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Abstract: Social distancing strategies have been adopted by governments to manage the
COVID-19 pandemic, since the first outbreak began. However, further epidemic waves keep
out the return of economic and social activities to their standard levels of intensity. Social
distancing interventions based on control theory are needed to consider a formal dynamic
characterization of the implemented SIR-type model to avoid unrealistic objectives and prevent
further outbreaks. The objective of this work is twofold: to fully understand some dynamical
aspects of SIR-type models under control actions (associated with second waves) and, based
on it, to propose a switching non-linear model predictive control that optimize the non-
pharmaceutical measures strategy. Opposite to other strategies, the objective here is not just to
minimize the number of infected individuals at any time, but to minimize the final size of the
epidemic while minimizing the time of social restrictions and avoiding the infected prevalence
peak to overpass a maximum established by the healthcare system capacity. Simulations
illustrate the benefits of the aforementioned proposal.
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Predictive Control.

1. INTRODUCTION

Since its first outbreak in 2019, the novel coronavirus,
named as SARS-CoV-2, has paralysed the world social
and economic activities. The associated disease, named
as COVID-19, widely infected the world population. Con-
sidering that initial cases were reported on December 31,
2019, in Wuhan, Chinese province of Hubei, by the date of
march 31, 2020, the World Health Organization declared
the COVID-19 disease as a pandemic and subsequently,
SARS-CoV-2 virus reached the vast majority of countries
around the world (WHO (2020)). As a response, govern-
ments tackled this first pandemic outbreak by applying so-
cial control measures known as Non-Pharmaceutical Inter-
ventions (NPIs). These are associated to measures such as
social-distancing policy, face-mask requirement, university
and school closure, and telework assignment. Certainly,
these measures have proved their efficacy to lessens the
disease transmission; however, their detrimental effects
on social and economic activities have also been showed
(Ferguson et al. (2020); Flaxman et al. (2020); Ngonghala
et al. (2020)).

The way the aforementioned measures are decided re-
lies on the so-called SIR-type epidemiological models.
SIR-type models are based on the seminal work of ker-

mack and McKendrick (Kermack and McKendrick (1927)),
which firstly established a compartmental relationship
between the main variables of an epidemic: Susceptible
(S), Infected (I) and Removed (C) individuals, and in-
cludes parameters that can be externally modified, as
the transmission and recovery/death rates β and γ. Even
when several extensions of the original model have been
made (to include additional states describing new sub-
compartments (e.g.,Giordano et al. (2020))), the epidemi-
ological objectives always aims to minimize three main
indexes (Di Lauro et al. (2021)): the total fraction infected
(or final size of the epidemic, 1 − S(∞)), the peak of I
(or infected peak prevalence) and the average time of the
infection.

Both, the minimization of infected peak (Sadeghi et al.
(2020); Federico and Ferrari (2020); Morris et al. (2021))
and the epidemic final size (Bliman and Duprez (2021);
González et al. (2021)) were proposed as control objectives
in the context of single-interval control strategies; i.e.,
simple control strategies consisting in a fixed control action
that reduces the transmission rate for a finite period of
time. One step ahead are the optimal-control-based strate-
gies, that consider a more complex sequence of control
actions, together with explicit constraints on both, manip-
ulated and controlled variables. In (Morato et al. (2020))
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Güemes 3450, Santa Fe (3000), Argentina.
∗∗ Department of Management, Information and Production

Engineering, University of Bergamo Via Marconi 5, Dalmine (BG)
24044, Italy
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∗∗∗ Instituto de Matemáticas, Universidad Nacional Autonoma de
Mexico, Boulevard Juriquilla 3001, Santiago de Querétaro, Qro.

76230, Mexico

Abstract: Social distancing strategies have been adopted by governments to manage the
COVID-19 pandemic, since the first outbreak began. However, further epidemic waves keep
out the return of economic and social activities to their standard levels of intensity. Social
distancing interventions based on control theory are needed to consider a formal dynamic
characterization of the implemented SIR-type model to avoid unrealistic objectives and prevent
further outbreaks. The objective of this work is twofold: to fully understand some dynamical
aspects of SIR-type models under control actions (associated with second waves) and, based
on it, to propose a switching non-linear model predictive control that optimize the non-
pharmaceutical measures strategy. Opposite to other strategies, the objective here is not just to
minimize the number of infected individuals at any time, but to minimize the final size of the
epidemic while minimizing the time of social restrictions and avoiding the infected prevalence
peak to overpass a maximum established by the healthcare system capacity. Simulations
illustrate the benefits of the aforementioned proposal.

Keywords: Epidemic Control, Stability analysis, Switched System, Disease control, Model
Predictive Control.

1. INTRODUCTION

Since its first outbreak in 2019, the novel coronavirus,
named as SARS-CoV-2, has paralysed the world social
and economic activities. The associated disease, named
as COVID-19, widely infected the world population. Con-
sidering that initial cases were reported on December 31,
2019, in Wuhan, Chinese province of Hubei, by the date of
march 31, 2020, the World Health Organization declared
the COVID-19 disease as a pandemic and subsequently,
SARS-CoV-2 virus reached the vast majority of countries
around the world (WHO (2020)). As a response, govern-
ments tackled this first pandemic outbreak by applying so-
cial control measures known as Non-Pharmaceutical Inter-
ventions (NPIs). These are associated to measures such as
social-distancing policy, face-mask requirement, university
and school closure, and telework assignment. Certainly,
these measures have proved their efficacy to lessens the
disease transmission; however, their detrimental effects
on social and economic activities have also been showed
(Ferguson et al. (2020); Flaxman et al. (2020); Ngonghala
et al. (2020)).

The way the aforementioned measures are decided re-
lies on the so-called SIR-type epidemiological models.
SIR-type models are based on the seminal work of ker-

mack and McKendrick (Kermack and McKendrick (1927)),
which firstly established a compartmental relationship
between the main variables of an epidemic: Susceptible
(S), Infected (I) and Removed (C) individuals, and in-
cludes parameters that can be externally modified, as
the transmission and recovery/death rates β and γ. Even
when several extensions of the original model have been
made (to include additional states describing new sub-
compartments (e.g.,Giordano et al. (2020))), the epidemi-
ological objectives always aims to minimize three main
indexes (Di Lauro et al. (2021)): the total fraction infected
(or final size of the epidemic, 1 − S(∞)), the peak of I
(or infected peak prevalence) and the average time of the
infection.

Both, the minimization of infected peak (Sadeghi et al.
(2020); Federico and Ferrari (2020); Morris et al. (2021))
and the epidemic final size (Bliman and Duprez (2021);
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∗ Institute of Technological Development for the Chemical Industry
(INTEC), CONICET-Universidad Nacional del Litoral (UNL),
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a model predictive controller (MPC) is proposed, based
on SIRD (Susceptible-Infected-Recovered-Dead) and SIR-
ASD (SIRD + Asymptomatic-Symptomatic) models. The
control objective consists in minimizing both, the number
of infected individuals and the time of isolation, while some
constraints account for the peak of the infected fraction
(maximal values according to the available ICU beds) and
for the the dwell-time of control actions (minimal times
for both, isolation and no-isolation measurements are im-
posed to avoid unimplementable policies). In (Köhler et al.
(2020)) - which up to the authors knowledge is the more
complete MPC approach - it is proposed a robust non lin-
ear MPC based on the SIDARTHE (Susceptible, Infected,
Diagnosed, Ailing, Recognized, Threatened, Healed, Ex-
tinct) model introduced in Giordano et al. (2020). The
MPC controller manipulates also the transmission rate,
given in this case by several parameters. The objectives
are to minimize both, the number of fatalities and the time
of isolation, compared to a baseline policy. Other similar
strategies can be seen in (Péni et al. (2020); Carli et al.
(2020)). None of the reported works consider the mini-
mization of the final size of the epidemic under finite-time
interruption of the measures, in a way that avoid second
infection waves, as stated in (González et al. (2021)).

1.1 Objective of the work

The objectives of this manuscript are: (i) to present a
dynamical-system perspective to formally analyze SIR-
type models, their equilibrium sets and stability, and the
second-waves scenarios; and (ii) to propose a Switching
Nonlinear Model Predictive Control (swNMPC) strategy
that minimizes the epidemic final size, while maintaining
the infected peak prevalence under an upper bound im-
posed by the healthcare system capacity, and minimizing
- as long as possible - the social restriction severity.

2. REVIEW OF SIR-TYPE MODELS

In this work, a non-dimensional version of the typical
SIR model (Kermack and McKendrick (1927); Brauer
and Castillo-Chavez (2012); Sontag (2011)) is considered,
which can be obtained by rescaling the original time units
(Franco (2020)):

Ṡ(τ) = −RS(τ)I(τ) (1a)

İ(τ) = RS(τ)I(τ)− I(τ) (1b)

Ċ(τ) = I(τ), (1c)

where S(τ) is the fractions of individuals who are sus-
ceptible to contract the infection at time τ , I(τ) is the
fractions of infected individuals (that cause other indi-
viduals to become infected), and C(τ) is the cumulative
fractions of removed individuals. R is the so called basic
reproduction number, given by R := β/γ, where β and
γ stand for the transmission and the recovery/death rates
of the disease, respectively. State variable are constrained
to the set

X := {(S, I, C) ∈ R3 : S ∈ [0, 1], I ∈ [0, 1], C ∈ [0, 1]},
in such a way that (S(τ), I(τ), C(τ)) ∈ X for all τ ≥ 0.

Furthermore, note that Ṡ(τ) + İ(τ) + Ċ(τ) = 0, and,
therefore S(τ) + I(τ) + C(τ) = 1, for τ ≥ 0. Particularly,

S(0) + I(0) + C(0) = 1, where τ = 0 is assumed
to be the epidemic outbreak time, in such a way that
(S(0), I(0), C(0)) := (1 − ε, ε, 0), with 0 < ε � 1, i.e.,
the fraction of susceptible individuals is smaller than, but
close to 1; the fraction of infected is close to zero and the
fraction of removed is null.

The solution of (1) - which was analytically determined
in (Harko et al. (2014)), for τ ≥ τ0 > 0, depends on
R and the initial conditions (S(τ0), I(τ0), C(τ0)) ∈ X .
Since S(τ) ≥ 0, I(τ) ≥ 0, for τ ≥ τ0 > 0, then S(τ)
is a decreasing function of τ (by (1.a)) and C(τ) is an
increasing function of τ , for all τ ≥ τ0. From (1.b), it

follows that if S(τ0)R ≤ 1, İ(τ) = (RS(τ)− 1)I(τ) ≤ 0 at
τ0. Furthermore, given that S(τ) is decreasing, I(τ) is also
decreasing for all τ ≥ τ0. On the other hand, if S(τ0)R > 1,
I(τ) initially increases, then reaches a global maximum,
and finally decreases to zero. In this latter case, the peak of
I(τ), Î, is given by Î := S(τ0)+I(τ0)− 1

R (1+ln(S(τ0)R)),

and it is reached at τ̂ , when İ = RSI−I = 0. This implies
the peak of I is reached when S(τ) = S(τ̂) = S∗, where

S∗ := min{1, 1/R} (2)

is a threshold or critical value, known as “herd immunity”.
This way, conditions S(τ0)R > 1 and S(τ0)R < 1 that
determines if I(τ) increases or decreases at τ0 can be
rewritten as S(τ0) > S∗ and S(τ0) < S∗, respectively.

For the sake of simplicity, we define S∞ := limτ→∞ S(τ),
I∞ := limτ→∞ I(τ) and C∞ := limτ→∞ C(τ), which
are values that depend on initial conditions S(τ0), I(τ0),
C(τ0), and R. Taking τ → ∞ for the solutions proposed
in (Harko et al. (2014)), I∞ = 0, C∞ = 1− S∞ and:

S∞(S(τ0), I(τ0)) = −W (−RS(τ0)e
−R(S(τ0)+I(τ0)))

R
. (3)

3. EQUILIBRIUM CHARACTERIZATION AND
STABILITY

The equilibria of System (1) is obtained by zeroing
each of the differential equations. For initial conditions
(S(τ0), I(τ0), C(τ0)) ∈ X , this set is given by:

Xs := {(S̄, Ī, C̄) ∈ R3 : S̄ ∈ [0, S(τ0)], Ī = 0, C̄ = 1− S̄}.
Next, a key theorem concerning the asymptotic stability
of (a subset of) Xs is introduced.

Theorem 1. (Asymptotic Stability). Consider System (1)
with arbitrary initial conditions (S(τ0), I(τ0), C(τ0)) ∈ X ,
for some τ0 ≥ 0. Then, the minimal (smallest) asymptoti-
cally stable equilibrium set in X is given by

X st
s := {(S̄, Ī, C̄) ∈ R3 : S̄ ∈ [0, S∗], Ī = 0, C̄ = 1− S̄},

while the set

X un
s := {(S̄, Ī, C̄) ∈ R3 : S̄ ∈ (S∗, 1], Ī = 0, C̄ = 1− S̄},

is unstable, being S∗ is the herd immunity previously
defined.

Proof: The proof is given in (González et al. (2021)).
Figure 1 shows a Phase Portrait for System (1), with
R = 2.5, and initial conditions summing 1.
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Fig. 1. Phase Portrait for System (1) with R = 2.5 and starting
points summing 1 (starting points in empty circles, ending
points in solid circles). Set X st

s is in red, while Xun
s is in green.

As it can be seen, all the trajectories converges to X st
s .
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Fig. 2. Function S∞(S(τ0), I(τ0)), with R = 2.5 and fixed values
of I(τ0).

Corollary 1. (General system behaviour). Consider System
(1) with arbitrary initial conditions (S(τ0), I(τ0), C(τ0)) ∈
X , for some τ0 ≥ 0. Then

• S∞ → 0 for any value of S(τ0) > 0 and I(τ0) > 0,
when R → ∞.

• S∞ remains close to S(τ0) for any value of S(τ0) > 0
and I(τ0) > 0, when R → 0.

• If S(τ0) > S∗ and I(τ0) > 0, S∞ decreases with S(τ0),
and S∞ < S∗.

• If S(τ0) < S∗ and I(τ0) > 0, S∞ increases with S(τ0),
and S∞ < S∗.

• If S(τ0) = S∗ and I(τ0) ≈ 0, S∞ ≈ S∗, for any value
of R (note that S∗ = 1 for R < 1).

Figure 2 shows a plot of S∞(S(τ0), I(τ0)), corresponding
to R = 2.5 and fixed values of I(τ0).

4. SOCIAL DISTANCING CONTROL ACTIONS

Quarantine and isolation, as well as regulations for wear-
ing face masks and avoiding non-essential interactions,
are typical non-pharmaceutical measures that the local
governments take to reduce infection transmission rates.
Social distancing measures affect (decrease) parameter β
or, directly, parameter R in System (1). In this work, this
control action is modeled as follows (Péni et al. (2020))

Ṡ(τ) = −R(τ)S(τ)I(τ) (4a)

İ(τ) = R(τ)S(τ)I(τ)− I(τ) (4b)

Ċ(τ) = I(τ), (4c)

where R(τ) is a signal ranging from R(0) (the initial value
of R which is assumed to be R(0) > 1) to Rmin, with
R(0) > Rmin > 0, which is a minimal value corresponding
to the hardest social distancing. In line with other works, it
is reasonable to assume that R(0) = 3.0 and Rmin = 0.85
for simulation proposes (Flaxman et al. (2020); Li et al.
(2020); Ferguson et al. (2020)).

One critical point concerning social distancing measures is
that they are always bounded temporary control actions,
not permanent ones (as clearly stated in (Sadeghi et al.
(2020)) and (Köhler et al. (2020))). It is not possible to
maintain efficient (or full) social distancing actions for ever
(neither for a time long enough to make the infection to
disappear) since population fatigue due to psychological
or economical problems would systematically relax its
effectiveness.

From an epidemiological point of view, three main general
control objectives can be considered (Di Lauro et al.
(2021)): (i) minimize the epidemic final size (EFS): the
total fraction infected, 1 − S∞ (Ma and Earn (2006);
Katriel (2012)), (ii) minimize the infected peak prevalence

(IPP) or maximum value of I(τ), Î (Morris et al. (2021);
Sontag (2021)), and (iii) minimize the average time of

infection, τ̄ :=
∫∞
0

βS(t)I(t)
1−S(∞) dt. However, there is not yet

a consensus in the optimal control literature about what
is better to minimize and to consider as constraints for
the system variables. We will assume first a single-interval
control action scenario, to reinforce the importance of
minimizing the EFS, while keeping the control of the IPP
for a second stage. The single-interval control action is
given by two times τi < τf defining the initial and final
time of social distancing (with τi < τ̂), and a fixed value
of R(τ) = Ri > 0, to be implemented at τ ∈ [τi, τf ]. For
τ ∈ [0, τi) ∩ (τf ,∞), R(τ) = R(0). In such a context, and
according to (González et al. (2021)), there exist a quasi
optimal single interval minimizing the EFS.

Theorem 2. (Quasi optimal sing. inter. control). Consider
System (4) and a given initial time τi < τ̂ . Then, a
quasi optimal single interval control (producing S∞ ≈ S∗,
which is the maximal value S∞) is given by: Ri such
that S∞(S(τi), I(τi)) = S∗ (we denote this value as Rop

s ),
and τf large enough for the system to approach a QSS
(S(τf ) → S∗, I(τf ) → 0). Any other single interval control
produces S∞ < S∗ and, if S(τf ) > S∗, a second wave will

appear for some ˆ̂τ > τf .

Proof: The proof is given in (González et al. (2021)).
Figure 3 shows the time evolution of S(τ) and I(τ) un-
der single-interval social distancing measures lasting long
enough for the system to reach a QSS before the measure
is interrupted. The initial and final times are given by
τi = 2 and τf = 20 (non dimensional units), respec-
tively, while R(0) = 2.5. For a strong social distancing,
Ri = 0.5 < Rop

i = 1.412 (blue lines), the infected fraction

experiences a second wave at ˆ̂τ = 32.5, 12 times units
after the social distancing is interrupted. Furthermore,
and more important, S∞ = 0.1601, which is significantly
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Corollary 1. (General system behaviour). Consider System
(1) with arbitrary initial conditions (S(τ0), I(τ0), C(τ0)) ∈
X , for some τ0 ≥ 0. Then

• S∞ → 0 for any value of S(τ0) > 0 and I(τ0) > 0,
when R → ∞.

• S∞ remains close to S(τ0) for any value of S(τ0) > 0
and I(τ0) > 0, when R → 0.

• If S(τ0) > S∗ and I(τ0) > 0, S∞ decreases with S(τ0),
and S∞ < S∗.

• If S(τ0) < S∗ and I(τ0) > 0, S∞ increases with S(τ0),
and S∞ < S∗.

• If S(τ0) = S∗ and I(τ0) ≈ 0, S∞ ≈ S∗, for any value
of R (note that S∗ = 1 for R < 1).

Figure 2 shows a plot of S∞(S(τ0), I(τ0)), corresponding
to R = 2.5 and fixed values of I(τ0).

4. SOCIAL DISTANCING CONTROL ACTIONS

Quarantine and isolation, as well as regulations for wear-
ing face masks and avoiding non-essential interactions,
are typical non-pharmaceutical measures that the local
governments take to reduce infection transmission rates.
Social distancing measures affect (decrease) parameter β
or, directly, parameter R in System (1). In this work, this
control action is modeled as follows (Péni et al. (2020))

Ṡ(τ) = −R(τ)S(τ)I(τ) (4a)

İ(τ) = R(τ)S(τ)I(τ)− I(τ) (4b)

Ċ(τ) = I(τ), (4c)

where R(τ) is a signal ranging from R(0) (the initial value
of R which is assumed to be R(0) > 1) to Rmin, with
R(0) > Rmin > 0, which is a minimal value corresponding
to the hardest social distancing. In line with other works, it
is reasonable to assume that R(0) = 3.0 and Rmin = 0.85
for simulation proposes (Flaxman et al. (2020); Li et al.
(2020); Ferguson et al. (2020)).

One critical point concerning social distancing measures is
that they are always bounded temporary control actions,
not permanent ones (as clearly stated in (Sadeghi et al.
(2020)) and (Köhler et al. (2020))). It is not possible to
maintain efficient (or full) social distancing actions for ever
(neither for a time long enough to make the infection to
disappear) since population fatigue due to psychological
or economical problems would systematically relax its
effectiveness.

From an epidemiological point of view, three main general
control objectives can be considered (Di Lauro et al.
(2021)): (i) minimize the epidemic final size (EFS): the
total fraction infected, 1 − S∞ (Ma and Earn (2006);
Katriel (2012)), (ii) minimize the infected peak prevalence

(IPP) or maximum value of I(τ), Î (Morris et al. (2021);
Sontag (2021)), and (iii) minimize the average time of

infection, τ̄ :=
∫∞
0

βS(t)I(t)
1−S(∞) dt. However, there is not yet

a consensus in the optimal control literature about what
is better to minimize and to consider as constraints for
the system variables. We will assume first a single-interval
control action scenario, to reinforce the importance of
minimizing the EFS, while keeping the control of the IPP
for a second stage. The single-interval control action is
given by two times τi < τf defining the initial and final
time of social distancing (with τi < τ̂), and a fixed value
of R(τ) = Ri > 0, to be implemented at τ ∈ [τi, τf ]. For
τ ∈ [0, τi) ∩ (τf ,∞), R(τ) = R(0). In such a context, and
according to (González et al. (2021)), there exist a quasi
optimal single interval minimizing the EFS.

Theorem 2. (Quasi optimal sing. inter. control). Consider
System (4) and a given initial time τi < τ̂ . Then, a
quasi optimal single interval control (producing S∞ ≈ S∗,
which is the maximal value S∞) is given by: Ri such
that S∞(S(τi), I(τi)) = S∗ (we denote this value as Rop

s ),
and τf large enough for the system to approach a QSS
(S(τf ) → S∗, I(τf ) → 0). Any other single interval control
produces S∞ < S∗ and, if S(τf ) > S∗, a second wave will

appear for some ˆ̂τ > τf .

Proof: The proof is given in (González et al. (2021)).
Figure 3 shows the time evolution of S(τ) and I(τ) un-
der single-interval social distancing measures lasting long
enough for the system to reach a QSS before the measure
is interrupted. The initial and final times are given by
τi = 2 and τf = 20 (non dimensional units), respec-
tively, while R(0) = 2.5. For a strong social distancing,
Ri = 0.5 < Rop

i = 1.412 (blue lines), the infected fraction

experiences a second wave at ˆ̂τ = 32.5, 12 times units
after the social distancing is interrupted. Furthermore,
and more important, S∞ = 0.1601, which is significantly
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Fig. 3. System time evolution corresponding to different single-
interval social distancing measures, lasting long enough for the
system to reach a QSS before the measures is interrupted.
Upper plot: dashed line, S(τ); solid line, I(τ); dotted black
line, S∗. Lower plot: R(τ)

smaller than S∗ = 0.4. For soft social distancing, Ri =
1.9 > Rop

i = 1.42 (red lines), S∞ = 0.2172, which is
also significantly smaller than S∗. Finally, for the optimal
social distancing, Rop

i = 1.42, as expected, S∞ = S∗ and
second waves do not take place. In (González et al. (2021)),
other simulation examples can be seen, concerning short-
time single interval controls, i.e., those such that τf is not
large enough for the system to reach a QSS. As stated in
Theorem 2, all these cases produces values of S∞ signifi-
cantly smaller than S∗. Note that among them, one case
is particularly interesting: the one consisting in starting or
interrupting any social distancing Ri > 0 (R = 0 is not a
realistic measure) at the very time τ̂ , when S(τ) reaches
S∗ from above. This strategy, suggested by some works are
far to be optimal from the EFS perspective.

Theorem 2 establishes an upper bound for the steady
state fraction of susceptible individuals (after the end
of social distancing interventions) in the real scenario of
temporary control actions of any kind. Furthermore, it
states that any social distancing interrupted before a QSS
is reached, will produce also a suboptimal value of S∞.
However, the conditions in Theorem 2 only determine
QSS at the end of the interventions, while the transitory
values of the variables remains undetermined. In short,
EFS optimal conditions just fixes the area under the curve
(AUC) of I, but its peaks and general time evolution -
corresponding to an arbitrary sequence of social distancing
- are not determined. These degrees of freedom for the
control actions allows us to propose an optimal control
strategy (MPC) that also fulfill maximal conditions for
the IPP, Imax, while minimizing - as long as possible - the
side effects of social distancing measures.

5. SWITCHING NMPC

5.1 Switching scheme

Social distancing is considered here as a quantified variable
that can take only some specific values in a given range.
We modeled it as

R(τ) = R(0) + (Rmin −R(0))u(τ), (5)

where u(τ) ∈ U is the control input (manipulated vari-
able), where U = {0, 1/4, 1/2, 3/4, 1} is the set of possible
social distancing, being u = 0 the no social distancing
scenario, u = 1 the hardest social distancing (lockdown),
and u = 1/4, u = 1/2 and u = 3/4, intermediary
measures. As an example, u = 1/4 may correspond to
social distancing and mask wearing requirements, u = 1/2
to telework and closure of schools and universities, and
u = 3/4 could be interpreted as a combination of the
two. This may have correspondence, for instance, to the
classification region system implemented by the Italian
Ministry of Health, in which the regions and autonomous
provinces are classified into four areas -red, orange, yellow
and white- corresponding to three risk scenarios, for which
specific restrictive measures are foreseen, (Italian Ministry
of Health (2021)).

This way, System (4) together with (5), can be seen as
a switching system, in which the control signal u selects
one of 5 possible subsystems, that represents the original
system at a given time (Anderson et al. (2021, 2020))

Ṡ(τ) = −Rσ(τ)S(τ)I(τ) (6a)

İ(τ) = Rσ(τ)S(τ)I(τ)− I(τ) (6b)

Ċ(τ) = I(τ), (6c)

where σ(τ) ∈ Σ := {1, 2, . . . , 5} is the switching signal, and
R1 = R(0), R2 = R(0) + 1

4 (Rmin −R(0)), R3 = R(0) +
1
2 (Rmin − R(0)), R4 = R(0) + 3

4 (Rmin − R(0)), and
R5 = Rmin.

5.2 Sampled system

To obtain a discrete-time system to be used by the
MPC controller, System (4) together with (5) is sampled
in the general form xk+1 = F (xk, uk), k ∈ N, where
F (·), is the discrete-time non-linear function, xk is the
state vector at the sampled time k (s.t. xk := x(kTs),
being Ts > 0 the sampling time), and uk stands for
a piece-wise constant input in the form u(t) = uk, t ∈
[kTs, (k+1)Ts]. Function F (·) is obtained by the standard
explicit Runge–Kutta fourth-order (RK4) method. For the
simulation of the non-linear system, the actual trajectory
are computed by the backward differentiation formula
(BDF) using CVODES solver from the SUNDIALS suite
(Hindmarsh et al. (2005)).

5.3 Switching NMPC formulation

Here, a model-based controller - which take explicit advan-
tage of the equilibrium/stability characterization (made in
Section 3) and the switching scheme (made in Sections 5.1
and 5.2) is designed. From an epidemiological perspective,
the control objective is to minimize the EFS while main-
taining the IPP below an upper bound determined by the
health care system and reducing - as much as possible
- the time each control action is implemented. The cost
function to be minimized online by the NMPC controller
is then given by:

VN (x, S∗;u)=

N−1∑
j=0

Q‖Sj−S∗‖2+R‖uj‖2+P‖SN−S∗‖, (7)

where N is the control horizon, Q, R and P are penalizing
positive constants, x = xk = (Sk, Ik, Ck) is the current
state at time k and u := {u0, u1, · · · , uN−1} is the
predicted control sequence. The optimization problem to
be solved at each sampling time k is given by:

min
u

VN (x, S∗;u)

s.t.
x0 = xk,
xj+1 = F (xj , uj), j ∈ I0:N−1

xj ∈ X , j ∈ I0:N−1

uj ∈ U , j ∈ I0:N−1

Ij ≤ Imax, j ∈ I0:N−1

where U = {0, 0.25, 0.5, 1} and constraints Ij ≤ Imax is
devoted to impeded that the infected population over-
passes a maximum Imax. Once the optimal solution is
computed, then the first optimal input u0

0 is applied to the
system, k → k+1, and the iteration continues with a new
solution of the optimization problem (receding horizon
control (RHC) strategy).

The main advantages of the proposed swNMPC are sum-
marized next. (i) The cost function is null at the optimal
behavior (according to the EFS). If other kind of cost
functions is used (i.e. to directly minimize I(τ)), this is not
necessarily true and the problem will not be well posed.
(ii) The upper bound for the IPP, Imax can be arbitrary
selected.

6. SIMULATION RESULTS

The simulations were run on a laptop computer with i7-
4510U (2 cores, 4 threads, 2.0-3.1 GHz) processor and 8GB
RAM under MATLAB R2021a using the BONMIN solver,
and CasADi version 3.5.5 (Andersson et al. (2019)). We
solved the swNMPC optimization Problem 5.3 under the
switched System (6) for a time period τ = 30 considering
different levels of restrictions for the Infected peak preva-
lence, IPP = Imax, even the unconstrained scenario (see
Figure 4 a-d). As it was already said, R(0) is assumed to
be 3, while Rmin = 0.85, The starting time for the social
distancing sequence is fixed at 2 times units. Prediction
horizon value is fixed in 7 times units, penalty matrices is
setting in: Q = 1× 104 for states, R = 1× 10−3 for input,
and P = 1× 106 for the final state.

The simulations show that, under the swNMPC social
distancing strategy, not further epidemics outbreaks were
observed. In fact, this is a key result of the present
work. It is important to note that other works present a
significant increase of the infected compartments once the
control action is dropped and social distancing restrictions
interrupted (e.g., Péni et al. (2020); Morato et al. (2020);
Carli et al. (2020)). Simulations also show that the harder
the infected peak prevalence is, the longer will be the social
distancing period. Consequently, unconstrained scenario
(Figure 4, a-e) has a total of 13 units of time under social
distancing restrictions, and reaches the optimal steady
state (herd immunity) at τ = 16. On the other hand, the
IPP constraint for Imax = 0.05, shows a total period of
25 units of time under social distancing restrictions, and
reaches the optimal steady state at τ = 25. Accordingly,
these results show that the broader is the capacity of
the health care system, the greater is the capacity of

governments to manage the pandemic and the shorter is
the time spent in lockdown periods. As it can be seen, the
strategy tries to minimize - in all cases - the permanence
time under strong social distancing (R = Rmin).

7. CONCLUSION

In this work, a formal dynamical analysis of SIR-type
models is presented to consider their equilibrium set and
stability into the design of a Switching Model Predic-
tive Control to scheduling social distancing policies. The
proposed strategy perform the optimal social distancing
policy that minimize the EFS, while maintaining the IPP
under an upper bound (according to the healthcare ca-
pacity). Discrete levels of social distancing interventions
were considered to avoid unrealistic continuous control
actions. In the same vein, the IPP maximum were included
as a constraint in the NMPC formulation so differences
levels of restriction were analyzed showing is possible if
the susceptible fraction is under the herd immunity value.
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where N is the control horizon, Q, R and P are penalizing
positive constants, x = xk = (Sk, Ik, Ck) is the current
state at time k and u := {u0, u1, · · · , uN−1} is the
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marized next. (i) The cost function is null at the optimal
behavior (according to the EFS). If other kind of cost
functions is used (i.e. to directly minimize I(τ)), this is not
necessarily true and the problem will not be well posed.
(ii) The upper bound for the IPP, Imax can be arbitrary
selected.

6. SIMULATION RESULTS

The simulations were run on a laptop computer with i7-
4510U (2 cores, 4 threads, 2.0-3.1 GHz) processor and 8GB
RAM under MATLAB R2021a using the BONMIN solver,
and CasADi version 3.5.5 (Andersson et al. (2019)). We
solved the swNMPC optimization Problem 5.3 under the
switched System (6) for a time period τ = 30 considering
different levels of restrictions for the Infected peak preva-
lence, IPP = Imax, even the unconstrained scenario (see
Figure 4 a-d). As it was already said, R(0) is assumed to
be 3, while Rmin = 0.85, The starting time for the social
distancing sequence is fixed at 2 times units. Prediction
horizon value is fixed in 7 times units, penalty matrices is
setting in: Q = 1× 104 for states, R = 1× 10−3 for input,
and P = 1× 106 for the final state.

The simulations show that, under the swNMPC social
distancing strategy, not further epidemics outbreaks were
observed. In fact, this is a key result of the present
work. It is important to note that other works present a
significant increase of the infected compartments once the
control action is dropped and social distancing restrictions
interrupted (e.g., Péni et al. (2020); Morato et al. (2020);
Carli et al. (2020)). Simulations also show that the harder
the infected peak prevalence is, the longer will be the social
distancing period. Consequently, unconstrained scenario
(Figure 4, a-e) has a total of 13 units of time under social
distancing restrictions, and reaches the optimal steady
state (herd immunity) at τ = 16. On the other hand, the
IPP constraint for Imax = 0.05, shows a total period of
25 units of time under social distancing restrictions, and
reaches the optimal steady state at τ = 25. Accordingly,
these results show that the broader is the capacity of
the health care system, the greater is the capacity of

governments to manage the pandemic and the shorter is
the time spent in lockdown periods. As it can be seen, the
strategy tries to minimize - in all cases - the permanence
time under strong social distancing (R = Rmin).

7. CONCLUSION

In this work, a formal dynamical analysis of SIR-type
models is presented to consider their equilibrium set and
stability into the design of a Switching Model Predic-
tive Control to scheduling social distancing policies. The
proposed strategy perform the optimal social distancing
policy that minimize the EFS, while maintaining the IPP
under an upper bound (according to the healthcare ca-
pacity). Discrete levels of social distancing interventions
were considered to avoid unrealistic continuous control
actions. In the same vein, the IPP maximum were included
as a constraint in the NMPC formulation so differences
levels of restriction were analyzed showing is possible if
the susceptible fraction is under the herd immunity value.
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González, A., Anderson, A., Ferramosca, A., and
Hernandez-Vargas, E. (2021). Dynamic characterization
of control SIR-type systems and optimal single-interval
control. arXiv preprint arXiv:2103.11179.

Harko, T., Lobo, F.S., and Mak, M. (2014). Exact analyti-
cal solutions of the susceptible-infected-recovered (SIR)
epidemic model and of the SIR model with equal death
and birth rates. Applied Mathematics and Computation,
236, 184–194.

Hindmarsh, A.C. et al. (2005). SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers.
ACM Transactions on Mathematical Software (TOMS),
31(3), 363–396.

Italian Ministry of Health (2021). Covid-19, situation in
italy. Classification of Regions in Italy, accessed June
21, 2021.

Katriel, G. (2012). The size of epidemics in populations
with heterogeneous susceptibility. Journal of mathemat-
ical biology, 65(2), 237–262.

Kermack, W.O. and McKendrick, A.G. (1927). A contri-
bution to the mathematical theory of epidemics. Pro-
ceedings of the royal society of london. Series A, Con-
taining papers of a mathematical and physical character,
115(772), 700–721.
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