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Historically, body-size-based dosing has been utilized
for many anticancer drugs. For instance, a common
practice implementing body-surface-area (BSA)-based
dosing was started decades ago for small molecule
chemotherapies (eg, taxanes) with the hypothesis
that large patients have a larger volume of distribu-
tion and a higher metabolizing activity, thus require
a higher dose to achieve similar drug exposures to
smaller patients.1 Another typical body-size-based
dosing can be exemplified by body-weight (BW)-
based dosing for immune-oncology therapeutics (eg,
PD-(L)1 inhibitors). These body-size-based dosing
strategies are frequently employed in early phase trials,
with a possible switch to fixed dosing later in clinical
development or life-cycle management dependent on
interpatient variability. Such a switch is often facilitated
via population pharmacokinetic (popPK) modeling,
exposure-safety, and exposure-efficacy simulations to
demonstrate similarities in PK and benefit:risk profiles
for the two dosing regimens (ie, body-size-based vs fixed
dosing).2–5 It is well established that for monoclonal
antibodies, peptides, and other biologics, fixed dosing
is as effective in controlling intersubject variability of
drug exposure as body-size-based dosing given the
body weight range (41–153 kg) in the studied adult
patients.6 Although operationally difficult and still in
the exploratory stage, a measurement of body com-
position of lean mass (blood, muscle, and fatty tissue)
by bioelectrical impedance analysis (BIA) or com-
puted tomography (CT) cross-sectional imaging may
provide accurate dosing for cancer patients while pre-
venting dose-limiting toxicities.7,8 With over two-fold

variabilities in both fat and fat-free mass for BSA-
based dosing in breast cancer patients, potential
toxicities were associated with sarcopenic patients,
while overweight or obese sarcopenic patients had an
inferior outcome compared to normal weight patients
with sarcopenia.8 It was reported also that obese
adult patients tolerated body-size-based dosing of
chemotherapy in a similar way to nonobese patients.9
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The chimeric antigen receptor T-cell (CAR-T) ther-
apies are customized “living drug” therapies involving
the collection of T cells from the individual patient,
the ex vivo re-engineering of the T cells in the labo-
ratory to express CAR proteins on their surface, and
the infusion of CAR-T cells back to the patient. The
CAR constructs consisted of an extracellular antigen-
recognizing single-chain variable fragment (scFv)
(from an antibody sequence) fused to a transmem-
brane region and the intracellular signaling domains
of CD3zeta and co-stimulatory domains (CD28 or
4-1BB). The engineered CAR-T cells can recognize
and bind to specific antigens on the surface of cancer
cells through the scFv domain, and expand/persist for
a long period of time (activate intracellular signaling)
to kill cancer cells and thus achieve clinical efficacy.10

CAR-T therapies are an established treatment option
demonstrating high rates of durable response in hema-
tological malignancies11 and show promising response
rates in the solid tumor setting.12 In the thriving field of
chimeric antigen receptor (CAR) T-cell therapies, the
factors contributing to selecting fixed versus body-size-
based dosing remain unclear, which necessitates further
examination using industrial and clinical development
perspectives. We here particularly discuss whether
fixed-dosing or body-size-based dosing should be rec-
ommended for CAR-T in the context of dosing expe-
rience, manufacturing, product characteristics, clinical
safety, as well as cellular kinetics (CK)/exposure–
response (E-R) models for CAR-T (Figure S1).

Dosing Experience and Approved CAR-T
Products
BW, BSA, and fixed-dosing strategies have already been
utilized in US FDA-approved/or developing CAR-T
therapies. Tiasagenlecleucel used a BW-dosing strategy
for pediatric patients ≤50 kg. Its approval for treating
adult lymphoma patient was based on fixed dosing (BW
range 38.4–186.7 kg). Axicabtagene ciloleucel and brex-
ucabtagene autoleucel were authorized with BWdosing
(BW range data unavailable), whilst lisocabtagene mar-
aleucel (BW range 40.1–182.2 kg) and idecabtagene vi-
cleucel (BW range 42.6–125.6 kg) were approved with
fixed-dosing.8 Most recently, approval for ciltacabta-
gene autoleucel recommended BW-based dosing (BW
range data unavailable).

Both dosing strategies have been implemented in the
investigation of CAR-T in the hematological (eg, anti-
B-cell maturation antigen [BCMA]) and solid (eg, anti-
glypican-3 [GPC-3]) tumor indications (Table 1). While
promising, the success of CAR-T in hematological
malignancies has yet to be replicated in solid tumors.
Complicating factors for CAR-T therapy develop-
ment in solid tumors include trafficking CAR-T, the

immunosuppressive microenvironment within the tu-
mor, and heightened risk of cytokine release syndrome
(CRS).

Manufacturing, Product Characteristics,
and Clinical Safety
Although manufacturing is amenable to any dosing
strategy, for example with BW dosing vials are filled
for a maximum weight estimate (or with the possibility
of preparing a range of vial volumes in a similar way
that a range of dose sizes is available for other types
of medicines, but this might add more complexity and
manufacturing cost) and only a fraction of the volume
will be infused, autologous cell therapy presents unique
challenges to manufacturing. First, some therapies may
involve rare or hard-to-grow cells such as natural killer
T cells. For a weight-based calculation, the option of
overfill to accommodate the BW range of patients
becomes difficult. Second, although pre-acquiring
patient BW information may allow adjustment of the
fill volume through a calculation and decision tree
in the Production Batch Record, this adds a level of
complexity that introduces possibilities for mistakes
and slows the critical fill-and-freeze step. Fixed dosing
makes CAR-T more accessible and cost-efficient along
with improving manufacturing convenience and speed
of production.13,14

Allogeneic “off-the-shelf” products can offer
promising alternatives to autologous CAR-T ther-
apies by reducing manufacturing steps/durations
significantly. A fixed-dose allogeneic CAR-T might be
a simpler and more convenient dosing strategy than
BW-based,13 applicable to a broader patient popula-
tion, such as those with the rapidly progressing disease
who commonly require bridging therapy between the
time of apheresis and cell infusion due to the long
manufacturing timelines of autologous products.

In addition to the above considerations, significant
challenges hinder the development of robust models
that can translate preclinical data into clinical CAR-T
exposures (kinetics) and expected responses.15 Unlike
small molecule or biologics, CAR-T as “living” drugs
exhibit unique kinetics (eg, CAR-T cells typically ex-
hibit a lag time prior to expanding the cell population
to a peak number, followed by a distribution phase and
much longer persistent decline phase lasting several
months to a couple of years) with high interpatient
variability, for instances idecabtagene vicleucel or
ciltacabtagene autoleucel transgene exposure parame-
ters maximum observed analyte concentration (Cmax)
and area under the analyte concentration–time curve
(AUC) from time 0 to 28 days (AUC0-28d) had high in-
terindividual variability (coefficient of variation [CV]%
126%–215% and 50%–124%, respectively). Causes of
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variability might include CAR constructs and func-
tions, patient tumor burden and disease background,
manufacturing variations, lymphodepletion, and CAR-
T dosing regimens. After infusion, the infused CAR-T
cell populations can expand, contract, and persist be-
tween patients in very different ways. The starting point
(ie, initial infused CAR-T cell numbers or transgene
levels) represents the dose received for each patient,
while the expansion of the infused cell population
to maximum cell numbers as well as the area under
the expansion/contraction–time curve reflect CAR-T
exposure parameters (Cmax and AUC). It was acknowl-
edged that conventional allometric scaling methods for
cellular and gene therapy (CGT) products might be less
precise as compared with small-molecule drugs, and
traditional PK-pharmacodynamic correlations may
not be possible, thus it might be difficult to identify an
initial safe starting dose. The use of previous clinical
experience with the CGT product or related products
was thereby suggested (Considerations for the Design
of Early-Phase Clinical Trials of CGT Products, FDA
2015). The recommendation of body-size-based dosing
would need further clarification as many approved
products and ongoing clinical studies report no signif-
icant relationship between body size metrics and CK,
safety, or effectiveness.

Cellular Kinetics Models
The minireview by Huang et al summarizes clinical
pharmacology aspects of first five approved CAR-T
products without specific discussion on body size versus
fixed-dosing strategies or the impact of body size on ex-
posure or response.11 The dose–exposure relationships
are inconsistent across products. However, positive
exposure–response relationships were observed for all
five products in at least one indication. The CAR-T
exposure is related to various factors such as tumor bur-
den, depth of lymphodepleting chemotherapy, CAR-T
phenotype, and patient comorbidities. For example,
the CK curves of lisocabtagene maraleucel overlapped
across 50, 100, and 150 million cells dose levels, and
no dose–exposure or dose–efficacy relationships were
identified.16 BW was not identified as a significant
covariate.16 Although there was a positive trend for
the E-R between CAR-T cell growth and tumor
response, FDA evaluation (lisocabtagene maraleucel
BLA 125714Clinical PharmacologyReview document)
suggested it should not be interpreted as causally con-
nected between dose and response, given the observed
flat dose–exposure–response relationship. Further ex-
ploratory analyses indicated that the CD4/CD8 ratio is
an important factor for both efficacy (eg, best overall
response) and safety (eg, CRS and neurotoxicity [NT]).

Several cytokines seemed to be closely related to CRS
but not strongly associated with response status (eg,
IFNγ , IL2, and IL4, etc. show a greater increase in
patients with CRS while a greater decrease in TGFβ1
was observed in patients with CRS). The first ap-
proval for BCMA-targeting CAR-T is idecabtagene
vicleucel. Pooled data from two idecabtagene vicleucel
studies demonstrated positive relationships for both
dose–response (objective response rate [ORR]) and
dose–exposure (Cmax, Tmax − T cell expansion rate).11

A positive E-R relationship was observed, although
a causal effect may be obscured since exposure might
also be affected by clinical outcomes and other con-
founding effects. A broader range of dose levels was
tested (150 up to 800 million cells fixed dosing) as com-
pared with lisocabtagene maraleucel.16 Female patients
had better responses than males at the same dose level,
with the effect of BW on efficacy considered secondary
to gender. The recommended dose of idecabtagene
vicleucel is 450 million cells, but a minimum thresh-
old of 300 million cells is required for efficacy. For
the products axicabtagene ciloleucel/brexucabtagene
autoleucel using BW-based dosing, flow cytometry
or quantitative polymerase chain reaction (qPCR)
assays characterized CK and found that exposure was
numerically higher for patients age <65 years versus
those ≥65 years, although confounding factors (eg,
small sample size, tumor burden) should be considered.
Cmax and AUC0-28d were higher in responders versus
nonresponders, and in subjects with grade 3+ CRS/NT
versus those with grade <3 CRS/NT events. At a dose
of 0.5 × 106 CAR-T cells/kg, the Cmax and AUC0-28d of
brexucabtagene autoleucel were approximately 60% of
that in subjects treated at a dose of 2 × 106 CAR-T
cells/kg, exhibiting a potential underexposure.

Exposure–Response Relationships
There are a few publications on clinical CK–
pharmacodynamics modeling for Tiasagenlec-
leucel.17–19 In addition, Liu et al20 described a CK
model with distribution, expansion, contraction, and
persistence phases using linear functions based on
207 hematological or solid tumor patients’ data. BW,
unlike baseline tumor burden, was not a significant
covariate for CAR-T cell expansion/contraction. This
is consistent with the population CK in lisocabtagene
maraleucel, where age but not BW was identified as
a significant covariate on Cmax (maximum transgene
levels) and doubling time for cell expansion. Compared
to a 63-year-old patient, the magnitude of age impact
on Cmax could be a 2.5-fold change for an 18-year-old
patient versus a 0.25-fold change for someone aged
83. Additionally, an 18 or 83-year-old patient has a
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0.7- or 1.2-fold change, respectively, of doubling time
for cell expansion, representing a substantially faster
expansion rate for younger patients. Other significant
covariates were baseline tumor burden on HLα (decline
in half-life in initial contraction α phase before a long
persistent phase), tocilizumab/corticosteroid use on
Cmax and HLα, as well as manufacturing process on
lag time from CAR-T post-infusion to the start of an
expansion. The impact of BW on CK parameters is
relatively smaller than the factors discussed above.20

Additionally, Singh et al21 reported a multiscale
mechanistic model for anti-BCMA CAR-T products
and indicated that a minimally required number of cells
(a 150 million cell threshold) could be established for
efficacy based on pharmacodynamic biomarkers serum
BCMA.These results thus further support fixed dosing.
Furthermore, ciltacabtagene autoleucel data indicated
that a two-compartment model and a chain of four
transit compartments with a lag time can adequately
describe the observed transgene-time data, and none of
the investigated subject demographics, baseline charac-
teristics including BW (age, sex, race, hepatic, or renal
impairment), or manufactured product characteristics
had a statistically significant effect on population CK
model parameters in the covariate analysis.

Conclusions
Overall, this analysis suggests that the impact of body
size (BW or BSA) on interpatient variability of CK
for an adult cancer patient is small relative to other
variability contributors in CAR-T cell expansion and
contraction. For pediatric patients (BW < 50 kg),
BW-based dosing is recommended most likely due to
age as a significant covariate for cell doubling time
(much faster cell doubling for young patients) and
likely due to safety concerns.20 Further evaluation of
body size impact based on accumulating clinical data
is needed to justify the appropriate dosing strategy for
specific CAR-T therapy in treating adult patients with
hematological or solid tumors.
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