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ABSTRACT
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the
highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini.
Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved
catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely
providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly
facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly
with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and
prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct
evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring
proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA
and protein coevolutionwithin RNP enzymes.

Abbreviations: RNP, ribonucleoprotein; TERT, telomerase reverse transcriptase; TR, telomerase RNA
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Introduction

It has been more than a quarter century since the initial discovery
of telomerase as the solution to the long standing end-replication
problem for linear eukaryotic chromosomes.1,2 Much progress has
been made in the identification of telomerase core components,
the catalytic telomerase reverse transcriptase (TERT) and intrinsic
template-bearing telomerase RNA (TR), from evolutionary dis-
tinct groups of species across eukaryotic lineages.3 Characteriza-
tion of these disparate TRs revealed profoundly excessive diversity
in length, sequence, and structure. Nonetheless, within this multi-
formity of divergent structures lies shared specific features neces-
sary and sufficient for TR to function as the essential RNA
component of the telomerase ribonucleoprotein (RNP) rather
than merely a rudimentary and common template for reverse
transcription. The origin of telomerase is seemingly associated
with the internalization of an RNA that facilitates telomerase
enzymatic function, regulation, and localization within the cell.
Recent TR discoveries and structure determination have uncov-
ered the evolutionary connections and implied common ancestors
for TR, upheaving and overturning long held assumptions for tel-
omerase evolution. This review will discuss the possible origins of
the telomerase RNP core complex, the driving forces behind telo-
merase evolutionary diversity, and the fundamental features that
distinguish and separate TRs from other non-coding RNAs.

Solutions to the end-replication problem

Early in the eukaryotic lineage, linear chromosomes became the
universal genetic structure.4 As opposed to circular chromosomes

that are simple to replicate and maintain, linear chromosomes
generate uniquely specific problems inherent to the DNA poly-
merases and require novel solutions. Conventional DNA polymer-
ases fail to fully replicate linear DNA termini by requiring an RNA
primer for the initiation and 50-to-30 directionality for DNA catal-
ysis. The outcome of these limitations were initially proposed and
described as the ‘end-replication problem’ for lagging strand syn-
thesis.5,6 With the improved understanding that telomeric DNA
has 30-overhangs, the end-replication problem has been revised
and designated for leading strand synthesis.7 Following chromo-
some duplication, the blunt ends of DNA produced from leading
strand synthesis undergo resection by 50–30 exonucleases to recre-
ate the characteristic 30-overhangs necessary for specific protein
binding.8-10 The progressive loss of the terminal DNA segments
after each genome duplication event eventually prevents further
cell replication, commonly referred to as the ‘Hayflick limit’,
resulting in cellular senescence.11,12

The telomerase enzyme counterbalances the progressive loss
of chromosome terminal DNA by adding telomeric DNA repeats
onto chromosome ends.13 Telomerase produces vast arrays of
telomeric DNA tracts from its inordinately shorter template
located within the TR component.2,13 This unique property of
telomerase stems from the two discrete phases of the telomerase
catalytic cycle. The initial phase of this catalytic cycle is the syn-
thesis of a single telomeric DNA repeat directed by the TR tem-
plate. Upon reaching the template boundary, a template-
translocation event regenerates the template, granting additional
telomeric DNA repeat synthesis. The reiterative use of the short
internal TR template underlies telomerase repeat addition
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processivity. This reiterative catalytic cycle for processive telo-
meric DNA repeat synthesis by telomerase is extraordinary for a
DNA polymerase, requiring a specialized mechanism and telo-
merase-specific structural elements for the unique template
regeneration process following each repeat synthesized.

A myriad of other, less common, resolutions to the end-
replication problem have arisen in some eukaryotes, while telo-
merase is the prevailing solution.14,15 Repeated insertions of ret-
rotransposons into chromosome terminal regions is employ
ed for telomere length maintenance in a small group of insect
species that lacks discernable telomerase enzyme components
or detectable telomerase activity.16,17 The lack of telomerase
within only a small and closely related group of species, yet
retained in neighboring species, indicates that telomerase was
recently lost within the dipteran fly insect lineage.18 Telome-
rase-independent maintenance has been most extensively stud-
ied in Drosophila, whose telomeres are composed of tandem
arrays of the HeT-A and TART retrotransposons—parasitic
genetic elements capable of self-replication through an RNA
intermediate.19 Outside of the Drosophila genus, the chromo-
some ends of dipteran fly species comprise satellite sequen-
ces—highly repetitive DNA sequences of 50–800 bp—which
are prone to homologous recombination for satellite sequence
amplification to extend these terminal sequences.20-22

While the overwhelming majority of examined cancer cells
rely on telomerase for cellular immortalization, a small subset
of specific cancers relies on homologous recombination-medi-
ated pathways for telomere length maintenance. Collectively
termed Alternative Lengthening of Telomeres (ALT), the pri-
mary mechanism driving ALT is homologous DNA strand
invasion and using the invaded strand as template for telomere
elongation. Telomeric DNA strand invasion can occur as either
(1) self-strand invasion where the DNA forms ‘t-loops’,23 dis-
placement loops formed at the telomere ends, or as (2) neigh-
boring strand invasion of sister telomeres, resulting in excessive
telomere sister exchanges. A hallmark of ALT—for which there
is active assay development for clinical testing24—is the forma-
tion of circular extrachromosomal telomeric DNA fragments
that result from these recombination events, termed C-circles.
Interestingly, in disparate bacterial families that harbor linear
chromosomes as well as extragenomic linear plasmids, DNA

ends are maintained by covalently linking the 30- and 50-ends
of each terminus to form various closed hairpin structures or
by capping chromosome ends with covalently bound terminal
proteins.25-28

The origins of telomerase

The telomerase enzyme arose specifically within and is found
ubiquitously throughout the eukaryotic lineage as a successful
solution to the end-replication problem.1,2 Of the two essential
components comprising the telomerase RNP core complex, the
TERT protein is highly conserved with a central catalytic
domain that is homologous to conventional RTs found in both
eukaryote and bacteria domains of life.29-31 Moreover, the pres-
ence of the catalytic TERT protein in early branching eukar-
yotes32,33 suggests that telomerase originated as an ancient RT
that internalized a primitive template-bearing RNA early dur-
ing eukaryote evolution and later evolved into modern telome-
rase RNPs with essential and stably associated TR components.

The catalytic domains of TERT and conventional RTs share
highly conserved motifs that form the active site for RNA-depen-
dent DNA polymerization.29,30 Sequence analysis of the conserved
RT motifs between TERT and other RTs indicates that TERT is
most closely related to non-LTR retrotransposon RTs
(Fig. 1).17,29,34 Telomerase and non-LTR retrotransposons simi-
larly employ target-priming reverse transcription for DNA synthe-
sis. The endonuclease domain of non-LTR retrotransposons
permits target-priming and insertion throughout the chromosome
interior. In contrast, the lack of an endonuclease domain in the
TERT protein restricts telomerase to targeting chromosome ter-
mini exclusively. Remarkably, a select group of Penelope-like Ele-
ments (PLEs) retrotransposons RTs shares outstanding sequence
homology,35 as well as several key characteristics, with the TERT
protein (Fig. 1).35 These PLEs lack an endonuclease domain and
employ target-priming for DNA synthesis targeting chromosome
termini.35 Thus, it has been postulated that an ancient retrotrans-
poson, with properties similar to these termini-proximal PLE RTs,
is the ancestor for extant TERT proteins.17,34

While an ancient RT with properties reminiscent of PLEs
seemingly fulfills a ‘missing link’ and possible common ances-
tor for TERT proteins, far less is known of the ancestral RNA

Figure 1. Phylogenetic relationship and structural domains of TERT and conventional RTs. (Left) The TERT protein is closely related to the RTs from PLEs and non-LTR ret-
rotransposons,147 which similarly employ target-priming reverse transcription. The phylogenetic tree is based on the shared motifs of the RT domain with bacterial retrons
and retrointrons as the outgroup for eukaryotic retrotransposons.148 (Right) Domain organization of retron, retrointron and retrotransposon RTs. The central catalytic RT
domain (red) is flanked by variable accessory domains, including endonuclease (EN, violet), integrase (INT, indigo), RNase-H (RH, pink), RNA binding domain (RBD, blue),37

and a thumb domain (orange). TERT contains a large N-terminal extension compromising of the DNA binding TEN (green) domain and TR binding domain (TRBD, blue).
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that gave rise to the integral and exceedingly diverse TRs. TRs
from all examined species are highly structured RNAs that
form stable RNP complexes with TERT proteins and are indis-
pensable components of functional telomerase enzymes.36

Given the fact that TERTs and retrotransposon RTs are closely
related and share a common ancestor, a possible progenitor for
TRs is a retrotransposon RNA intermediate that physically
associated with its retrotransposon RT.4,37,38 However, there
are fundamental differences between TRs and retrotransposon
RNA intermediates. The TERT protein and TR component are
encoded by two separate and distinct genes;29,30,39-42 the TR
transcript is disparate from the TERT protein mRNA.

TERT and TR encoded by two separate genes is noticeably
reminiscent of the curious relationship between the separately
encoded retrotransposons, long and short interspersed nuclear
elements (LINEs and SINEs, respectively). SINEs are long non-
coding RNAs that coopted the separately expressed LINE RTs
for DNA synthesis.43 Therefore, it is conceivable that TERT
emerged from an ancient RT—similar to the LINE RT—and
was coopted by a separately expressed RNA molecule that pro-
vided the template sequence for DNA synthesis primed at chro-
mosome termini (Fig. 2A). The evolution of telomerase from
this proposed ancient RT and coopting RNA would require
several critical events to shape and form a nascent telomere-
extending enzyme (Fig. 2). It has recently been proposed that
retrotransposon elements are responsible for the very forma-
tion of telomeres as arrays of short, highly repetitive DNA seg-
ments.4 This coopting RNA would require a region compatible
with early telomere sequences for DNA synthesis by the appro-
priated RT to function as a nascent telomere maintenance
enzyme. Internalization of a progenitor template within the
larger RNA would have necessitated a physically defined tem-
plate boundary (Fig. 2B). RNA appropriation of an RT would
have been improved by the development of structural elements
that enhanced RNA-protein interactions (Fig. 2C). This stable
RNP assembly would promote further integration of this RNA
with the RT and, over the course of evolution, greater complex-
ity and dependency of the RT on the RNA would be expected
(Fig. 2D). The details of these RNA-protein elements for RNP
formation within modern telomerases will be explored further
below.

An RNA template specialized for DNA repeat synthesis

The minimal requirement for a TR progenitor would be to pro-
vide the template for de novo synthesis of DNA onto chromo-
some termini for telomeric DNA length homeostasis. In the
vast majority of eukaryotes, including vertebrates, echino-
derms, filamentous fungi and early diverging flagellates, telo-
meric DNA contains repeats of the simple hexanucleotide
sequence 50-(TTAGGG)n-30 (Fig. 3).3 Having deviated from
this canonical sequence, ciliates and plants synthesize telomeric
DNA sequences with a single point mutation or insertion, while
telomeric DNA from most yeast species is more divergent.44-46

The predominance of a single sequence—albeit permutated or
slightly modified—suggests there was a common ancestral telo-
merase enzyme that harbored an RNA template for the synthe-
sis of this telomeric DNA repeat sequence.

For the synthesis of telomeric DNA repeats, the RNA template
has two distinct segments: the alignment and templating regions
(Fig. 3). The alignment region promotes base-pairing with the
DNA primer prior to each cycle of DNA synthesis, while the tem-
plating region specifies the nucleotide sequence synthesized. Spe-
cies with the canonical TTAGGG telomeric DNA sequence have
TR templates complementary to typically 1.5 to 2 repeats of the
telomeric DNA sequence.39-41,47 For instance, the human TR tem-
plate is 11 nucleotides in length with a 5 nucleotide alignment
region and a 6 nucleotide templating region that encodes for the
specific telomeric DNA sequence GGTTAG, a permutation of
TTAGGG (Fig. 3).48 Telomerases from different groups of species
synthesize distinct specific telomeric DNA sequences, one of the 6
possible permutations of TTAGGG (Fig. 3). However, within a

Figure 2. A model for the origin of the telomerase RNP. (A) Telomerase likely origi-
nated from an ancient retrotransposon RT that lost its endonuclease domain and
associated with a non-coding RNA transcribed from a separate gene. (B) The
ancient TR contains a specialized template with the 50 boundary defined by a TBE
(blue). (C) Toward becoming an integral component of the telomerase enzyme,
this proto-TR would have evolved a primitive pseudoknot (green) as found in pro-
tozoan TRs and a protein-binding structural element (red) for RNP assembly and
activity stimulation, which is present in all known modern TRs. (D) TR evolution in
fungal and metazoan lineages accompanied the development of a more complex
pseudoknot (green).
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tract of telomeric DNA, the specific DNA sequence forming an
individual repeated unit is indistinguishable.

The alignment region within the TR template is essential for
telomerase repeat addition processivity, the reiterative synthesis
of telomeric DNA repeats without complete disassociation of
telomerase from the DNA strand.49 The length of the template
alignment region directly impacts telomerase repeat addition
processivity. Select rodent species have TRs with a shortened
alignment region of merely 2 nucleotides and subsequently
lower repeat addition processivity (Fig. 3).50 The low repeat
addition processivity of rodent telomerase can be dramatically
increased by extending the length of the alignment region.51

Reciprocally, reducing the length of the human TR alignment
region correspondingly reduces human telomerase repeat addi-
tion processivity. The small population of yeast TRs harbor
considerably larger and more divergent template sequences
that is consistent with their more degenerate telomeric DNA
repeat sequences.52 The alignment region of these yeast TRs is
less well defined due to the longer and more degenerate telo-
meric repeats synthesized (Fig. 3), which reduces yeast telome-
rase repeat addition processivity.53

Beyond influencing processive telomeric DNA repeat addi-
tion, the specific sequence of the template directly affects telo-
merase enzymatic activity and even regulates template
utilization. Mutations within the template sequence of human
TR alter the rate of telomeric DNA repeat synthesis.54 A single
nucleotide within the human TR template was found to serve
as a critical signal for pausing continuous nucleotide addition
at the template boundary.55 Loss of this pause signal would
introduce stuttering across the template, stalling nucleotide
addition at random points and generating heterogeneous telo-
meric DNA products. This pause signal functions, in part, to

define the end of the templating region together with RNA
structural elements.

The 50 boundary of the TR template requires physical defini-
tion and enforcement to prevent DNA synthesis into the flank-
ing non-template regions. Reverse transcribing the unintended
sequence beyond the template boundary results in the synthesis
of non-telomeric DNA sequences onto the chromosome ends,
which impedes the binding of telomeric proteins and is delete-
rious for telomere function.56 Among all known TRs examined,
two distinct types of template boundary elements (TBEs) have
been found for 50 boundary definition: (1) a local template-
adjacent helix common to the vast majority of eukaryotes, or
(2) a long-range base-paired core-enclosing helix found exclu-
sively within the vertebrate lineage (Fig. 4A).

The template-adjacent helix TBE is conserved across eukaryotic
lineages that include ciliates, flagellates, fungi and echinoderms
(Fig. 4A). This TBE defines the template boundary by physically
restricting the availability of single-stranded RNA to be used as
template through either TERT-binding or simple base-pairings
that form the helix. In ciliate TRs, the template-adjacent TBE is a
short stem-loop structure, termed helix II, with a highly conserved
sequence at the base of the stem that serves as the binding site for
motif CP2 located within the TR-binding domain (TRBD) of the
TERT protein (Fig. 4B).57-60 TERT binding impedes utilization of
template-flanking sequence as template. In the basal eukaryote spe-
cies, flagellates, the TBE similarly comprises a larger template-adja-
cent helix that potentially serves as a TERT binding site.61 The
fungal TBE is a stable helical structure located immediately
upstream of the template.41,62,63 Within fission yeast, the TBE helix
even partially overlaps with the template, resulting in DNA prod-
ucts with sequence heterogeneity due to the intermittent use of the
overlapping residue as template.64

Figure 3. Evolution of telomeric DNA repeat and TR template sequences. (Left) Simplified phylogenetic tree of eukaryotic lineages.149 Branch length does not reflect evo-
lutionary distance. (Right) The TR template is composed of the 30 alignment (orange) and 50 templating (green) regions. The alignment region positions the 30-end of the
target DNA through base-pairing interactions, while the templating region specifies the DNA sequence synthesized. Budding and fission yeast TR templates are degener-
ate, with the alignment and templating regions poorly defined (open box). The 50-TTAGGG-30 (blue) telomeric DNA repeat is evolutionary conserved and found in most
groups of eukaryotes including early branching flagellates. Deviations from the putatively ancestral telomeric DNA repeat sequence are denoted (black). Telomerases
from different species synthesize different permuted registers of the TTAGGG sequence. Representative species shown include Trypanosoma brucei, Tetrahymena thermo-
phila, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Saitoella complicata, Neurospora crassa, Strongylocentrotus purpuratus, Mus musculus,
and Homo sapiens.
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The core-enclosing helix TBE is found throughout verte-
brate TRs and is dissimilar from the helix proximal TBE, func-
tioning as a tether that restricts the template-flanking linker
region from reaching the TERT active site.51 The vertebrate
TBE mechanism relies on the length of the single-stranded
linker spanning the template and the distal core-enclosing
helix, termed P1 (Fig. 4). The TFLY motif, identified in the
crystal structure of a teleost fish TRBD, has been implicated in
binding the P1 helix or potentially the adjacent single-stranded
linker.65 Interestingly, TRs from select rodents lack a physical
TBE and instead have the 50-end of TR merely 2 nucleotide
upstream of the template.66 This lack of sequence upstream of

the template evidently functions as the rodent TBE by prevent-
ing DNA synthesis beyond the template boundary.50

Despite the close relationship to vertebrates, echinoderm TR
does not employ the vertebrate-type TBE mechanism. Instead,
the echinoderm TBE comprises a template-adjacent stem-loop,
termed P1.1, that resembles those found in ciliate, flagellate,
and fungal TRs (Fig. 4A).47 Remarkably, the deletion of the
echinoderm P1.1 stem-loop shifts the physical boundary to the
distant P1 core-enclosing helix, which is then structurally
equivalent to the vertebrate core-enclosing helix TBE. This
would suggest that the vertebrate TBE is likely is a functional
compensation for the loss of the template-adjacent TBE. The

Figure 4. TR domains essential for telomerase enzymatic activity. (A) Within all TRs is the template core domain (red box) with the TBE (blue) and later branching species
include an essential pseudoknot structure (PK). The percentage of activity generated by the template core, without the remainder of the RNA is denoted. TR in most spe-
cies is transcribed by RNA pol II, with a specific and unique transition event to RNA pol III (orange) within the ciliate lineage. The shared CR4/5 (green) among the evolu-
tionarily distant vertebrate and fungal lineages implies a common ancestor with the CR4/5 element.41 The echinoderm eCR4/5 (green) lacks the P6.1 stem-loop and its
presence is less essential for function, while the S. cerevisiae TWJ (black) lacks the P6.1 stem-loop and is not required for function, demonstrating more outlier features
from the presumed common TR ancestor (green line). Ciliate helix IV has potentially arisen from convergent evolution (orange). (B) RNA binding motifs in the TERT pro-
tein. Schematic of the TERT protein from vertebrates and ciliates denoting the 4 structural domains, TEN, TRBD, RT and C-terminal extension (CTE). Within the TRBD, the
TFLY and CP2 motifs (blue) bind TBE, while the CP and QFP motifs (green) associate with CR4/5. Association of ciliate helix IV with TRBD motifs (orange) is speculative.
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more prevalent template-adjacent TBE is presumably an early-
adopted essential feature of the common ancestral TR, as it is
even found in the early branching flagellate TRs (Figs. 2 and 4).

Evolution of the template core domain

The TR template is located within a large enclosed loop,
termed the template core domain, that itself exhibits binding
affinity to the TERT protein.67,68 This TERT-binding affinity
has been proposed necessary for positioning the template
within the active site and seemingly important for facilitating
the movement of the RNA template during telomerase cata-
lytic cycles.69 Curiously, the template can be excised from the
template core domain and added back in trans with a DNA
primer as an RNA/DNA duplex to serve as substrate for DNA
synthesis by telomerase,70 similar to the reaction catalyzed by
conventional RTs. The remaining non-template portion of the
template core domain, however, remains essential for telome-
rase enzymatic function. This indicates that the remainder of
the template core domain is an essential element of the telo-
merase RNP and functions beyond merely bringing the tem-
plate to the TERT active site.

In the vast majority of known TRs, a pseudoknot structure is
present and located downstream of the template within the TR
secondary structure.36,71,72 However, the specific size and sec-
ondary structure complexity of pseudoknots in the template
core domain are highly variable among distinct evolutionary
lineages. Metazoan and fungal TR pseudoknots consist of
larger, more stable helices and are necessary for telomerase
enzymatic activity (Fig. 4A).40,41,52,73-75 In contrast, ciliate TR
pseudoknots are rather primitive (Fig. 4A) and are functionally
dispensable for telomerase in vitro enzymatic activity, yet
apparently necessary for in vivo telomerase function.76,77

Recent functional determination of the trypanosome minimal
TR domains found no evidence to support even a primitive
pseudoknot in the template core domain (Fig. 4A).61 The lack
of a pseudoknot structure in trypanosome species profoundly
alters the paradigm for TR functional requirements and its
structural evolution. The lack of a pseudoknot in the basal
eukaryote species trypanosome, together with the minimally
structured and seemingly dispensable ciliate pseudoknot, sug-
gests that complex and essential pseudoknot structures found
in higher eukaryotes was later evolved. Thus, the common
ancestor for extant TRs presumably lacked a template adjacent
pseudoknot structure.

The disparity in pseudoknot presence is reflected in different
TERT binding locations within the TR template core domain.
In ciliate TRs, the TBE helix II is a crucial binding site for the
TERT protein.59,78 The base of helix II contains a highly con-
served sequence motif that is recognized and bound by the
TERT protein.60 Within metazoan and fungal TRs, the pseudo-
knot appears to contain a TERT-binding site, as the human TR
pseudoknot can be physically disjoined from the template and
the core-enclosing helix P1, yet assemble with its TERT protein
to reconstitute catalytic activity with an exogenous RNA/DNA
duplex substrate.70 However, specific motifs or residues within
the pseudoknot structure responsible for TERT protein interac-
tions have not yet been identified.

Apart from TERT binding, vertebrate and fungal TR pseu-
doknots are essential for telomerase enzymatic function.73,75,79

Within human TR, a unique triple helix structure was found at
the helical junction of the pseudoknot structure.80 Similar triple
helix structures have also been identified, or predicted, in TR
pseudoknots from other species that include fungi.81,82 Within
the triple helix, the 20-hydroxyl groups of invariant adenosine
residues appear to be critical for telomerase activity.81 More-
over, structural studies of addition helical regions within the
human pseudoknot structure revealed a sharp kink within the
helix proximal to the template, which is possibly important for
template positioning or dynamic movements during the telo-
merase catalytic cycle.83,84 However, the precise function of
either the essential pseudoknot or triple helix has yet to be elu-
cidated, nor the underlying reason for tolerating the lack of a
pseudoknot within basal eukaryote species.

A second TERT-bound TR element for
activity stimulation

Telomerase functions as an RNP enzyme, requiring specific and
stable interactions between the TERT protein and TR. While
the TR template core domain provides weak interaction with
TERT,67,68 a second and stronger TERT binding site is located
at a variable distance from the template core domain (Fig. 4A).
Within separate evolutionary lineages, this TR template-distal
TERT-binding site folds into distinct secondary structures and
was identified as the conserved regions 4/5 (CR4/5) domain in
vertebrates,85 3-way junction (TWJ) in budding yeasts,86 and
helix IV in ciliates.87 Analogies have been suggested for these
lineage-specific distal stem-loop structures,71 however, evolu-
tionary connections have remained tenuous. While vertebrate
CR4/5 and budding yeast TWJ similarly comprise an intersec-
tion of 3 helical regions,86 budding yeast TWJ lacks the verte-
brate-specific stem-loop P6.1 that is extremely well-conserved
and consists of a 4-bp stem followed by a 5-nucleotide distal
loop.85 In contrast, ciliate helix IV is merely a simple stem-loop
structure.88 The evolutionary origins and connections among
these lineage-specific structural domains from ciliates, budding
yeasts and vertebrates have remained enigmatic.

Despite their massive size, the recent identification of fila-
mentous fungal TRs were instrumental in reconciling the evo-
lutionary connections among vertebrate and fungal TRs.41,89

Remarkably, the minimal TR core elements for filamentous
fungi and fission yeasts were found to contain structural ele-
ments that are highly similar to vertebrate CR4/5 and termed
herein fungal CR4/5. Structurally, fungal CR4/5 comprises
three highly conserved short helices, which includes the excep-
tionally critical P6.1 stem-loop (Fig. 4A).41 Functionally, fungal
CR4/5 from filamentous fungal and fission yeast TRs are identi-
cal to vertebrate CR4/5, being absolutely essential for the recon-
stitution of telomerase activity and can be bound by the TERT
protein in trans as an RNA fragment physically separated from
the template core domain.41 Moreover, vertebrate and fungal
CR4/5 require an invariant adenosine residue located between
the P6 and P6.1 helices for TERT binding, further supporting
structural and functional homology among vertebrate and fun-
gal CR4/5.90 The presence of CR4/5 in vertebrate and fungal
lineages indicates the metazoan-fungal common ancestor likely
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harbored a CR4/5 element. This suggests that the TWJ from
budding yeast is divergent, having evolved away from the
implied fungal common ancestor. Moreover, budding yeasts do
not seem to require the TWJ for telomerase function. Budding
yeast cells survive and retain cellular proliferative capacity with
a miniature Saccharomyces TR that lacks the TWJ, demonstrat-
ing that the TWJ is dispensable within the cell.91 However,
there have been some conflicting results with yeast Kluyvero-
myces TR. Mutations that disrupt this TWJ have been reported
to abolish in vitro analyzed telomerase activity.86 Thus, further
analysis in budding yeast is necessary to determine the require-
ment of the TWJ for telomerase function.

Interestingly, despite their evolutionary close proximity to
the vertebrate lineage, echinoderm TRs evidently lack the
essential and presumed ancestral CR4/5.47,92 Instead, there is
an internalized helical region within the echinoderm TR central
region that is functionally equivalent to the vertebrate and fun-
gal CR4/5, termed equivalent CR4/5 (eCR4/5). While function-
ally equivalent to CR4/5, the echinoderm eCR4/5 structurally
lacks the exceptionally critical P6.1 stem-loop (Fig. 4A). As an
apparent consequence, echinoderm telomerase is less depen-
dent on eCR4/5 for catalytic activity, while vertebrate and fun-
gal telomerases are absolutely dependent on CR4/5 for activity
(Fig. 4A). The echinoderm TERT and the template core
domain are sufficient to generate a basal level of activity at 30–
40% of the full activity.47 The gain-of-function for the template
core domain presumably facilitated the structural transition
from the essential CR4/5 to the less critical eCR4/5 of echino-
derm TR.

The functional requirement for two TR structural domains,
the template core and either CR4/5 or eCR4/5, to reconstitute a
full-level of telomerase activity in vitro is conserved in the early
branching flagellates. The recent structural and functional
study of the minimal trypanosome TR domains identified an
eCR4/5 domain that is located approximately 350 nucleotides
downstream of the template core domain and is important for
telomerase activity.61 In accordance with echinoderm eCR4/5,
flagellate eCR4/5 lacks the vertebrate and fungal essential P6.1
stem-loop (Fig. 4A). Moreover, the flagellate TERT protein and
TR template core domain can reconstitute a basal level of telo-
merase activity without eCR4/5, similar to echinoderms.61 The
identification of an eCR4/5 element in early diverging eukar-
yotes suggests that a second TERT-bound TR element for telo-
merase RNP formation and enzymatic function is a conserved
feature from the common ancestor of telomerase.

The distal portion of ciliate TR helix IV has been considered
analogous to CR4/5, although it merely reconstitutes weak activity
in trans with the template core domain.87 Distinct from CR4/5
and eCR4/5, ciliate helix IV has weak affinity to the TERT protein
evidenced by its inability to reconstitute a full-level of activity
when separated from the template core domain.87 The weak bind-
ing affinity of helix IV is presumably due to the highly compact
structure of ciliate TRs. Moreover, the proper positioning of the
helix IV distal loop to the TERT protein requires the ciliate-
specific p65 protein to stabilize the kink in helix IV,93 further
reducing the evolutionary selection pressure for strong TERT-
binding affinity. The primary driver for the compaction of the cili-
ate TR was likely the transition of transcription machinery from
RNA polymerase II (pol II) to pol III which is specific for the

synthesis of small RNA transcripts.88 This single event would have
truncated the TR as pol III transcription terminates at U-rich sites
that were likely present in the ancestral ciliate TR gene and would
have then eliminated an ancestral CR4/5 or eCR4/5 element. The
loss of the presumed ancestral ciliate CR4/5 or eCR4/5 could have
been compensated for by a basal-level of telomerase activity gener-
ated by the template core domain, with the later emergence of
helix IV by convergent evolution. It is possible, while seemingly
less likely, that ciliate TR was shifting toward a diminutive RNA
prior to the transition to pol III. The latter possibility would sug-
gest that helix IV is a degenerate CR4/5 or eCR4/5 with reduced
functionalities from divergent evolution.

The exact mechanism of CR4/5 and eCR4/5 conferring or
stimulating telomerase enzymatic activity has remained enigmatic.
Nonetheless, there has been considerable progress in determining
the structure and binding position of vertebrate CR4/5 on the
TERT protein.90,94 While the vertebrate CR4/5 includes three heli-
ces, P5, P6 and P6.1, the P6 helix and helical junction alone are
responsible for binding by TERT.85,94,95 UV-crosslinking mapped
the location of CR4/5 binding to the TRBD surface comprising
the CP and QFP motifs (Fig. 4B).94 The molecular basis for CR4/
5-TRBD recognition was later provided by a high-resolution crys-
tal structure of the RNA-protein complex.90 However, the func-
tion of the extremely conserved and absolutely essential P6.1
stem-loop could not be discerned. It has been postulated that the
CR4/5 P6.1 stem-loop reinforces stable folding of TERT domains,
allosterically buttressing the critical active site for telomerase DNA
catalysis.90,94 Analysis of CR4/5 in the context of a larger TERT
protein fragment is necessary to examine this possibility and
resolve the mystery of CR4/5 function. Further experimentation
involving the structurally distinct eCR4/5 is needed to discern
whether the eCR4/5 mechanism is similar to CR4/5 or has a sepa-
rate underlying purpose for telomerase activity stimulation.

Diverse mechanisms for TR biogenesis

While the template core and CR4/5 domains are responsible for
providing a defined template and stable RNP assembly, addi-
tional structural domains located principally in the 30 portion
of TR are essential for TR biogenesis and appear to be the pri-
mary driver of TR diversity (Fig. 5). The 30 biogenesis domains
of TRs from evolutionarily distinct groups of species employ
seemingly mutually exclusive RNA metabolism pathways for
TR 30-end processing, stabilization, and nuclear compartment
localization. TR biogenesis domains provide binding sites for a
plethora of species-specific TR accessory proteins necessary for
discrete biogenesis pathways.40,41,47,52,88,96-100 The cooption of
these distinct biogenesis pathways by TR requires the incorpo-
ration of appropriate binding sites and structural elements to
accommodate the necessary accessory proteins (Fig. 5). Thus,
separate biogenesis pathways employed across species is the
apparent dominant source for TR overall size, sequence and
secondary structure disparities.

Vertebrate TR shares a biogenesis pathway with H/ACA
small nucleolar (sno) and small Cajal body (sca) RNAs (Fig. 5).
The 30 portion of vertebrate TRs contain a conserved structural
domain, termed the H/ACA, that comprises a tandem array of
stem-loops interspersed with the highly conserved box H and
ACA sequence motifs.101,102 In common with H/ACA

726 J. D. PODLEVSKY AND J. J.-L. CHEN



snoRNAs, two copies of the dyskerin complex protein tetrad—
consisting of dyskerin, NOP10, NHP2, and GAR1—are bound
to the vertebrate TR H/ACA domain.103-108 The 30-apical loop
in the human TR H/ACA domain is bound by telomerase Cajal
body protein 1 (TCAB1) for specific localization to Cajal bod-
ies, a nuclear compartment rich in RNA splicing and post-tran-
scriptional modification machineries.109 Additionally, within
this 30-apical loop is a biogenesis promoting (BIO box)
motif.110,111 At the 50-end of vertebrate TR is a G-quadruplex
structure, which is resolved by the stable association of the
RHAU DEAH-box RNA helicase.112 The nascent vertebrate TR
precursor is transcribed by RNA pol II with a poly(A) tail and
the 30-end is processed by the poly(A)-binding protein 1
(PABPN1) and the poly(A)-specific RNase (PARN).113,114 Echi-
noderm TRs likely share a highly similar biogenesis pathway
with vertebrate TRs, as they contain a homologous H/ACA
domain (Fig. 5).47,92

While vertebrate and presumably echinoderm TRs have
acquired a sno/scaRNA biogenesis pathway,72 fungal TRs utilize
the small nuclear RNA (snRNA) biogenesis pathway for TR matu-
ration.72,100,115,116 Following the snRNA biogenesis pathway, the
30-end of budding and fission yeast TR harbor a binding site for the
Sm protein heptameric ring for end protection and maturation.
However, there is diversity in the TR 30-end processingmechanism
employed by fungal species (Fig. 5). Select budding yeasts that
include Saccharomyces rely on the Nrd1-Nab3-Sen1 non-coding
RNA transcription termination pathway for TR 30-end process-
ing,117 while fission yeast, Candida budding yeast, and all known
filamentous fungal TRs are processed by spliceosomal cleavage.118-
121 Spliceosomal cleavage relies on RNA intron splicing machinery
that has been coopted for TR 30-end cleavage by blocking the sec-
ond transesterification reaction. Moreover, the vastly larger fungal
TRs function as flexible scaffolds for binding and positioning

accessory proteins.91 The fungal-specific helix formed between the
template and the pseudoknot in budding and fission yeast TRs is
bound by the ever-shorter telomere 1 protein (Est1p), a critical pro-
tein for telomere maintenance (Fig. 5).122-124 In contrast, ever-
shorter telomere 3 protein (Est3p) does not directly bind to yeast
TR and instead interacts with the TERT protein.125 The apical
stem-loop of the template-adjacent TBE helix from Saccharomyces
TR harbors a Ku70/80 heterodimer binding site, which plays a role
in telomerase recruitment to telomeres (Fig. 5).126-128 An internal
loop adjacent to the Est1p binding site in Saccharomyces TR shares
a high degree of sequence similarity with the P3 domain of the
RNase P andmitochondrial RNase P (MRP) RNA component and
was termed the P3-like domain.125,129 The Saccharomyces TR P3-
like domain, similar to the P3 domain from the RNase P andMRP
RNA component, is bound by the processing of precursor 1 (Pop1)
and the Pop6/7 heterodimer proteins for functional telomerase
assembly, further demonstrating the phylogenetic diversity of telo-
merase holoenzyme composition (Fig. 5). The TR biogenesis path-
way for the largest fungal group of species, filamentous fungi, has
yet to be determined (Fig. 5).

Ciliate TRs follow the biogenesis pathway common for small
pol III RNA transcripts (Fig. 5). RNA pol III transcription termi-
nates at a U-rich region, resulting in RNA products with a short
30-poly(U) tract.88 Apart from all other known TRs that have the
their 30-ends processed by a variety of mechanisms, the nascent
short 30-poly(U) tail of ciliate TRs is retained and bound by the La
proteins, p65 and p43,130,131 which aid in RNA maturation.132,133

Binding by the p65 protein induces a distinct bend in the Tetrahy-
mena TR helix IV, enhancing interaction between the distal loop
of helix IV with the TERT protein, which is critical for telomerase
activity.93,134 While ciliate TRs are the smallest identified, the cili-
ate telomerase holoenzyme is a large complex with numerous pro-
tein components.130,131,135,136 Comprehensive analysis of

Figure 5. Divergent biogenesis pathways for TR maturation. Four mutually exclusive RNA biogenesis pathways, box C/D snoRNA, pol III transcribed small RNA, snRNA, and
box H/ACA sno/scaRNA, are employed for TR biogenesis in separate evolutionary lineages. Schematic of the 30-end biogenesis domains in TRs with important recognition
motifs denoted (colored boxes). The wide array of distinctive 30-end processing mechanisms is listed. TR associated proteins listed have been determined to directly bind
to TR. Mechanisms and accessory proteins that have not been determined (N.D.) as well as telomerase and telomere accessory proteins that do not directly bind to TR are
omitted.
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telomerase holoenzyme complexes from other species will permit
comparative analysis to determine whether the compaction of the
ciliate TR was accompanied by protein component expansion.

Interestingly, there are no similarities in the biogenesis
pathways between ciliate and flagellate TRs (Fig. 5). Instead,
flagellate TRs share a biogenesis pathway with box C/D snoR-
NAs,98,99 which more closely resembles the box H/ACA sno/
scaRNA pathway employed by vertebrate TRs.101,102 As
expected from following the box C/D snoRNA biogenesis
pathway, flagellate TRs are bound by the box C/D proteins
Nop58 and Snu13.99 While little is known for 50- or 30-end
processing of mature flagellate TRs, the 50-end of the nascent
RNA pol II TR transcript is trans spliced.97 The trans splicing
of a separately encoded RNA leader sequence onto the 50-end
of the initial flagellate TR transcript is common for flagellate
mRNAs.137 The spliced leader sequence of flagellate TR is
bound by the methyltransferase-associated protein (MTAP),
which is related to the vertebrate TCAB1 protein.99 It will be
exciting to discovery whether the flagellate telomerase holoen-
zyme complex shares any significant similarity with the ciliate
telomerase holoenzyme complex, especially for a p65 func-
tional homolog, as in vitro trypanosome telomerase activity is
not highly processive.61

Although TRs are massively divergent in sequence, length,
and structural composition, all known TRs encompass two
TERT-interacting domain and a biogenesis domain for TR
maturation. The two TERT-interacting domains, comprising
the template core and CR4/5 or eCR4/5, are well-conserved
compared to the biogenesis domains that varies radically
across distinct eukaryotic lineages (Fig. 5). The driving force
for these separate TR biogenesis pathways would seem to be
the inherent volatility of long non-coding RNAs, compared
with protein-coding mRNA counterparts, and are strongly
affected by the chaos ensuing genome duplications, transposi-
tions, and rearrangements.138-142 The turmoil following large-
scale genomic events would provide ample means for gene
fusions with other non-coding RNAs, leading to rapid altera-
tions of TR biogenesis pathways along specific lineages
(Fig. 5). In sharp contrast, there is stronger selection pressure
on the critical template core and CR4/5 domains to restrain
their evolution, evidenced by the higher conservation of these
two structural domains (Fig. 4A). TRs from the plant Arabi-
dopsis thaliana, and closely related family of species from
Brassicaceae, have provided amazing insights into the inter-
play of genome duplication and telomerase holoenzyme com-
ponents.143,144 Duplicated plant TR genes have been reported
to lack the unequivocally essential template region, rendering
this TR non-function for telomerase activity. Instead, these
template-lacking TRs retained TERT association and function
for TR regulation as a direct competitor for TERT binding.145

Determining plant TR secondary structure will be essential
for comparative analysis to understand TR evolution and
diversity within the plant lineage from the common ancestor
of extant TRs. While encompassing the essential element for
telomerase RNP formation and enzymatic function, TRs are
profoundly flexible in adopting and coopting a multitude of
biogenesis pathways while remaining the intrinsic RNA com-
ponent for telomerase enzymatic function.

Concluding remarks

TR is a complex non-coding RNA with highly organized and
specialized structural domains to facilitate telomerase enzy-
matic function. Initially identified from ciliates, yeasts, and ver-
tebrates, TRs exhibit an unprecedented divergence in length,
sequence, and secondary structures across species. The hall-
mark of TR is its innate ability to adapt, to incorporate distinct
and unique mechanisms necessary and sufficient for assembly
with the TERT protein, to regulate and impart telomerase enzy-
matic activity, and assimilate a myriad of disparate biogenesis
pathways for RNA maturation. Reconciliation of these dispar-
ities has been arduous, stemming from this very lack of conser-
vation among even closely related groups of eukaryotic species.
Recent advances in discerning the essential core domains for
TRs from major eukaryotic lineages has advantageously
revealed the structural and functional consensus from disparate
and seemingly unrelated TR elements.41,71,86,146 There is a less-
than-subtle irony that the first identified and extensively stud-
ied TRs from the ciliate and yeast lineages appear to be outliers
from the implied common ancestral TR structure that is con-
served in vertebrates, filamentous fungi, fission yeasts and flag-
ellates. There still remains much work toward elucidating the
mechanism by which TR has been capable of incorporating
these numerous distinct structural elements, while remaining
the functional and intrinsic component of the telomerase
enzyme.
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