CASE REPORT

Rare presentation of $\mathbf{6 q 1 6 . 3}$ microdeletion syndrome with severe upper limb reduction defects and duodenal atresia

Megan L. Donahue ${ }^{1}$ (D) \& Luis O. Rohena ${ }^{2,3}$
${ }^{1}$ Department of Pediatrics, San Antonio Military Medical Center, San Antonio, Texas
${ }^{2}$ Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, Texas
${ }^{3}$ Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas

Correspondence

Megan L. Donahue, Department of Pediatrics, San Antonio Military Medical Center, 3551 Roger Brooke Drive, JBSA Ft Sam Houston, San Antonio 78234, TX.
Tel: (210) 916-9928;
Fax: 210-916-9332;
E-mail: megan.I.donahue6.mil@mail.mil

Funding Information

No sources of funding were declared for this study.

Received: 6 August 2016; Revised: 26
January 2017; Accepted: 26 February 2017

Clinical Case Reports 2017; 5(6): 905-914
doi: 10.1002/ccr3.916

Introduction

Deletions of the long arm of chromosome 6 are rare, with a little over 100 patients reported in the literature. Hopkin et al. [1] proposed three different phenotypic groups based on location of the deletion using the 60 reported patients with chromosome 6 q deletions at that time. Patients with group A (proximal) deletions 6q11-q16 were found to have higher incidences of hernia, upslanting palpebral fissures, and thin lips. They were less likely to have microcephaly, micrognathia, or heart malformations. Patients with group B (middle) deletions $6 \mathrm{q} 15-\mathrm{q} 25$ were more likely to have intrauterine growth retardation (IUGR), abnormal respiration, hypertelorism, and upper limb defects. Patients with group C (terminal) deletions $6 q 25$-qter were more likely to have retinal abnormalities, cleft palate, and genital hypoplasia. Common among all groups were varying degrees of intellectual disability, developmental delays, hypotonia, ear anomalies, and poor postnatal growth [1]. In patients with middle chromosome 6 q deletions, upper limb defects range from minor to severe deformities, with severe deformities being only rarely reported [1-5]. Here,
we present an infant with chromosome 6q16.3q22.31 deletion with severe features including bilateral upper limb reduction defects, duodenal atresia, diaphragmatic eventration, mesocardia, and abnormal facies.

Clinical Report

The proband is a male infant born via urgent cesarean section at 323 of 7 weeks gestation for decreased biophysical profile and nonreassuring fetal heart tones. He was the product of a third pregnancy of a 32 -year-old mother and 33 -year-old father. Consanguinity was denied, and the first two pregnancies resulted in healthy daughters.

This pregnancy was complicated by complete placenta previa and prolonged premature preterm rupture of membranes lasting 5 weeks and 1 day. Prenatal ultrasounds beginning at 223 of 6 weeks were concerning for duodenal obstruction/duodenal atresia, which was seen on fetal MRI conducted at 282 of 7 weeks gestation. Infant was delivered in the breech position and required respiratory support and positive pressure ventilation due
to weak respiratory effort. Multiple congenital anomalies were noted at initial examination, and genetics consult was completed on the third day of life.

Birth weight was 1150 gm (<5 th centile), birth length was 43 cm (50th centile), and birth OFC was 27.5 cm (6th centile). Patient was brachycephalic with very large flat anterior fontanel, splaying of the frontal suture, and flattened occiput. He had a low-lying anterior hairline with hirsute forehead. Palpebral fissures were downslanting. He had no appreciable ocular hypertelorism. Ears were normally positioned but tapered. He had a normal nasal bridge and root with anteverted nares. He had a normal-length philtrum and vermillion border. There was mild micrognathia without cleft palate (Fig. 1). His neck was short. Cardiac examination was without murmurs. Abdomen was soft and nondistended but was being actively decompressed with replogle. Genital examination showed hypoplastic phallus with bilateral cryptorchidism. Buttocks tissue was atrophic. There was no obvious scoliosis or sacral dimple appreciated. Patient was noted to have mild generalized hypotonia.

Bilateral upper extremities were notable for external rotation of the shoulders with fixed flexion deformity and elbow webbing. He had arm reduction bilaterally with mesomelia and single-bone forearms. His right hand had a single digit with intact nail. His left hand showed two syndactyly digits with bifid nail. Lower extremities were grossly normal (Fig. 2).

Imaging of the upper extremities confirmed clinical suspicion of single-bone forearms with bilateral radii and absent ulnae. The right hand was found to have a single metacarpal, a single proximal phalanx, and a bifid distal
phalanx. The left hand was found to have a single metacarpal, single proximal phalanx, and two parallel distal phalanges (Fig. 3).

Abdominal plain films showed double-bubble sign concerning for duodenal atresia, which was confirmed on ultrasound day of life 1 (Fig. 4). The patient underwent uncomplicated surgical repair of the atresia on day of life 5. Patient continued to have poor feeding and severe reflux with esophageal and gastric dysmotility. He underwent a fundoplication and percutaneous gastrostomy tube placement at 2 months of age.

Initial head ultrasound on day of life 1 was concerning for bilateral cysts in the caudothalamic grooves consistent with in utero grade 1 interventricular hemorrhages and left greater than right lateral and third ventricle enlargement. MRI of brain conducted at 1.5 months of life showed continued mild dilation of lateral and third ventricles, mild vermian hypoplasia with megacisterna magna and thin, short corpus callosum (Fig. 5). At 18 months of age, he developed focal epilepsy.

Echocardiogram on day of life 3 revealed mesocardia without transposition, trivial mitral and tricuspid regurgitation, and PFO with left-to-right shunt. Spinal ultrasound on day of life 1 showed low position of the conus medullaris at L4 with small lipomas consistent with a tethered cord. In addition to above findings, abdominal ultrasound on day of life 1 also found left renal pelviectasis. Repeat imaging at two months showed no hydronephrosis but bilateral small kidneys both measuring less than 2SD for corrected age.

From birth, patient was noted on serial imaging to have an elevated left hemidiaphragm (Fig. 4). He

Figure 1. Proband at 5 days (A) and 3 months (B). Note tapered ears, downslanting palpebral fissures, anteverted nares, and micrognathia. The latter image demonstrates bifid nail on left hand. Infant had a persistent supplemental oxygen requirement, ultimately requiring tracheostomy.

Figure 2. Limb reduction defects. (A) Left arm and hand at 5 days, note webbing of elbow and syndactyly of the two digits. (B) All extremities at 3 months, note posterior rotation of right arm at shoulder, continued webbing of elbows and forearm, and hand reduction with relatively normal lower extremities. (C) View of right arm and hand from behind, showing posterior rotation and single-digit hand.

Figure 3. Plain films of left and right forearms, demonstrating absent ulnae, single metacarpals, single proximal phalanges, and parallel distal (left) and bifid distal (right) phalanges.
underwent dynamic studies which demonstrated relative akinesia compared to the right hemidiaphragm consistent with left hemidiaphragm eventration. He underwent plication day of life 27 , which required patching at two months of life due to failed plication. Patient continued to have respiratory insufficiency progressing to respiratory failure and required tracheostomy placement at 9 months.

Development of milestones was notably delayed. By 14 months chronological age, patient's CATCLAMS quotient was only 19% of chronologic age, with most notable delays in adaptive skills, scoring at 1.3 equivalent age months.

Initial concern on genetics evaluation was for Cornelia de Lange syndrome, Fanconi anemia, or segmental aneuploidy. Patient underwent NIPBL, SMC1A, chromosomal

Figure 4. CXR/KUB showing double-bubble sign of duodenal atresia, elevated left hemidiaphragm. Transposed umbilical venous lines secondary to mesocardia.
breakage and SNP DNA microarray studies. NIPBL and SMC1A testing were both negative. Chromosomal breakage studies were normal but karyotype demonstrated 46, XY, $\operatorname{del}(6)(q 15 q 21)$. SNP DNA microarray using Cytoscan HD Affymetrix 2.67 Million SNP + CNV probes further characterized the patient's deletion as a 17.31 MB interstitial deletion of 6 q 16.3 with breakpoints of $(105,465,388-$ $122,773,040$) encompassing numerous genes starting at LIN28B and ending at SERINC1. FISH testing on parents was normal, showing de novo origin of this patient's deletion.

Figure 5. Brain MRI showing ventriculomegaly and thin corpus callosum.

The content of this manuscript is not considered research at our institution and instead falls into the realm of routine clinical care.

Discussion

We describe a patient with a middle deletion along chromosome 6 found on SNP microarray studies. The predominant features in our patient include severe upper limb reduction defects, duodenal atresia, diaphragm eventration, mesocardia, and brain anomalies.

Many of the findings seen in our patient overlap with Cornelia de Lange Syndrome (CdLS), specifically the upper limb reduction defects, hirsutism, and cryptorchidism, all of which are classic features of CdLS, although he notably did not have other classic features including synophrys and long philtrum. Given that CdLS has specific gene mutations, he underwent sequencing of the NIPBL and SMC1A genes, which account for up to 52% of mutations in patients with CdLS. He also underwent breakage studies to evaluate for Fanconi anemia, which can also present with phocomelia, and SNP DNA microarray to evaluate for segmental aneuploidy. Despite clinical similarities to patients with CdLS, NIPBL and SMC1A testing were negative. Patient was found to have a middle chromosome 6 q deletion on both chromosome breakage and SNP DNA microarray studies. Although testing revealed 6 q deletion, including both diagnoses in the differential could be important for further patients found to have limb defects and IUGR on prenatal testing.

Our patient demonstrated features found in patients with middle deletions of 6 q , although his features were more severe, perhaps due to the size of his deletion. Table 1 compares features of patients with middle deletions of chromosome 6 q with those of our patient.

Limb anomalies are well-documented in patients with deletions of $6 q$ between bands 15 and 25. However, many
of these defects are minor, including short hands, short and/or tapered fingers, fifth finger clinodactyly, or hypoplastic nails. Reports of patients with major anomalies of the upper extremities have been rarer. Pandya et al. [4] report two patients with significant reductions including radial or ulnar hypoplasia with loss of digits. DuranGonzalez et al. [2] and Zherebtsov et al. [5] also report patients with split-hand deformities. Grati et al. [3] report two patients with contraction deformities of the upper limbs, one of which also had camptodactyly and proximal implantation of the thumb. Case 2 reported by Hopkin et al. [1] showed reduction defections most similar to those of our patient with flexion contracture at the elbow, a single arm forearm, and a single-digit hand of the left upper extremity. The length of the deletions of all of these patients, except that of who had a complex deletion/duplication syndrome, is all similar to that of our patient extending $6-7$ bands and ranging from 6 q 15 to 6 q 23 . The greater amount of deleted genetic material in these patients may have contributed to the more severe limb anomalies, although a few other patients with similar deletions have only minor defects. Limb reduction defects are not seen in patients with proximal or distal chromosome 6 q deletions.

Although many patients have been reported as having some form of respiratory difficulties, most of these have involved perinatal respiratory insufficiency requiring assistive ventilation. Few have been reported to have severe peripheral anatomic airway disease. Hopkin et al. [1] report a patient with prolonged mechanical ventilation in the setting of laryngomalacia and anomalous subclavian artery suppressing the aorta. Duran-Gonzalez et al. [2] report a patient with pulmonary hypertension and Vlckova et al. [6] report a patient with laryngomalacia and congenital diaphragmatic hernia. To our knowledge, our proband is the first reported patient with congenital diaphragmatic eventration (CDE). Eventrations have been rarely reported in deletion syndromes along other chromosomes, including chromosome 3 [7], in trisomies 13 and 18, and in Fryns syndrome, although diaphragmatic eventration has uncertain genetic etiology. CDE can present in the neonatal period as respiratory distress including tachypnea, accessory muscle use and cyanosis potentially progressive to respiratory failure. If found in other patients with middle chromosome 6 q deletions, CDE may represent an important diagnostic consideration in 6 q - patients presenting with respiratory distress.

To our knowledge, duodenal atresia has only been reported one other time in a patient with a chromosome 6 q deletion. The first case of Pandya et al. [4] described a patient with a deletion 6 q 16.2 q 23.1 , similar to our patient, who also had duodenal atresia and limb reduction defects, as mentioned above. This patient also
Table 1. Comparison of features of proband and previously reported patients with $6 q$ deletions.

Case		Chr. Deletion	Abnormal Head Shape	Ear position/shape	Palpebral Fissures	Telorism	Nose Anomaly	Mouth Anomalies	Retro/ Prognathia	Neck	Major Upper Limb Anomalies	Minor Upper Limb Anomalies
Nakagome (1980)		6q15q21	Brachycephaly, square face	Lowset posterior rotate	Upslanting	Hypertelorism	+	+	Retro-		Short/stubby limbs	Tapered fingers
Schwartz (1984)		6916922	Macrocephalic		Downslanting	Hypertelorism		+	Pro-		\cdot	Tapered fingers with bilateral clinodactyly 5th
$\begin{aligned} & \text { Young } \\ & (1985) \end{aligned}$	Pt 2	6q21922		Dysplastic, prominent antihelices	Downslanting		+					Long hands/fingers
Park (1988)		6q22.2q23.1	Metopic and left-sided craniosynostosis	Small	Transverse							Short 5th metacarpals
Glover (1988)		6q15q21	Brachycephaly, square face prominent forehead	Lowset posterior rotate	Mongolian	Hypertelorism	+	+				
Horigome (1991)		6q15q21	Microcephaly, brachycephaly, facial flattening	Lowset malformed		Hypertelorism	+	+	Retro-		Bilateral triphalangia of thumbs	\cdot
Wakahama (1991)		6q13q21										
Valtat (1992)	Pt 1	6q14q16	Microcephaly		Upslanting		+	+				
	Pt 2	6914 q 16	Normocephalic	Lowset	Upslanting		+	+		Short		
Vilijen (1993)		$\begin{aligned} & \mathrm{t}(6 ; 13) \\ & (\mathrm{q} 21 ; \mathrm{q} 12) \end{aligned}$						+				
Villa (1995)		6q16.2q21	Brachycephaly	Low-set, posteriorly rotated	Downslanting	Bilateral epicanthus	+	+	Retro-			Short hands, tapered fingers
$\begin{aligned} & \text { Pandya } \\ & \text { (1995) } \end{aligned}$	Pt 1	6q16.2q23.1	Microcephaly, flattened occiput	Small, asymmetric, malformed	Downslantnig		+	+	Retro-	Short	Hypoplasia of ulnar and radial rays, hypoplastic stiff/ functionless 5th digits, narrow wellformed thumb, index finger nonopposable with boutonniere deformity, absent digits 3 \& 4 bilaterally and absent metacarpals 3 \& 4 on right	Hypoplastic nails
	Pt 2	6q16.3q22.3	Wide metopic suture, facial asymmetry, progressive microcephaly		Downslanting	Hypertelorism	+	+			Left hand polydactyly with extra central digit and syndactyly 5/6. Right hand with central ray defect and absent digits 3 \& 4	
Stein (1996)		6q22.2q23.1	Microcephaly					+				
Hopkin (1997)	Pt 2	6q16.2922.32	Brachycephaly, high broad forehead	Lowset, simple, right preauricular sinus	Short	Hypertelorism	+	+	Retro-		Left: flexion contracture at elbow, single bone left forearm, single digit left hand. Right: four digits with partial syndactyly $2 / 3$, no nail digit 2 ,	Tapered fingers

Table 1. Continued.

Case		Chr. Deletion	Abnormal Head Shape	Ear position/shape	Palpebral Fissures	Telorism	Nose Anomaly	Mouth Anomalies	Retro/ Prognathia	Neck	Major Upper Limb Anomalies	Minor Upper Limb Anomalies
											abnormal nails digits 3 \& 4	
Gilhuis (2000)		6q15q21	Scaphocephaly, broad forehead		Transverse		+					Short fingers
Le Caignec (2005)		6q15q21	Broad, high forehead, coarse facies	Posterior rotate		Hypertelorism	+	+			-	-
Grati (2005)	Pt 1	```6del(q22)del (q25.1q25.3) dup (q23q25.1)```	Frontal hypertrichosis			Hypertelorism		+	Retro-	Webbed	Arthrogryposis/joint contractures	5th finger clino
	Pt 3	$69^{149} 16$	Narrow bifrontal diameter	Normal set			+	+		Nuchal edema	Flexion deformity right wrist, bilateral camptodactyly digits 2 \& 5, proximal implantation of thumbs with broad distal phalanx	
Duran-Gonzalez (2007)		6915922.2	Microcephalic, flat/high forehead	Small	Short	Ptosis, microphthalmia	+	+			Left short arm, central ray defects, adactyly 3/4	Right hypoplastic nails, polyonchia 5
Zherebtsov (2007)		6q16.1922.32	Flat occiput, heartshaped face	Low-set, posteriorly rotated, malformed	Downslanting	Hypertelorism	+	+	Retro-	Redundant skin, short/webbed	Ectrodactyly of left hand with 4 fingers	
Klein (2007)	Pt 1	6q16.2q21	Microcephaly, brachycephaly, bitemporal narrowing	Lowset, protruding, simple helix on Right	Downslanting	Hypotelorism	+	+				5th finger clino
	Pt 2	6q16.2q21	Brachycephaly, broad forehead, bitemporal narrowing	Lowset, simple with overfolded helices	Downslanting		+	+	Retro-			
	Pt 3	6q15q21	Macrocephaly	Lowset		Hypertelorism	+		Retro-			5th finger clino
VIckova (2011)	Pt 2	6914916	Macrocephaly, low forehead	Dysplastic			+	+	Retro-			
Rosenfeld (2012)	Pt 1/6.5y	6q21922.32	Microcephalic, bitemporal hollowing	Ear pits	-		-	-				Extra creases on fingers
	Pt 2/33y	6q21922.31	Resolved microcephaly	Incompletely folded helix on left	-		+	+	Retro-			
	Pt 3/12y		Macrocephalic		Upslanting		-	-				Prominent fingertip pads, tapered fingers
	Pt 4/18m	6q21922.1	Microcephalic, brachycephaly, small AF, bitemporal narrowing	Small, posteriorly rotated, cupped, unraveled helices	Epicanthal folds, downslanting	Hypertelorism	+	+	Retro-			Camptodactyly at the proximal finger IP joints, absence of 4th distal finger crease, narrow and hyperconvex nails
	Pt 5/10m	6q16.3q22.31	Microcephalic, brachycephaly	Unraveled helices	Downslanting		+	+				Middle finger camptodactyly hyperconvex nails
	Pt 6/12y	6q21922.1				Hypertelorism	+	-				Long and slender fingers
	Pt 7/5y		Microcephalic		-		-	-			-	-
	Pt 8/23y				Upslanting	Hypotelorism	+	+	Retro-		-	-

Table 1. Continued.

Table 1. Continued.

Case	Lower Limb Anomalies	Scoliosis	Hypogenitalia	Hypotonia	Respiratory Insufficiency	Cardiac Defects	Gastrointestinal	Brain Anomalies	SNHL	Poor Vision	Seizures	Other
												gynecomastia, GH deficiency
Hopkin (1997)	+		+		Prolonged mechanical ventilation, anomalous subclavian artery compressing trachea, laryngomalacia	+	Gastrostomy requirement	+	+	-	+	
Gilhuis (2000)	+			+		+		+		+		Hypothyroid, GH deficiency
Le Caignec (2005)	-		-	+		-		-				
Grati (2005)	+	+		+	+	+	Immature bowel	+				2 V cord, death at 22 wk EGA, fetal akinesia Blind-ending sacral sinus
Duran-Gonzalez (2007)	+				Pulmonary HTN	+	Ileocolic volvulus					
Zherebtsov (2007)	+				+	+		+				Hypothyroid
Klein (2007)	+ + +			+				+		+ + + +		Umbilical hernia, gynecomastia Hemangioma over posterior fontanelle, retinitis pigmentosa Obesity, diabetes insipidus
Vlckova (2011)			+		Laryngomalacia, congenital diaphragmatic hernia	+	Congenital diaphragmatic hernia	+		+	+	Bl iris colobomata, optic disc hypoplasia, hypermobile joints
Rosenfeld (2012)	+		-	-		\cdot		NA		$\stackrel{+}{+}$	+	
	+	+	+			\cdot		+		+	+	Gynecomastia, hyperextensible joints
	+		-	+		+				$+$	-	Hip laxity Small chest wall musculature
	+		-	+		+	Delayed gastric emptying, GERD	+			+	rAOM, nasolacrimal duct stenosis
	+		+	-		-		+			+	Hyperextensible joints
	+		Bifid uterus	-		.		.			+	Hypothyroid
	+		+	+		-		+			-	Bifid uvula, submucosal cleft, hyperreflexive bladder
	\cdot		-	\cdot		-	GERD	+			\cdot	Sleep apnea, hypothyroidism
	+		-	+		-		+			+	
	-		-	-		-	Bowel blockage at 4 months	-			-	Velopharyngeal insufficiency
Izumi (2013)	+		+	+								Obesity, GH deficiency, hypothyroid
Vignoli (2013)	+	+		+		+		+			+	Hand stereotypies
Donahue (2017)	-	-	+	+	Left hemidiaphragm eventration	+	Duodenal atresia	+	+	+	+	

underwent surgical repair of her atresia, but aside from continued poor growth, no mention was made of her further gastrointestinal course. Our patient, like many others with similar deletions, has had poor feeding and required placement of a gastrostomy tube. While common in duplication syndromes like Down Syndrome, which accounts for 24% of cases in some series [8], duodenal atresias are very rarely seen in other deletion syndromes with isolated cases reported in deletions of chromosomes $2 \mathrm{p}, 2 \mathrm{q}, 11 \mathrm{q}, 9 \mathrm{q}$, and 17 q . Duodenal atresias are also seen occasionally in other syndromes including Fanconi Pancytopenia Syndrome, Fetal Hydantoin Syndrome, and Fryns syndrome. Specific genetic etiology is uncertain. Further reports of large segment 6 q deletion syndrome patients may uncover more patients with this anomaly and point to an identifiable susceptibility locus.

Similar to many patients identified in our literature review, our patient presented with cerebellar hypoplasia and ventriculomegaly. Of 40 patients reviewed, 21 had reported brain anomalies, four were reported to have normal brain imaging, and no mention was made in 15 . Of the 21 with anomalies, seven (33.3%) had corpus callosum abnormalities, of which five (23.8%) were complete or partial agenesis or hypoplasia. Four patients (10\%) were noted to have enlargement of ventricles, most commonly lateral and/or third. Also reported were periventricular leukomalacia (7.5\%), cerebellar hypoplasia, or atrophy (7.5\%) and generalized brain atrophy (7.5\%). Additionally, our patient had later development of epilepsy. Stereotypic epilepsy syndromes have previously been described in patients with 6 q deletions, especially terminal deletions [9]. Similar structural findings in patients with 6 q deletion may help further characterize risks or loci for these epilepsy patients.

Acknowledgments

We thank the family for their participation in this report. We would also like to thank Ms. Grace Balfour and Ms. Kara Carrier, medical photographers, who took the photographs of the patient, and Drs. Christian Carlson and Linda Thomas, pediatric radiologists, who interpreted our patient's radiographic studies. All authors have no conflict of interests to disclose, and there was no financial support. The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of Brooke Army Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, Department of Defense, or the U.S. Government. We certify that all individuals who qualify as authors have been listed; each has participated in the conception and design of this work, the analysis of the data (when applicable), the writing and revision of the document and
the approval of the submission of this version; that the document represents valid work; that if we used information derived from another source, we obtained all necessary approval to use the information and made appropriate acknowledgments in the document; and that each takes public responsibility for it.

Authorship

MLD: involved in study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, critical revision. LOR: involved in study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript, critical revision.

Conflict of Interest

None declared.

References

1. Hopkin, R. J., E. Schorry, M. Bofinger, A. Milatovich, H. J. Stern, C. Jayne, et al. 1997. New insights into the phenotypes of 6 q deletions. Am. J. Med. Genet. 70: 377-386.
2. Duran-Gonzalez, J., M. Gutierrez-Angulo, D. Garcia-Cruz, L. Ayala Mde, M. Padilla, and I. P. Davalos. 2007. A de novo interstitial 6 q deletion in a boy with a split hand malformation. J. Appl. Genet. 48:405-407.
3. Grati, F. R., F. Lalatta, L. Turolla, U. Cavallari, B. Gentilin, F. Rossella, et al. 2005. Three cases with de novo 6 q imbalance and variable prenatal phenotype. Am. J. Med. Genet. A 136:254-258.
4. Pandya, A., N. Braverman, R. E. Pyeritz, K. L. Ying, A. D. Kline, and R. E. Falk. 1995. Interstitial deletion of the long arm of chromosome 6 associated with unusual limbanomalies: report of two new patients and review of the literature. Am. J. Med. Genet. 59:38-43.
5. Zherebtsov, M. M., R. T. Klein, H. Aviv, G. A. Toruner, N. N. Hanna, and S. S. Brooks. 2007. Further delineation of interstitial chromosome 6 deletion syndrome and review of the literature. Clin. Dysmorphol. 16:135-140.
6. Vlckova, M., M. Trkova, Z. Zemanova, M. Hancarova, D. Novotna, D. Raskova, et al. 2012. Mechanism and genotype-phenotype correlation of two proximal 6 q deletions characterized using mBAND, FISH, array CGH, and DNA sequencing. Cytogenet. Genome. Res. 136:15-20.
7. Sahin, Y., P. O. Kiper, Y. Alanay, T. Liehr, G. E. Utine, and K. Boduroglu. 2014. Partial monosomy 3q26.33-3q27.3 presenting with intellectual disability, facial dysmorphism, and diaphragm eventration: a case report. Clin. Dysmorphol. 23:147-151.
8. Dalla Vecchia, L. K., J. L. Grosfeld, K. W. West, F. J. Rescorla, L. R. Scherer, and S. A. Engum. 1998. Intestinal atresia and stenosis - A 25-year experience with 277 cases. Arch. Surg. 133:490-496.
9. Elia, M., P. Striano, M. Fichera, R. Gaggero, L. Castiglia, O. Galesi, et al. 2006. 6q terminal deletion syndrome associated with a distinctive EEG and clinical pattern: a report of five cases. Epilepsia 47:830-838.
10. Nakagome, Y., T. Tanaka, T. Hashimoto, M. Kuyama, and M. Maruyama. 1980. Interstitial deletion 6 q in a malformed boy. Ann. Genet. 23:49-51.
11. Schwartz, M. F., S. Kaffe, S. Wallace, and R. J. Desnick. 1984. Interstitial deletion of the long arm of chromosome $6[\operatorname{del}(6)(q 16 q 22)]$: case report and review of the literature. Clin. Genet. 26:574-578.
12. Young, R. S., G. S. Fidone, P. A. Reider-Garcia, K. L. Hansen, J. L. McCombs, and C. M. Moore. 1985. Deletions of the long arm of chromosome 6: two new cases and review of the literature. Am. J. Med. Genet. 20:21-29.
13. Park, J. P., J. M. Jr Graham, S. Z. Berg, and D. H. Wurster-Hill. 1988. A de novo interstitial deletion of chromosome 6 (q22.2q23.1). Clin. Genet. 33:65-68.
14. Glover, G., I. Lopez, J. Gabarron, and J. A. Carmona. 1988. Partial monosomy $6 \mathrm{q}(\mathrm{q} 15 \mathrm{q} 21)$ by de novointerstitial deletion. Clin. Genet. 33:308-310.
15. Horigome, H., T. Takano, T. Hirano, T. Kajima, and S. Ohtani. 1991. Interstitial deletion of the long arm of chromosome 6 associated with absent pulmonary valve. Am. J. Med. Genet. 38:608-611.
16. Wakahama, Y., M. Nakayama, and M. Fujimura. 1991. Autopsy findings in interstitial deletion 6q. Pediatr. Pathol. 11:97-103.
17. Valtat, C., D. Galliano, R. Mettey, A. Toutain, and C. Moraine. 1992. Monosomy 6q: report on four new cases. Clin. Genet. 41:159-166.
18. Viljoen, D. L., and R. Smart. 1993. Split-foot anomaly, microphthalmia, cleft-lip and cleft-palate, and mental retardation associated with a chromosome 6;13 translocation. Clin. Dysmorphol. 2:274-277.
19. Villa, A., M. Urioste, J. M. Bofarull, and M. L. MartinezFrias. 1995. De novo interstitial deletion q16.2q21 on chromosome 6. Am. J. Med. Genet. 55:379-383.
20. Stein, C. K., S. E. Stred, L. L. Thomson, F. C. Smith, and J. J. Hoo. 1996. Interstitial 6q deletion and Prader-Willilike phenotype. Clin. Genet. 49:306-310.
21. Gilhuis, H. J., C. M. van Ravenswaaij, B. J. Hamel, and F. J. Gabreels. 2000. Interstitial 6 q deletion with a Prader-Willi-like phenotype: a new case and review of the literature. Eur. J. Paediatr. Neurol. 4:39-43.
22. Le Caignec, C., A. Swillen, E. Van Asche, J. P. Fryns, and J. R. Vermeesch. 2005. Interstitial $6 q$ deletion: clinical and array CGH characterisation of a new patient. Eur. J. Med. Genet. 48:339-345.
23. Klein, O. D., P. D. Cotter, M. W. Moore, A. Zanko, M. Gilats, C. J. Epstein, et al. 2007. Interstitial deletions of chromosome 6q: genotype-phenotype correlation utilizing array CGH. Clin. Genet. 71:260-266.
24. Rosenfeld, J. A., D. Amrom, E. Andermann, F. Andermann, M. Veilleux, C. Curry, et al. 2012. Genotypephenotype correlation in interstitial 6 q deletions: a report of 12 new cases. Neurogenetics 13:31-47.
25. Izumi, K., R. Housam, C. Kapadia, V. A. Stallings, L. Medne, T. H. Shaikh, et al. 2013. Endocrine phenotype of 6q16.1-q21 deletion involving SIM1 and Prader-Willi syndrome-like features. Am. J. Med. Genet. A 161A:31373143.
26. Vignoli, A., G. F. Scornavacca, A. Peron, F. La Briola, and M. P. Canevini. 2013. Interstitial $6 q$ microdeletion syndrome and epilepsy: a new patient and review of the literature. Am. J. Med. Genet. A 161A:2009-2015.
