controls;
however, initial studies measured toxin in an in vitro setting that may not accurately
represent the infectious environment (5, 27). We instead measured toxin titers directly
from fecal samples collected from mice 2 days after infection by using a functional,
cell-based assay (9). Despite colonizing the mice to similar levels, the clinical isolates
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FIG 1 In vivo disease burden of C. difficile clinical isolates in the mouse model. (A) Summary of the experimental protocol. (B) Average
acute disease scores taken 3 days postinfection for each of the clinical isolates (n � 5 to 10 mice per isolate). (C) Survival rates in the
2 weeks following infection. Clinical isolates are labeled by their unique strain identifier (in boldface) followed by their MLST type (in
parentheses). Error bars indicate standard errors. (D) Disease scores following infection. Disease scores for each clinical isolate were
averaged by clade.

Lewis et al. ®

July/August 2017 Volume 8 Issue 4 e00885-17 mbio.asm.org 4

http://mbio.asm.org


produced a wide range of toxin levels during acute infection (Fig. 3B). However, toxin
production did not correlate with disease severity (P � 0.29) (Fig. 3E). Two other in vitro
phenotypes that have previously been associated with C. difficile virulence, sporulation
rate (28, 29) and germination efficiency (30), likewise did not demonstrate an associa-
tion with acute virulence across our 33 clinical isolates (data not shown).

Finally, recent studies from our lab and others have examined the relationship
between secondary bile acid concentrations and the ability of C. difficile vegetative cells
to grow (10, 14, 31–33). In an in vitro setting, the 33 clinical isolates exhibited a broad
range of tolerance to the secondary bile acid lithocholic acid (LCA) (Fig. 3C). Isolates
from the phylogenetically diverse clade 1 were variable in terms of their ability to grow
in the presence of LCA. Of note, high-virulence clade 2 isolates were more tolerant to
LCA than the low-virulence clade 2 isolate 186A. Overall, strains with increased litho-
cholic acid tolerance had higher acute disease scores (P � 0.0096) (Fig. 3F). We saw a
similar trend with regard to tolerance to the secondary bile acid deoxycholic acid (DCA),
but this trend did not reach statistical significance (data not shown).

Examination of the pathogenicity locus reveals clade-based variability in toxin
sequences. We next used a genome sequence-based approach to identify genomic
regions associated with acute virulence scores in the mouse model, beginning with
analyses of C. difficile’s pathogenicity locus (PaLoc). The PaLoc is a 19.6-kb genetic locus
that contains the genes encoding toxins A and B (tcdA and tcdB, respectively) as well
as three small open reading frames (ORFs) that encode putative regulatory elements

FIG 2 Comparison of C. difficile clinical isolate disease severity in humans and mice. Clinical isolates are
ranked by their average acute disease score. The bar fill color indicates if the clinical isolate was identified
as severe or nonsevere in humans. The bar outlines indicates if the clinical isolate was identified as lethal
or nonlethal in mice. Clinical isolates are labeled by their unique strain identifier (shown in boldface)
followed by their MLST type (in parentheses).
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(tcdR/tcdD, tcdE, and tcdC) (34). Variants of the PaLoc genes have been suggested to
account for strain hypervirulence in the human host (27).

Using a clade 1, MLST 2 strain (217B) as our reference or comparison strain, we
mapped single nucleotide polymorphism variants across the PaLoc and constructed a
tree based on these variants (Fig. 4A). We then assigned colors to the tree leaves based
on acute disease scores. The tree revealed that the PaLoc sequences clustered based on
the clinical isolate’s clade and, to a lesser degree, MLST type. While the high-virulence
clade 2 isolates clustered together, other high-virulence strains mapped to more distant
branches (see BBL2 and WUp9). Plotting PaLoc variants linearly and arranging each
strain based on its acute virulence rank also demonstrated this pattern (Fig. 4B). These
two analyses showed that no one variant pattern of the PaLoc is consistently associated
with high acute disease scores; high-virulence strains were found to have PaLoc
sequences that belonged to at least three distinct sequence patterns (e.g., BBL3, WUp9,
and WUp8).

Examination of the core genome revealed distinct subclusters of high-virulence
strains. Following examination of the pathogenicity locus, we inferred the phylogeny
of our clinical isolates by comparing the sequences of their shared, or core, genome.
Comparison of all ORFs across the isolates identified the core genome. The gene
content within single isolates averaged 3,868 ORFs (range, 3,602 to 4,206 ORFs), and the
shared genome was composed of 1,459 ORFs. The sequences of the core genes were
then compared in an analysis similar to that of the pathogenicity locus, again using
strain 217B as the reference. No two clinical isolates had identical core genome
sequences; WUp26 was most closely related to the reference strain, with 87 variants in
the core genome.

TABLE 1 Classification of C. difficile clinical isolates by clade, MLST, and disease severity

Strain Source Clade MLST

Disease severity
Acute disease
scoreHuman Mouse

BBL3 MSK 2 1 Severe Lethal 6.9
WUp4 WU/BJH 2 1 Severe Lethal 6.8
BBL2 MSK 1 2 Severe Lethal 6.8
WUp14 WU/BJH 2 1 Severe Lethal 5.8
BBL4 MSK 2 1 Severe Lethal 5.4
WUp9 WU/BJH 1 10 Nonsevere Nonlethal 5.4
WUp8 WU/BJH 2 41 Severe Nonlethal 5.0
BBL1 MSK 1 2 Severe Lethal 4.7
WUp19 WU/BJH 1 6 Nonsevere Nonlethal 4.4
WU13 WU/BJH 1 6 Severe Nonlethal 4.4
179G MSK 1 107 Nonsevere Nonlethal 4.4
WUp26 WU/BJH 1 2 Nonsevere Nonlethal 4.2
WU82 WU/BJH 1 10 Severe Nonlethal 4.2
HV115 MSK 1 42 Severe Nonlethal 4.2
WU38 WU/BJH 1 2 Nonsevere Nonlethal 4.0
557A MSK 1 58 Nonsevere Nonlethal 4.0
139B MSK 5 11 Nonsevere Nonlethal 4.0
WU66 WU/BJH 5 11 Severe Nonlethal 3.8
WUp42 WU/BJH 1 2 Severe Nonlethal 3.6
733B MSK 1 42 Nonsevere Nonlethal 3.6
205A MSK 1 58 Nonsevere Nonlethal 3.6
615H MSK 1 2 Nonsevere Nonlethal 3.4
217Ba MSK 1 2 Nonsevere Nonlethal 3.4
167A MSK 1 12 Nonsevere Nonlethal 3.4
112C MSK 1 6 Nonsevere Nonlethal 3.4
WUp43 WU/BJH 1 2 Nonsevere Nonlethal 3.2
503A MSK 1 42 Nonsevere Nonlethal 3.2
678B MSK 1 42 Nonsevere Nonlethal 3.0
617F MSK 1 2 Nonsevere Nonlethal 3.0
610B MSK 1 42 Nonsevere Nonlethal 3.0
190B MSK 1 46 Nonsevere Nonlethal 2.4
1002 MSK 4 39 Nonsevere Nonlethal 2.4
186A MSK 2 1 Nonsevere Nonlethal 2.0
aClinical isolate 217B was used as the reference strain for pathogenicity locus and core genome analyses.
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The phylogenetic tree assembled using core gene sequences revealed distinct
clustering of the clinical isolates based on their clade (Fig. 5). The isolates also clustered
with their MLST group, with MLST 2 and MLST 42 demonstrating the most heteroge-
neity. Unlike the other MLST groups, MLST 2 and MLST 42 did not fall into discrete
lineages. Assigning color to the tree leaves according to acute disease score (Fig. 5, left)
or mortality rate (Fig. 5, right) revealed a high-virulence cluster within MLST 1/R027
isolates. In addition, the core genome analysis identified strains whose high virulence
was not immediately attributable to their position on the tree (e.g., BBL2, WUp9).

Analysis of the accessory genome revealed gene groups that were associated
with in vivo disease scores. Excluded from the previous analysis was the accessory
genome, that is, the genes not universally shared among the various C. difficile isolates.
The accessory genome, also known as the flexible or dispensable genome, contains
genes nonessential for bacterial growth but often includes factors that provide a given

FIG 3 Ex vivo and in vitro assessments of putative virulence factors of C. difficile clinical isolates. (A) C. difficile burden in the feces of mice 2 days after infection
(n � 5 to 10 mice per isolate). (B) Toxin titers in the feces of mice 2 days after infection (n � 5 to 10 mice per isolate). (C) Tolerance of each clinical isolate
to administration of 0.01% lithocholic acid (n � 3 experimental trials per isolate). (A to C) Clinical isolates are ranked by their average acute disease score. They
are labeled by their unique strain identifier (in bold) followed by their MLST type (in parentheses). Error bars indicate standard errors. (D to F) Comparison of
ex vivo and in vitro data to disease score, 2 or 3 days postinfection. Solid lines represent the linear regression, with 95% confidence intervals in the corresponding
shaded regions.
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strain with a survival advantage in specific environments (e.g., antibiotic resistance or
resistance to detergents) (35). We identified the accessory genome in our C. difficile
clinical isolates and assembled a large matrix that denoted the presence or absence of
each ORF in every strain. This matrix was then simplified by aggregating the ORFs with
identical gene presence/absence patterns in all strains. By aggregating the ORFs this
way, the accessory genome matrix was reduced in size to 1,156 unique “ORF groups.”
Next, we used generalized linear regression to identify which ORF groups were asso-
ciated with the acute disease score (Fig. 6A).

In contrast to the core genome and pathogenicity locus analyses, which grouped all
MLST 1/R027 isolates together despite differences in disease scores (Fig. 4A and 5),
examination of the accessory genome demonstrated that the high-virulence MLST 1
strains (BBL3, WUp4, WUp14, and BBL1) all contained ORF groups that were absent
from the lone low-virulence MLST 1 strain (186A) (Fig. 6B). These ORF groups were
diverse and included transcription-associated proteins, cell surface proteins, and many
genes of unknown function (Table 2).

FIG 4 Comparative analysis of C. difficile pathogenicity loci. (A) Phylogenetic tree of pathogenicity locus sequences with each clinical isolate. Tree leaves are
colored by the relative acute disease score (from blue to red). Clinical isolates are labeled by their unique strain identifier (in bold) followed by the MLST type
(in parentheses), and clade 2 isolates are labeled in red text. (B) Single nucleotide variant differences of pathogenicity locus sequences, in relation to the
reference strain 217B (MLST 2). Each variant is indicated by a small vertical line, and variants are assigned colors based on the isolate’s clade. Clinical isolates
are arranged by their acute disease score.
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The accessory genome also helped discriminate between clade 1 isolates with
disparate disease scores. This could also be seen with two closely related MLST 2 strains,
WUp42 (intermediate virulence) and BBL2 (high virulence). These isolates were highly
similar based on pathogenicity locus sequence (Fig. 4A and B) and core genome
sequence (Fig. 5), but accessory genome analysis revealed that strain BBL2 contains
ORF groups that matched other high-virulence strains irrespective of MLST (Fig. 6C;
Table 2).

DISCUSSION

Although C. difficile was first identified as a benign organism colonizing the gastro-
intestinal tract of infants (36), subsequent investigations identified it as the etiologic
agent of pseudomembranous colitis in adults (3). The mechanisms by which C. difficile
causes severe disease in one individual but silently colonizes another are multifactorial
and likely involve host factors, microbiota composition, and C. difficile strain differences.
To more clearly demonstrate strain-specific differences in in vivo virulence, we used a
mouse model in which the hosts are genetically identical and the intestinal microbiota
and preceding antibiotic treatment were as similar as possible.

Previous work investigating virulence factors in epidemic lineages, such as MLST
1/R027, resulted in conflicting data (37–39). For example, the increased toxin produc-
tion reported in MLST 1 and MLST 11 isolates was initially attributed to a deletion in the
gene tcdC, a putative negative regulator of tcdA and tcdB transcription (27, 40–42).
Subsequent studies, however, did not detect increased toxin production when the tcdC
mutation was introduced into a nonepidemic C. difficile strain (43, 44). Along similar
lines, tcdE, another gene within the pathogenicity locus, is similar to phage holins and
was suggested to increase toxin release (45), while others found that toxin release was
unaffected when TcdE was functionally inactivated (46). Moreover, the notoriously
hypervirulent MLST 1 group was heterogeneous, perhaps explaining the disagreement
among published reports (47).

A major hurdle facing previous investigations of C. difficile strain type and virulence
had been deducing virulence from disease severities in the human host: patients
diagnosed with C. difficile colitis, in addition to differing in age, underlying disease, and
immune status, often received different predisposing antibiotic treatments, chemother-
apy, or other medical interventions. Given this heterogeneity, identification of C. difficile
genotypic correlates to phenotype has been challenging (26). Mice share many of the
key aspects of C. difficile-associated disease with humans, including antibiotic-induced

FIG 5 Core genome phylogeny of C. difficile clinical isolates. Phylogenetic tree of core genome sequences with each clinical isolate. Tree leaves are colored
by acute disease score (left) or survival rate (right). Clinical isolates are labeled by their unique strain identifier (in bold) followed by MLST type (in parentheses),
and clade 2 isolates are labeled in red text.
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susceptibility (9, 21, 22), inflammatory cell recruitment (13), and asymptomatic carriage
(23). We find that the most virulent C. difficile strains in humans are also virulent in mice.
However, we also find that some C. difficile isolates obtained from patients with severe
colitis do not cause severe disease in mice. While this may result from physiological
differences between the two host species, it may also result from yet-to-be defined
vulnerabilities in some human hosts that are not shared by the mice we have used for
our studies.

Of the 33 clinical isolates tested, we found that the majority belonged to C. difficile
clade 1 and were of relatively low virulence in the mouse model. These strains caused
limited disease in mice despite high levels of colonization and intact toxin production,
indicating that host innate immune defenses were sufficient to limit mucosal damage.
Although mice lacking innate immune defenses can be much more susceptible to
C. difficile infection (12, 13, 48), it remains unclear whether this applies to all of the less
virulent strains we are describing in this report.

In comparison to clade 1 isolates, clade 2 isolates, specifically MLST 1/R027, were
more virulent in mice, consistent with the conclusion that MLST 1/R027 strains result in
increased mortality in humans (5). However, while it has been suggested that increased
virulence of MLST 1/R027 is attributable to increased toxin production, we found that
neither the levels of toxin production nor toxin sequence consistently explained

FIG 6 Top discriminant features in the accessory genome, based on multiple regression analysis. (A to C) Presence (red) or absence
(gray) of the indicated ORF group for each C. difficile clinical isolate. Clinical isolates are labeled by their unique strain identifier (in
boldface) followed by the MLST type (in parentheses). (A) Overall multiple regression results. (B) Comparison of low-virulence (186A)
and high-virulence MLST 1 strains. (C) Comparison of intermediate-virulence (WUp42) and high-virulence (BBL2) MLST 2 strains.
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differences in in vivo C. difficile virulence. Sequence comparison of pathogenicity loci of
all clinical isolates revealed that high- and low-virulence MLST 1 isolates shared the
same, clade-specific PaLoc variants, indicating that determinants outside the PaLoc
contribute to virulence. Thus, neither the levels of toxin production nor toxin sequence
explain differences in in vivo C. difficile virulence.

Preliminary investigations into C. difficile virulence factors found no correlation with
either sporulation rates or germination efficiency. It remains possible that these bac-
terial phenotypes may be involved in C. difficile transmission, an avenue not pursued in
this study. Tolerance to the secondary bile salt lithocholic acid was the in vitro
phenotype most strongly associated with in vivo disease scores, extending previous
work demonstrating that C. difficile strains capable of growing in the presence of
secondary bile salts are more likely to cause prolonged morbidity (31). In fact, clinical
isolates with greater tolerance to the secondary bile acid deoxycholic acid also tended
to produce greater morbidity, although in this case the trend was not statistically
significant. It has been established elsewhere that C. difficile germination and growth
are dependent on favorable concentrations of primary and secondary bile acids;
antibiotic treatment removes commensal species that generate inhibitory secondary
bile acids from germination-promoting primary bile acids and thus facilitates in vivo

TABLE 2 Top discriminant features in the accessory genomea

ORF
group

ORF(s)
identified Function or annotation

Level of associated
virulence

20 8636 Hypothetical protein Low
8649 Hypothetical protein

66 1800 Hemolysin XhiA family protein Low/intermediate
363 1744 DNA-packaging protein High
438 695 Fis family transcriptional regulator High

711 9089 Hypothetical protein/phage protein High
9090 Hypothetical protein
9091 Transcriptional regulator
9122 Hypothetical protein
9123 Hypothetical protein
9124 Hypothetical protein

735 9160 Unknown High

807 rep DNA helicase High
recF_1 DNA recombinase
3254 Hypothetical protein
531 Helicase
894 ATPase AAA
9165 Single-stranded DNA-binding protein
9166 Hypothetical protein
9167 Conjugal transfer protein
9168 Hypothetical protein
9169 Cell surface protein
9170 DNA topoisomerase III
9171 DNA binding protein
9172 Hypothetical protein
9173 Transcriptional regulator
9175 Transposase
9176 Endonuclease
9177 Hypothetical protein
9178 Conjugal transfer protein

959 14507 Transposase High

960 35 ATP/GTP binding protein High
iap_3 Lysozyme-like family protein

aEach ORF group from the regression analysis was examined for the genes within the group, and the
putative functions for each gene are reported.
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C. difficile growth (33). Transfer of a consortium of commensal bacteria, including one
species capable of converting primary bile acids to secondary bile acids, is sufficient to
ameliorate C. difficile-induced morbidity in mice (10). However, there is limited data
examining the variability of secondary bile acid sensitivity across different C. difficile
strain types. We hypothesize that secondary bile acid tolerance enhances growth of
C. difficile in the lower intestine, leading to more prolonged and severe colitis. The
precise mechanism by which lithocholic acid tolerance by C. difficile increases in vivo
disease severity remains to be defined.

While many studies have focused on established C. difficile virulence determinants,
ex vivo and in vitro experiments combined with whole-genome sequencing of pheno-
typically distinct C. difficile isolates can provide a genome-wide perspective on viru-
lence and pathogenicity. We therefore sequenced the genomes and annotated each of
the 33 C. difficile strains, and we identified the core genome (shared by all strains in the
data set) and the accessory genome (present in only a subset of the strains). As
expected, clustering by core genome similarity grouped clinical isolates according to
their MLST type, although MLST 2 and MLST 42 strains demonstrated some heteroge-
neity. Although the low-virulence MLST 1 isolate (186A) clustered separately from the
high-virulence MLST 1 isolates, its core genome was more closely related to clade 2
than the other clinical isolates.

Accessory genome analyses identified genomic differences associated with acute
disease score. Specifically, the low-virulence MLST 1 strain 186A was found to be
missing a number of genes, such as genes for DNA-associated proteins (rep, recF) and
for a membrane proteins (iap), that were present in high-virulence MLST 1 and clade 1
strains. The functions of many of these genes and their possible association with in vivo
virulence remain to be explored. While our study demonstrates that in vivo virulence of
C. difficile can be influenced by genes outside the PaLoc, it remains unclear whether the
products of these genes represent potential targets for therapeutic intervention. Fur-
ther studies that precisely define the contributions of non-PaLoc genes to virulence
may lead to diagnostic tests that can distinguish between high- and low-virulence
C. difficile strains in the clinical setting and to novel therapies that reduce intestinal
damage and inflammation.

MATERIALS AND METHODS
C. difficile clinical isolate collection and classification. Fecal samples were collected from patients

previously identified as colonized or infected with C. difficile and plated anaerobically onto brain heart
infusion (BHI) agar plates supplemented with yeast extract, cysteine, and the antibiotics cycloserine and
cefoxitin (BHI and yeast extract were from BD Biosciences, and the other components were from
Sigma-Aldrich). Individual colonies that were able to grow in the presence of these antibiotics and that
had the characteristic phenotype of C. difficile were selected, isolated, and then typed using MLST (24).

Mouse husbandry. All experiments were performed with wild-type female C57BL/6 mice, aged 6 to
8 weeks, purchased from the Jackson Laboratories. Mice were housed in the specific-pathogen-free
facility at Memorial Sloan Kettering’s Animal Resource Center, fed irradiated feed, and provided with
acidified water. Two of us (B.B.L. and R.A.C.) performed all mouse experiments, including replenishing
food as needed and changing cages at least once per week. The experiments were performed in
compliance with Memorial Sloan Kettering’s institutional guidelines and were approved by its Institu-
tional Animal Care and Use Committee.

In vivo (murine) virulence assessment of clinical isolates. C. difficile spores for each clinical isolate
were prepared as previously described (49). Briefly, clinical isolates were grown anaerobically in liquid BHI
medium until the majority of bacterial cells visualized under a light microscope were spores, i.e.,
approximately 1 to 2 weeks. Spores were purified using a density gradient as previously described and
enumerated by plating serial dilutions of the spore stock onto BHI agar plates supplemented with yeast
extract, cysteine, and 0.01% taurocholic acid to produce germination (49). Mice were rendered suscep-
tible to infection by pretreating them with a cocktail of antibiotics, metronidazole (0.25 g liter�1;
Sigma-Aldrich), vancomycin (0.25 g liter�1; Nova-Plus), and neomycin (0.25 g liter�1; Sigma-Aldrich),
which was added to the drinking water for 3 days, after which it was replaced with untreated water.
Two days after antibiotic cessation, mice were injected intraperitoneally with 200 �g clindamycin
(Sigma-Aldrich). The next day, (designated day 0), the mice were each infected with 100 spores of a given
C. difficile clinical isolate via oral gavage. Mice were housed in groups of five, and the cages were mixed
prior to C. difficile infection to help control for intercage variability in microbiota composition (all mice
within each cage were infected with the same strain). Each clinical isolate was tested in 5 to 10 mice.

Mice were monitored every day for the first week and every 3 to 4 days during the second week after
infection for measures of disease severity as described previously (12). Briefly, measures of weight loss,

Lewis et al. ®

July/August 2017 Volume 8 Issue 4 e00885-17 mbio.asm.org 12

http://mbio.asm.org


surface body temperature, diarrhea severity, and phenotypic morbidity were scored and combined to
produce a total disease score. In addition, on days 1, 2, 7, and 14 postinfection, fecal pellets were
collected for quantification of C. difficile burden (9).

Quantitative C. difficile culture and toxin A and B titer determinations. Bacterial burden and
toxin titers in fecal samples on day 2 postinfection were assessed as previously described (9).

In vitro assessment of sporulation rates and germination efficiency. The sporulation rate of each
clinical isolate was determined using previously published protocols (50). Each experiment was repeated
twice, for a total of three trials. Germination rates in the presence and absence of taurocholic acid were
assessed as previously described (51).

In vitro assessment of secondary bile acid tolerance. The effects of lithocholic acid and deoxy-
cholic acid on C. difficile clinical isolate growth were measured in an in vitro setting as previously
described (31). Briefly, pure cultures of each isolate were incubated anaerobically at 37°C, and growth
was monitored by measurement of the optical density at 600 nm (OD600) over a 22-h period. Each isolate
was grown under two treatment conditions: (i) vehicle (brain heart infusion medium supplemented with
yeast extract and cysteine) or (ii) vehicle with 0.01% lithocholic acid or 0.01% deoxycholic acid. We
repeated each experiment twice, for a total of three trials. Tolerance to LCA or DCA treatment was
calculated at the exponential phase of culture growth.

Whole-genome sequencing, assembly, and annotation of clinical isolates. Single clones of
C. difficile clinical isolates were grown anaerobically overnight at 37°C in brain heart infusion medium
supplemented with yeast extract and cysteine. DNA was extracted using phenol-chloroform with bead
beating and purified with a Qiagen QiaAmp kit. Purified DNA was sheared using a Covaris ultrasonicator
and prepared for Illumina sequencing with a Kapa library preparation kit with Illumina TruSeq adaptors
to create 300- by 300-bp nonoverlapping paired-end reads (10).

Quality control of raw sequence reads was performed using Trimmomatic version 0.35 (52).
Trimmed reads were assembled into contigs using the short read assembler SPAdes (v.3.6.1) (53),
and secondary scaffolding was performed with AlignGraph using published C. difficile reference
sequences to guide the assembly (54). Quality assessment of finished assemblies was performed
using Quast (v.4.4) (55). The assemblies were then annotated with putative open reading frames
using Prokka (v.1.12) (56), and the core, accessory, and pan-genomes were identified with Roary
(v.3.7.0) (57). Briefly, genes that were identified in all clinical isolates were analyzed as the core
genome, and genes that were present in a subset of the clinical isolates were analyzed as part of the
accessory genome. The core genome alignment was performed using Parsnp (v.1.2; Harvest suite)
(58) using strain 217B as the reference.

Pathogenicity locus analysis. The pathogenicity locus was identified in the clinical isolates using
Prokka annotations (56) as well as BLAST alignments (59). The PaLoc alignment was calculated using
Parsnp (Harvest suite) (58) using strain 217B as the reference.

Comparing phylogeny to phenotype outcomes. The phylogenetic trees calculated by Parsnp for
the pathogenicity locus variants and core genome variants were mapped to phenotypic outcomes (acute
disease score, survival) by using the phytools (60) and ape (61) packages in R (version 3.3.2) (62).
Phylogenetic signal between phenotypic outcomes and the phylogeny was assessed using the phylosig-
nal (63) package in R, and Moran’s I index was noted. Because P values of �0.05 were used for both the
pathogenicity locus and core genome determination, we could not reject the null hypotheses for any of
the phylogeny-trait pairs, and we did not perform any phylogenetic signal corrections.

Accessory genome analysis. The accessory genome was identified with Roary, based on se-
quence annotations provided by Prokka. The accessory genome was compiled into a matrix that
defined the presence (score of 1) or absence (0) of each open reading frame in all clinical isolates.
This matrix was then consolidated so that ORFs with the same presence/absence pattern in each
isolate were aggregated into “ORF groups.” The glmnet package (64) in R was then used to fit a
generalized linear model to determine which ORF groups were able to predict the acute disease
scores of the clinical isolates.

Statistical analysis. A chi-square test of independence was run to test if mouse survival was likely
dependent on C. difficile clade. The test was run twice: comparing clade 2 survival against all non-clade
2 strains and for clade 2 versus clade 1 alone. Linear regression was used to assess if acute disease score
was associated with survival rates in mice. Linear regression was also used to compare if the ex vivo and
in vitro phenotypes were associated with acute disease scores. Statistical significance was determined by
using a cutoff P value of �0.05.
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