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ABSTRACT Genome-wide detection of quantitative trait loci (QTL) hotspots underlying variation in many
molecular and phenotypic traits has been a key step in various biological studies since the QTL hotspots are
highly informative and can be linked to the genes for the quantitative traits. Several statistical methods have
been proposed to detect QTL hotspots. These hotspot detection methods rely heavily on permutation tests
performed on summarized QTL data or individual-level data (with genotypes and phenotypes) from the
genetical genomics experiments. In this article, we propose a statistical procedure for QTL hotspot
detection by using the summarized QTL (interval) data collected in public web-accessible databases. First, a
simple statistical method based on the uniform distribution is derived to convert the QTL interval data into
the expected QTL frequency (EQF) matrix. And then, to account for the correlation structure among traits,
the QTL for correlated traits are grouped together into the same categories to form a reduced EQF matrix.
Furthermore, a permutation algorithm on the EQF elements or on the QTL intervals is developed to
compute a sliding scale of EQF thresholds, ranging from strict to liberal, for assessing the significance of
QTL hotspots. With grouping, much stricter thresholds can be obtained to avoid the detection of spurious
hotspots. Real example analysis and simulation study are carried out to illustrate our procedure, evaluate
the performances and compare with other methods. It shows that our procedure can control the genome-
wide error rates at the target levels, provide appropriate thresholds for correlated data and is comparable to
the methods using individual-level data in hotspot detection. Depending on the thresholds used, more than
100 hotspots are detected in GRAMENE rice database. We also perform a genome-wide comparative
analysis of the detected hotspots and the known genes collected in the Rice Q-TARO database. The
comparative analysis reveals that the hotspots and genes are conformable in the sense that they co-localize
closely and are functionally related to relevant traits. Our statistical procedure can provide a framework for
exploring the networks among QTL hotspots, genes and quantitative traits in biological studies. The R
codes that produce both numerical and graphical outputs of QTL hotspot detection in the genome are
available on the worldwide web http://www.stat.sinica.edu.tw/chkao/.
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Quantitative trait loci (QTL) detection has been a key step to provide
deeper insight into the genetic mechanism of quantitative traits in
many areas of biological researches, including crops, evolution, ecol-
ogy and genetical genomics studies etc. (Lander and Botstein 1989;
Haley andKnott 1992; Jansen 1993; Zeng 1994; Kao et al. 1999; Sen and
Churchill 2001; Broman 2003; Kao 2006; Lee et al. 2014; Wei and Xu
2016). In QTL detection, it is often found that some of the genomic
regions are relatively enriched in QTL as compared to other regions, and
that QTL responsible for correlated traits frequently co-localize in some
specific genetic regions (Goffinet and Gerber 2000; Schadt et al. 2003;

Chardon et al. 2004; West et al. 2007; Breitling et al. 2008; Wu et al.
2008; Li et al. 2010; Ali et al. 2013; Basnet et al. 2015). The regions
enriched in QTL are usually called QTL hotspots, and, statistically,
they harbor a significantly higher number of QTL than expected by
random chance. There are several possible reasons for the phenom-
enon of QTL hotspots: First, QTL explaining most trait variations can
be effectively and consistently detected andmapped to similar regions
across different experiments in various studies. Second, QTLwith high-
er allelic diversity have a greater chance of being detected in different
crosses and environments (Zhao et al. 2011; Vuong et al. 2015;
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Mengistu et al. 2016). Third, pleiotropic or closely linked QTL for
correlated traits (Falconer and Mackay 1996) will be frequently de-
tected at the same regions in different experiments. For example, a
gene called SCM2/ APO1 in rice exhibits effects on panicle structure,
culm strength and lodging resistance (Ookawa et al. 2010), and a gene
called GST in maize shows the resistance to northern leaf blight,
southern leaf blight and gray leaf spot diseases (Wisser et al. 2011;
Ali et al. 2013). A genetical genomics study of Arabidopsis, Fu et al.
(2009) found that the detected hotspots can be linked to several well-
studied genes with pleiotropic effects on plant metabolism, physiol-
ogy and morphology and development. Therefore, hotspot detection
can lead to identifying genes that affect the relevant traits (Chardon
et al. 2004; Fu et al. 2009). As the QTL hotspots are highly informative
and may harbor genes for the target traits, the detection of QTL
hotspots at the genome-wide level has been an important task in
broad areas of biological studies (Breitling et al. 2008; Fu et al. 2009;
Neto et al. 2012; Frary et al. 2014).

Genome-wide detection of QTL hotspots requires the collection of
manyQTL for numerous andwidespread traits in the genome to enable
the detection analysis. Genetical genomics experiments and public
QTLdatabasesare two feasibleways toprovide suchdatawithnumerous
QTLforgenome-wideQTLhotspotdetection.Asinglegeneticalgenomics
experiment can produce abundant individual-level data containing the
original genotypes (genetic markers) and thousands of molecular traits
(phenotypic traits), such as gene expressions or protein contents, in a
single segregation population. By treating the molecular traits as quan-
titative traits, the QTL mapping procedure can be performed to detect
QTL by providing the LOD scores at every genomic position for each
trait.TheLODscores at everyposition for all traits canbe recorded intoa
LOD scorematrix, and given a predetermined LOD threshold, the LOD
score matrix can then be converted into a QTLmatrix by assigning 1 to
the detectedQTL positions and 0 otherwise. Using a genetical genomics
experiment, West et al. (2007), Wu et al. (2008) and Li et al. (2010)
permuted the QTL matrix across the genomic positions separately
by traits to generate null distribution of hotspot sizes and compute
the thresholds for assessing the significance of QTL hotspots. As
these methods do not account for the correlation structure among
traits, the hotspot size thresholds are severely underestimated, lead-
ing to the detection of too many spurious hotspots (Breitling et al.
2008). To consider the correlation structure among traits, Breitling
et al. (2008) permuted the individual-level data by swapping the
phenotypes between individuals and keeping the genotypes intact
to generate the permuted data sets, and then performed QTL map-
ping on all the permuted data sets to obtain the QTL matrices for
determining the thresholds. The method by Breitling et al. (2008)
can overcome the underestimation of thresholds in the hotspot detec-
tion, but may neglect small and moderate hotspots with strong LOD
scores as the magnitude of LOD score is not considered (Neto et al.
2012). To consider the magnitude of LOD score, Neto et al. (2012)

adopted the same permutation and QTL mapping schemes as in
Breitling et al. (2008) to obtain LOD score matrices. The LOD score
matrices are then used to determine a sliding scale of empirical LOD
thresholds given a range of possible spurious hotspot sizes in
assessing the significance of QTL hotspots. In this way, the ap-
proach of Neto et al. (2012) can effectively discover small and
moderate hotspots with strong LOD scores.

Besides using genetical genomics experiments, using public
databases is also an effective and convenient way to obtain genome-
wide detection of QTL hotspots. Several public databases, such as
GRAMENE (http://www.GRAMENE.org/), Q-TARO (http://qtaro.
abr.affrc.go.jp/), Rice TOGO browser (http://agri-trait.dna.affrc.go.
jp/index.html), PeanutBase (http://peanutbase.org) and MaizeGDB,
contain diversity in traits and wide-ranging distribution in the ge-
nome from numerous independent QTL mapping experiments, thus
they can serve as an alternative source of genome-wide QTL hotspot
detection. In these public databases, only the flanking markers of the
detected QTL (the QTL intervals), trait names and reference sources
are curated, and no individual-level data are available to allow the
hotspot analyses of Breitling et al. (2008) and Neto et al. (2012).
Chardon et al. (2004) self-collected QTL data from the literature
and developed a statistical method based on the normal distribution
for hotspot detection. As themethod of Chardon et al. (2004) requires
the estimates of QTL positions and their variances in computation, it
is not applicable to the above mentioned public databases, either. In
this article, by using public databases, we combine andmodify the key
ideas of the above-mentioned methods to propose a statistical pro-
cedure for QTL hotspot detection at the genome-wide level. We first
develop a statistical method based on the uniform distribution to
convert the QTL intervals into the expected QTL frequency (EQF)
matrix. Then, to cope with the correlation structure among the traits,
we group the correlated traits into the same trait categories to form
a reduced EQF matrix. Furthermore, inspired by the works of Neto
et al. (2012) and Cabrera et al. (2012), we devise a permutation
algorithm on the EQF elements (bins) as well as on the QTL intervals
to compute a sliding scale of hotspot size thresholds given a range of
possible spurious hotspot numbers for assessing the QTL hotspots.
In this way, our statistical procedure can effectively correct the un-
derestimation of threshold and result in less spurious hotspots.
Simulation study shows that our statistical procedure can control
the genome-wide error rates at the target levels, can provide appro-
priate thresholds for correlated data, and is comparable to the meth-
ods using individual-level data in hotspot detection. In real example
analysis, the 8216QTL responsible for 236 different traits from 230 in-
dependent worldwide studies in GRAMENE rice database are ana-
lyzed for hotspot detection. The detected hotspots are compared with
the 122 known genes collected in Q-TARO rice database to explore
the interplays amongQTL hotspots, genes and quantitative traits. The
R codes that produce both numerical and graphical summaries of the
QTL hotspot detection in the genomes are available on the worldwide
web http://www.stat.sinica.edu.tw/chkao/. Our analyses can establish
a framework for exploring the networks among QTL, genes and traits
in biological studies.

MATERIALS AND METHODS
Our proposed procedure operates on theQTL intervals and can take the
correlation structure among traits into account for QTL hotspot de-
tection. In the following, the QTL intervals in the GRAMENE database
that can be integrated into a QTL matrix is first described. Then we
propose a simple method based on the uniform distribution to convert
the QTL matrix into the EQF matrix and further into the reduced EQF
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matrix by grouping of correlated traits into the same trait categories.
After that, we develop a permutation algorithm that can work on the
EQF elements or on the QTL intervals to compute a range of EQF
thresholds that vary from strict to liberal for assessing the significance of
QTL hotspots. For better understanding, we use a simple example in
Figure 1 to illustrate the scheme of our statistical procedure from using
the QTL intervals (matrix) to obtaining the permutation EQF thresh-
olds. Real example and simulation study are followed to demonstrate
the capability of our procedure, investigate the detection properties,
and also compare with the methods using individual-level data in
QTL hotspot detection.

The QTL matrix
The QTL intervals contain complete information about the QTL that
need for hotspot detection.We use a row array of the same length as the
genomesize to summarize theQTL intervals for each trait. For each trait,
we regularize the QTL intervals into the elements of a row array as
follows: EachQTL interval corresponds to an element of the length as its
width at the corresponding position, and a value of one is assigned to
the element.The remaining elementswill be treated as zeros. In thisway,
the elements in the row array are either one or zerowith unequal lengths
(see Figure 1 for graphical illustration). Combining the arrays for all
traits will form a QTL matrix with different element sizes. The QTL
matrix (an atypical matrix) will be used to construct the EQFmatrix for
permutation as described below.

The expected QTL frequency
Consider that aQTLmatrix hasbeen constructed from the database.We
assume that there are T traits mapped for N1;N2; :::;NT QTL, respec-
tively, in the experiments (NQTL ¼ N1 þ N2 þ :::þ NT ), and that the
genome is divided into S sequential equally spaced bins, each with size
4 (say4=0.5 cM), for investigation. We use the uniform distribution
to compute the EQF value of each bin over the total experiments
for hotspot detection. For a bin ðx; x þ4Þ and a QTL interval
ða; bÞ, where x, a and b denote the genome positions, there are
two possible relationships between them: (1) they have an over-
lap, i.e., ða; bÞ\ ​ðx; x þ4Þ 6¼ Ø, or (2) they have no overlap, i.e.,
ða; bÞ\​ðx; x þ4Þ ¼ Ø. Only the QTL intervals having overlaps
with a bin contribute to the EQF value of this bin, and such a QTL
is called a contributive QTL of a bin. By assuming that the QTL
position is uniformly distributed over its own QTL interval, the prob-
ability of a contributive QTL localized in a bin is the ratio between the
lengths of the overlap and the interval. Summing over the probabil-
ities of all the contributive QTL in a bin will give the EQF value of this
bin over all traits. Explicitly, we define Fs as the EQF value of the
sth (s ¼ 1; 2; :::; SÞ bin between x and x þ4 for all traits over all
experiments by

Fs ¼
XC
i¼1

8<
:
Z vi

ui
ðbi2aiÞ21 dðxÞ

9=
; ¼

XC
i¼1

vi 2 ui
bi 2 ai

; (1)

where C is the number of the contributive QTL of the bin ðx; x þ4Þ,
ðui; viÞ is the overlap region, ðai; biÞ denotes the ith QTL interval, and
ðbi2aiÞ21 is the uniform distribution density function over the
interval. A ratio ðvi 2 uiÞ=ðbi 2 aiÞ will be added to the EQF of
the bin despite of the effect size of a contributive QTL. If a QTL
interval fully covers the bin, ðvi 2 uiÞ ¼ 4 and the ratio (proba-
bility) is 4=ðbi 2 aiÞ. If a QTL interval is fully covered by the bin,
ðvi 2 uiÞ ¼ ðbi 2 aiÞ and the probability is 1.

The computation of the EQF values in equation (1) can be illustrated
by Figure 1 and the example in Figure 2. In Figure 2, we use a set of

selected 196 QTL (NQTL ¼ 196) in the 1st chromosome from GRA-
MENE databases for illustration. These 196 QTL are responsible for
95 different traits belonging to four of the nine trait categories. Depend-
ing on the bin position, the number C involved in computing Fs is
different for different bins. For example, C ¼ 4 for a bin between
80�90 cM as the region is only covered by the four sameQTL intervals,
andC ¼ 22 � 63 for a bin between the 140�160 cM as the within bins
may overlap with different QTL intervals. By equation (1), the EQF
value of a bin in the 80�90-cM region is 0.037, and the EQF value of
a bin in the 140�160-cM region is 0.91�7.38. The EQF value can be
calculated at every bin to produce an EQF hotspot architecture
along the chromosomes as shown in Figures 2 and 3. A higher
EQF value reflects a greater expectation of localizing a QTL in a
bin. A hotspot detection is claimed in a bin if its EQF value is higher
than a specified threshold that will be determined by permutation
tests as given below.

The EQF matrix
Equations (1) is to compute the EQF value of a bin for all traits over all
experiments in the genome. It is also desirable to compute the EQF
value of a bin for each single trait, and further to construct the EQF
matrix for permutation to determine the thresholds. Let fts denote the
EQF value of the sth bin for the tth trait. It is straightforward to obtain
fts using equation (1) by simply replacing the number of contributive
QTL for all traits,C, by the number of contributiveQTL for the tth trait,
Ct . That is

fts ¼
XCt

i¼1

(
ðvi 2 uiÞ
ðbi 2 aiÞ

)
: (2)

We now define the EQF matrix as F ¼ fftsgT·S, where t ¼ 1; 2; :::;T is
the index for row dimension, and s ¼ 1; 2; :::; S is the index for column

dimension. We haveNt ¼
PS
s¼1

fts is the number of QTL for the tth trait,

and Fs ¼
PT
t¼1

fts is the EQF value of the sth bin for all traits. By pooling

the EQF values of genetically correlated traits, the F matrix will be
further converted into a reduced F matrix (row dimension less than
T) for permutation to determine the EQF thresholds for assessing the
significance of hotspots.

The current methods of West et al. (2007), Wu et al. (2008) and Li
et al. (2010) permute the QTL matrix for hotspot detection in the
genetical genomics study. Their methods can be directly implemented
to permute the EQF matrix for QTL hotspot detection using public
databases. We follow Neto et al. (2012) to still call these methods
implemented to the EQF matrix “Q-method”. The Q-method will per-
mute the row elements of the EQF matrix separately by traits and then
obtain the EQF sums over all traits for every bin in the genome, and the
maxima of EQF sums in all permutations are used to compute the EQF
threshold for assessing the QTL hotspots (Figure 1). Similarly, the
Q-method does not account for the correlation structure among traits,
and hence it will severely underestimate the null distribution of hotspot
sizes (thresholds) and detect too many spurious hotspots (Neto et al.
2012; also see below). To consider the correlation structure among
traits, we group together the correlated traits into the same trait cate-
gories and pool together their EQF values to form a reduced EQF
matrix for permutation. For example, the panicle numbers, grains per
panicle and grain weight are all related to yield production in rice, and
their EQF values can be summed and become the EQF value of the
yield trait category to form a reduced EQFmatrix (the row dimension
reduced by 2 to become T－2). As pleiotropy and linkage of genes are
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Figure 1 The schemes of the proposed statistical procedure and the Q-method in obtaining the permutation thresholds. The QTL data from the
public database are first recorded into a QTL matrix, where the QTL intervals take a value of one and the remaining elements will be treated as
zeros at the corresponding positions. The output of the analysis is a QTL matrix, where columns represent the genomic positions (Si’s) and rows
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the genetic causes of correlations between traits (Falconer and
Mackay 1996), the trait grouping intends to pool and permute these
QTL together, so that to cope with the underestimation of threshold.
Other grouping strategies can be also considered (see CONCLUSION
ANDDISCUSSION). Permutation with trait grouping can effectively
obtain much stricter thresholds to prevent detecting spurious hot-
spots, as will be shown below. Furthermore, inspired by the work of
Neto et al. (2012), rather than examine the possible spurious hotspot
sizes, we consider the possible spurious hotspot numbers in the
genome to present a permutation algorithm for computing the thresh-
olds. Our permutation algorithm shuffles the reduced EQF matrix to
compute a series of EQF thresholds ranging from strict to liberal for
assessing the QTL hotspots.

The permutation algorithm
For a fixed hotspot number n = 1, ..., k, with k the hotspot number
delivered by the Q-method (see below), across the genome, we first
define qFreqðnÞ as the nth EQF sum of the S ordered observed EQF
sums (namely: Fð1Þ, Fð2Þ, ..., FðsÞ, ordered from highest to lowest) in the
reduced F matrix and use it as a test statistic for at least n spurious
hotspots under the null hypothesis that the QTL are randomly distrib-
uted in the genome. We describe the permutation algorithm that can
control the GWER of detecting at least n hotspots at a fixed a level as
follows:

1. For each trait (category), the EQF values of the S locations (bins) in
the reduced F matrix (with row dimension $ 2) are permuted to

generate a new permuted EQF matrix F�. That is, the elements in
each row of the reduced F matrix are swapped to produce the F�

matrix (see Figure 1). As every row element can be only assigned to
one of the S bins, the row sums of the permuted and observed
matrices are the same and are equivalent to Nt for the tth trait
(category), i.e., XS

s¼1

f �ts ¼
XS
s¼1

fts ¼ Nt ;

where f �ts is the element of F�.
2. Compute the total EQF sums over all traits (categories) for the S

locations, i.e. F�
s ¼ PT

t¼1
f �ts for s ¼ 1; 2; :::; S; and order them (F�

s 9sÞ
from highest to lowest as F�

ð1Þ, F
�
ð2Þ, ..., F

�
ðsÞ.

3. For a fixed hotspot number n, obtain and store F�
ðnÞ corresponding

to the nth EQF sum of the S ordered EQF sums for F�.
4. Repeat steps 1–3 B times so that there are B new permuted

matrices (namely, F1, F2 , ..., FB) for obtaining the associ-
ated F1

ðnÞ, F2
ðnÞ,..., F

B
ðnÞ. The B-permutation samples of Fi

ðnÞ,
i ¼ 1; 2; :::;B; is an estimate of the null distribution of the test
statistic qFreqðnÞfor at least n spurious hotspots anywhere in
the genome, given that the QTL are randomly distributed
along the genome.

5. The upper (1-a)-quantile of the B-permutation samples generated
in step 4 is the EQF threshold, denoted by gn;a, of the test statistic
qFreqðnÞ for assessing QTL hotspots.

represent the traits (tij denotes the jth trait of the ith trait category). Then, the QTL matrix is converted into the expected QTL frequency (EQF)
matrix by using the uniform distribution method. The Q-method permutes the EQF matrix for each trait (the column cells) to obtain the
permutation EQF threshold, b (see text). The proposed procedure groups together the related traits into the same trait categories and pools
their EQF values to form a reduced EQF matrix, and the reduced EQF matrix for each trait category (the column cells) are permuted to obtain a
series of EQF thresholds, gn,a’s (see text).

Figure 2 An illustration of the QTL data structure and the uniform method of computing the expected QTL frequency (EQF) in hotspot detection.
The 196 QTL in the rice 1st chromosome from Gramene Rice database (http://www.gramene.org/) are used for illustration. The green ticks on the
x-axis denote the positions of the 163 markers. The dotted lines denote the lengths of the marker intervals flanking the QTL responsible for yield,
vigor, sterility and quality traits (denoted as ·, +, Δ and s, respectively). The EQF architecture (the black line) are constructed by the uniform
method with bin size of 0.5 cM. The black lines on the right and left borders represent the EQF. :denotes the position of centromere.
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TheEQF thresholdgn;a can controlGWERof qFreqðnÞ at level a for
detecting at least n spurious hotspots somewhere in the genome under the
null. That is

PrðqFreqðnÞ$ gn;a
��QTLs are randomly distributed in the genomeÞ

¼ a

(4)

The quantity a is the probability of detecting exactly n spurious
hotspots somewhere in the genome under the null. However, similar
to the argument in Neto et al. (2012), the threshold gn;a can also
control the full-null GWER for more than n hotspots, as detecting
more than n hotspots is less likely than detecting n hotspots given the
threshold gn;a. Therefore, by adopting gn;a we can control GWER of
qFreqðnÞ at level a of detecting at least n spurious hotspots under the
null.

Circular genomic permutation
The basic idea of the above algorithm is to randomly shift the EQF bins
along the genome to obtain the thresholds for QTL hotspot detection.
When doing this, a QTL interval will be broken into several bins for
permutation. To keep the QTL intervals intact in permutation, we can
consider the genome to be circular (Cabrera et al. 2012) and directly
implement the proposed algorithm to randomly swap the QTL inter-
vals of correlated traits together in the circular genome. Equation (1)
is then used to compute the EQF sums of all bins in each permutation
for obtaining the EQF thresholds. We call this circular permutation
framework the QTL-interval permutation in our statistical procedure.
In this way, the proposed algorithm can deploy both the EQF-bin
permutation and the QTL-interval permutation to compute a series of
thresholds, gn;a’s, for qFreqðnÞ’s to assess the significance of QTL
hotspots.

In general, performing permutation on the EQF bins or the QTL
intervals for the hotspot detection is not computationally demanding at

all. On the contrary, performing permutation on individual-level data,
such as in the approaches of the Breitling et al. (2008) and Neto et al.
(2012), is computationally expensive and requires parallel computa-
tions on a cluster (Neto et al. 2012), mainly because it involves repeated
QTL mapping analysis for thousands of traits in each permutation.
Briefly, the proposed statistical procedure for genome-wide hotspot
detection includes four steps: (1) obtaining the QTL intervals (matrix)
from the database; (2) constructing the EQF matrix from the QTL
matrix using the uniform distributionmethod; (3) building the reduced
EQF matrix by grouping of correlated traits into the same trait cate-
gories; (4) computing the thresholds by implementing the permutation
algorithm on the reduced EQF matrix or on the QTL intervals (with
trait grouping). Our statistical procedure actually generalizes and com-
bines the ideas of the previous works on QTL hotspot detection from
using genetical genomics experiments to using public databases. The
value of n is allowed to vary from 1 to k. Given b as the threshold value
of the Q-method, k is determined by b ¼ gk;a. The k thresholds,
g1;a,g2;a, :::, gk;a, range from the most conservative to the most liberal.
Then, our statistical procedure of using gk;a as the threshold is equiv-
alent to the Q-method deployed for permuting the original EQF
matrix, which will also deliver the most liberal EQF threshold and
suffer from excessive spurious hotspots. With the grouping strat-
egy and permutation algorithm, our statistical procedure can
provide a range of more conservative thresholds to prevent the
detection of spurious QTL hotspots as will be validated by
the GRAMENE rice dataset (see the S1_DataQTL file in the sup-
plementary material or http://www.stat.sinica.edu.tw/chkao/) example
and simulation study in the next section.

Data availability
Theauthors affirmthat all datanecessary for confirming the conclusions
of this article are represented fully within the article and its tables and
figures. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.7451393.

Figure 3 The EQF architectures along the 12 chromosomes and the hotspots detected under different EQF thresholds (gn,0.05) associated with
their qFreq(n) statistics at GWER of 5%. The thresholds gn,0.05 are coordinately represented by the left and right axes. The left axis denotes the
values of EQF, and the right axis denotes the values of n. The blue line corresponds to the EQF threshold g1,0.05 = 47.19 for the qFreq(1) statistic
of detecting at least one hotspot, and there four significant hotspots with g1,0.05. The red line shows g100,0.05 = 9.77 for the qFreq(100) statistic of
detecting at least 100 hotspots, which approximately corresponds to b (the EQF threshold of the Q-method), and there are 179 significant
hotspots with g100,0.05$.
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RESULTS
In this section, real example with comparative analysis and simulation
study are conducted-to illustrate the proposed statistical procedure,
investigate the property of the proposed procedure, evaluate the per-
formance of the proposed procedure, and compare with other methods
in QTL hotspot detection. In real example analysis, the QTL data
collected in GRAMENE rice database were analyzed to detect QTL
hotspots, and then a genome-wide comparative analysis of the detected
QTL hotspots and the known genes collected in Q-TARO rice database
(see the S2_DataGene(NV) file in supplementary material or http://
www.stat.sinica.edu.tw/chkao/) was performed for cross validation and
practical use. In simulation study, we investigate the GWERs of the
proposed statistical procedure and the Q-method under different levels
of correlation among traits, and assess their performances in the de-
tection of QTL hotspots. The proposed statistical procedure operates
on summarized QTL data instead of original individual-level data for
hotspot detection. There must be some information loss between the
two types of data during the detection process. We implement our
procedure, Q-method, Breitling’s method (2008) and Neto’s approach
(2012) to analyze a simulated genetical genomics data set, and compare
their differences for examining such information loss in hotspot
detection.

The GRAMENE rice dataset example

The GRAMENE database and Q-TARO database: Both the GRA-
MENE database and Q-TARO database are web-accessible and com-
mon reference databases for rice research. The GRAMENE database
collects 8216 QTL (N = 8216) responsible for 236 different traits (T =
236) from 230 published studies (experiments). These 236 traits are
further classified (grouped) into the nine trait categories (T = 9) accord-
ing to the general agronomic consideration (see Tables S1 and S2 in
supplementary material). The nine trait categories including yield,
vigor, anatomy, development, abiotic stress, quality, sterility or fertility,
biotic stress, and biochemical traits. For example, the yield category
includes traits, such as the panicle numbers, grains per panicle and
grain weight, etc. The nine trait categories include 26, 15, 47, 12, 52,
44, 11, 8 and 21 component traits, respectively, and they contain 1956,
1767, 1267, 901, 767, 555, 470, 378 and 155 QTL, respectively. The total
length of the rice 12 chromosomes is�1536.9 cM (Harushima et al. 1998;
International Rice Genome Sequencing Project 2005). The 1st chromo-
some has the highest QTL density with�6.77 QTL per cM, and the 12th

chromosome has the lowest QTL density with �3.67 QTL per cM. The
QTL density is �5.35 QTL per cM across the 12 chromosomes.

The flankingmarker pairs of the 8216QTL (8216QTL intervals) are
recorded andused for detectingQTLhotspots. The detection resultswill
be investigated and compared with the 122 known genes identified
throughnatural variationmethods (suchasusing the experiments of rice
cultivars, landraces, or wild relatives) inQ-TAROdatabase (Yamamoto
et al. 2012).We first projected the two physical maps of the GRAMENE
rice and Q-TARO databases into a consensus genetic map by homo-
thetic function (Chardon et al. 2004) with their common markers
(Harushima et al. 1998; International Rice Genome Sequencing Project
2005). There are 1914 common markers (see the S1_DataQTL file) on
the consensus map with an averagemarker density of onemarker every
0.81 cM. By using equations (1) with bin size of 0.5 cM (4=0.5 cM), the
EQF architectures (Figure 3) and the EQF matrix can be obtained. The
EQF matrix has a dimension 236·3070, and the reduced EQF matrix
has a dimension 9·3070 after grouping of the 236 traits into the
nine trait categories. Both the EQF-bin permutation and QTL-interval
permutation are considered in the analysis. The detection results are
summarized and presented below and in the supplementary material.

QTL hotspots: The thresholds gn;0:05, n = 1, 2, ..., k, obtained by per-
muting the EQF bins and the QTL intervals are very similar (see Figure
S1). Figure 3 presents the EQF architectures of the 12 chromosomes
and the hotspots detected under different EQF thresholds (gn;0:05)
obtained using the EQF-bin permutation. In Figure 3, the threshold
values gn;0:05’s for the test statistic qFreq(n)’s are coordinately repre-
sented by the left and right axes. For example, the 1st highest peak (on
the 4th chromosome) has an EQF value 71.97, and therefore qFreq(1)
for detecting at least one hotspot in the genome is 71.97 (qFreq(1)
=71.97). The threshold for qFreq(1) is g1;0:05, which is 47.67
ðg1;0:05 ¼ 47:67Þ. Since qFreq(1) . g1;0:05, it means that there exists
at least one hotspot in the genome, and in practice there are four
significant hotspots (on the 3rd, 4th and 8th chromosomes). Similarly,
qFreq(3) = 56.30 (the 3rd highest peak on the 8th chromosome) is the
statistic for detecting at least three hotspots, and g3;0:05 ¼ 35.29 is the
threshold for qFreq(3). As qFreq(3) . g3;0:05, it means that there are
at least three hotspots in the genome, and in practice there are ten
significant hotspots (on the 1st, 3rd, 4th, 6th, 8th, 9th and 11th chromo-
somes). The highest peak of the 1st chromosome has an EQF value
35.89 and was significant under g3;0:05 ¼ 35.29, but not significant
under g1;0:05 ¼ 46.70. The EQF value of the 6th highest peak (on the
3rd chromosome) is 38.52, i.e. qFreq(6)=38.52, and g6;0:05 is 30.66.
Since qFreq(6). g6;0:05, it means that there are at least six hotspots in
the genome, and in practice there are 16 hotspots detected. Likewise,
qFreq(9). g9;0:05, meaning that there are at least nine hotspots in the
genome, and in practice there are 25 significant hotspots. The top
100 hotspots are significant under g39;0:05 ¼ 14.21. Chardon et al.
(2004) empirically suggested 5 times of the average EQF value per
bin (5.35O2·5 ¼ 13:38Þ as the threshold, which roughly corre-
sponds to g46;0:05 ¼ 13.29, and there are 116 significant hotspots de-
tected under g46;0:05. The EQF threshold obtained by the Q-method is
about 9.77 (corresponding to g100;0:05, where 100 is the upper bound
of n, i.e., k = 100), leading to the detection of 179 QTL hotspots,
among which many of them are believed to be spurious since the
correlations among traits are not considered by the Q-method.

Effects of bin sizes and QTL interval sizes: The above analyses use a
bin size of 0.5 cM (Chardon et al. 2004) and all the 8216 QTL intervals
forQTL hotspot detection. It is of interest to assess the effects of bin size
and removing largeQTL intervals on the hotspot detection. The thresh-
olds of gn;0:05, n = 1, 2, ..., 100, by using bin size of 1 cM and removing
the QTL intervals larger than 10 cM (10+ cM intervals) in the analyses
are shown in Figure S1. Using a bin size of 1 cM, it is found that the
thresholds are higher, and the EQF architectures show similar profiles
to those of using a bin size of 0.5 cMwith higher EQF values at the same
or very nearly the same positions (not shown). For example, using a bin
size of 1 cM (0.5 cM) with all intervals, the thresholds g1;0:05 and g60;0:05

are 53.77 (47.67) and 15.36 (11.89), and there are 4 (4) and 124 (131)
detected hotspots. Underg1;0:05, the same four hotspots are detected for
the both bin sizes. Under g60;0:05, most of the detected hotspots are the
same. Other bin sizes, such as .1 cM, can be also considered. We
suggest to use a bin size about equal to the marker density for hotspot
detection (the average marker density is 0.81 cM in our case). In gen-
eral, as bin sizes increase, the hotspot resolution will decrease, and the
EQF values for every bin and the permutation thresholds will increase.

The medium, mean and SD of the interval sizes are 0.56, 9.82 and
16.82 cM, respectively, showing that the QTL intervals vary greatly in
size. Among the 8216 QTL collected in GRAMENE database,
309 (3.76%) QTL are localized at markers, 3791 (46.14%) QTL are
localized in the marker intervals with sizes between 0 and 0.5 cM,
274 (3.33%) QTL are localized in the 0.5-2 cM intervals, 509 (6.20%)
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QTL are in the 2-5 cM intervals, 744 (9.06%) QTL are in the 5-10 cM
intervals, and1023 (12.45%)QTLare in the10-20cMintervals.Therefore,
there are 2589 (about 31.15%) QTL with interval sizes .10 cM. Re-
searchers may only consider those QTL intervals with small sizes, say
%10 cM, in the analysis. If the 10+ cM QTL intervals are not consid-
ered in the analysis, the EQF values at very bin are smaller (not
shown) and the permutation thresholds decrease slightly (see Figure
S1), mainly because the 10+ cM QTL intervals contribute little to the
EQF value of a relatively small size, say 0.5 cM, bin. For example, if the
10+ cM QTL intervals are excluded, g1;0:05 and g60;0:05 become 46.14
and 11.05, respectively, and there are 4 and 132 hotspots detected.
Under g1;0:05, the four detected hotspots are the same. Under g60;0:05,
an extra hotspot is detected by removing the 10+ QTL intervals from
the analysis.

For all thresholds gn;0:05, n = 1, 2, ..., k, the observed hotspot num-
bers are found to exceed the expected hotspot numbers, very likely
because the traits in different categories are still correlated to some
extent after grouping (see CONCLUSION AND DISCUSSION). The
proposed statistical procedure allows to use the k statistics associated
with their respective thresholds ranging from high to low for broad
consideration in assessing the significance of QTL hotspots. The results
indicate that there aremany significant hotspots in the GRAMENE rice
database. It would be interesting to further explore the genes underlying
these hotspots. We then perform a genome-wide comparative analysis
of the detected QTL hotspots and the 122 known genes in Q-TARO
databases about their locations and functions.

QTL hotspots, gene locations and gene functions: The comparative
analysis reveals that many of the detected hotspots are localized in the
vicinity of the genes for their associated traits (see Figures S2). Taking
the top 131 hotspots significant under g60;0:05 ¼ 11.89 (obtained by the
EQF-bin permutation) as an example, among the 122 genes, 17 genes
overlap with the hotspots (the distances between them are zeros),
48 genes are localized within a distance of 1 cM or less from their
nearest hotspots with an average distance of 0.23 cM (standard de-
viation 0.28 cM), 78 genes are localized within a distance of 2.5 cM
or less from the their nearest hotspots with an average distance of 0.83
cM (SD 0.84 cM), and 22 genes have distances of 2.5 to 5 cM to their
closest hotspots with an average distance of 3.31 cM (SD 0.68 cM). To
perform a statistical test for the conformity in locations between genes
and hotspots, we assume that the number of overlap, y, follows hyper-
geometric distribution (N,r,n)

pðyÞ ¼

�
r
y

��
N2 r
n2 y

�
�
N
n

�

(Peng et al. 2010; Cabrera et al. 2012), where N is the number of
bins, n is the number of detected hotspots and r is the number of
known genes. In this case, the N ¼ 3070; n ¼ 131; r ¼ 102 and
y ¼ 17. Note that r is assigned to the number of 102 instead of
122 because of gene overlaps. For example, six genes Pik-p, Pik-1,
Pik-2, Pik-m, Xa3 and Xa26 overlap at the end of the 11th chromo-
some (see Figure S2). The p-value is pðy$ 17Þ=1:497 · 1027, which
indicates that QTL hotspots have the tendency to co-localize with
genes (known genes and detected hotspots are conformable in lo-
cation). If the QTL-interval permutation is used, the value of g60;0:05

is 12.08, and there are 129 QTL hotspots detected. Two less QTL
hotspots are detected due to the use of higher threshold, and the
p-value is more extreme.

These genes are also functionally related to the QTL components in
the hotspots. For example, the PSR gene responsible for shoot regen-
eration is located in the hotspot [1,73-73.5] (at 73�73.5 cM of the 1st

chromosome) with EQF value 23.47 for all traits and EQF value 11.14
for vigor traits. The dth3 gene for days to heading is located in the
hotspot [3,6.5-7] with EQF value 29.41 for all traits and EQF value
13.92 for development traits. The Hd16 gene acting as an inhibitor in
the rice flowering pathway is located in the hotspot [3,152-152.5] with
EQF value 38.52 for all traits and EQF value 28.23 for sterility traits. The
WFP gene for regulating panicle branching and grain yield is located
very close the hotspot [8,105.5-106] with EQF value 56.30 for all traits
and EQF value 29.18 for vigor traits. The GPS gene for leaf photosyn-
thesis rate and yields is located in the hotspot [4,110.5-111] with EQF
value 34.13 for all traits, EQF value 6.83 for vigor traits and EQF value
7.11 for yield traits. The well-known pleiotropic gene SCM2 responsible
for lodging resistance and yield is located very close to the detected
hotspot [6,115.5-116], which is mostly composed of the QTL for yield,
vigor and development traits. The Xa3 gene conferring resistance to
bacteria blight is located at the hotspot [11,118-118.5] with EQF value
35.11 for all traits, EQF value 13.00 for development traits and EQF
value 12.04 for vigor traits. The analysis also recognizes several hotspot
regions that do not have any known gene nearby so far (for example, in
the 40�110-cM region of the 5th chromosome). These regions can be
considered as potential regions of new genes that are functionally re-
lated to the QTL in the hotspots. In general, the QTL in the hotspots
and their nearby genes are related in functions and locations to their
associated traits.

Simulation study
The simulation study includes three parts. The first part aims to assess
and compare the GWERs of the proposed statistical procedure and the
Q-method in hotspot detection using the QTL data with correlation
structure under the null hypothesis of noQTLhotspots. The secondpart
focuses on assessing the performances of the two methods in detecting
QTLhotspotswhenQTLhotspots are present. These two parts consider
a 100-cM chromosome. The�1900marker intervals and the 8216QTL
intervals in GRAMENE rice database (see the S1_DataQTL file) are
served as the sample populations to generate the markers and QTL
onto the simulated chromosomes. The third part attempts to evaluate
the information loss when using summarized data instead of individ-
ual-level data by comparing the performances of the different methods
in analyzing a simulated genetical genomics data set. The bin size in
detection analysis is 0.5 cM (4=0.5) for the first two parts and is 2 cM
(4=2.0) for the third part.

Genome-wide error rates: In the first part, theQTL are generated to be
randomly distributed but with different levels of correlation. We first
assume the QTL belong to two trait categories and each trait category
contains 150 QTL for the two different traits. Then, we deploy a
hierarchical two-stage process to generate the QTL data in a trait
category: (1) 105QTL are randomly placed to the 200 possible positions
(bins)without coincidence todetermine their positions; (2)The remain-
ing 45 QTL are then randomly assigned to the 105 determined QTL
positions (in the first stage) by allowing coincidence. The hierarchical
two-stage process can generate randomly distributed QTL (traits) with
correlation structure in the genome. The first stage is to generate
randomness for QTL, and the second stage allows to create correlations
among QTL. We denote the above process as a (105,45) process for
generating theQTL in a trait category. Then, theQTLdatawithdifferent
strengths of correlation under the null can be generated using different
process, such as the (60,90) or (150,0) process. It follows that the QTL
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generated by the (60,90) process will be more correlated as compared to
thoseby the (105,45)process, and those generated by the (150,0) process
areuncorrelatedunder thenull.Weconsider fourkindsof processes, (A)
(150,0) and (150,0), (B) (135,15) and (105,45), (C) (105,45) and (60,90),
(D) (60,90) and (15,135), to generate the 300 QTL in the two trait
categories. After the QTL positions are determined, the lengths of their
flankingmarkers are randomly sampled from the 8216QTL intervals in
the GRAMENE database. Under such settings, the QTL in the different
trait categories are uncorrelated, and those in the same trait category
have different strengths of correlation. The four QTL data sets from the
processes (A), (B), (C) and (D) are uncorrelated, weakly correlated,
moderately correlated and highly correlated, respectively, and the data
sets are analyzed by the proposed statistical procedure (T = 2) and
Q-method (T = 4) to assess their GWERs. Both the EQF-bin and
QTL-interval permutations are considered in the analysis. In our sta-
tistical procedure, we set k = 10 to investigate the GWERs of qFreq(n),
n ¼ 1; 2; :::; 10; here. The number of simulated replicates is 1000.

TheEQF-bin andQTL-interval permutations produce the similar
permutation thresholds and same results. The results of the EQF-bin
permutation are presented here. Figure 4 displays the observed
GWERs of the proposed procedure and the Q-method at the
a ¼0.02, 0.04, 0.06, 0.08 and 0.10 levels for the four QTL data sets.
Figures 4A shows that for uncorrelated QTL the observed GWERs
of the two approaches are about the right target levels. When the
QTL are correlated, Figures 4, B-D show that the GWERs of the
Q-method are higher than the target levels and increase with cor-
relation strength. Most strikingly, for the highly correlated data, the
observed GWERs of the Q-method are closed to 1 at all the levels
(Figure 4D), which implies that the detected hotspots by the
Q-method are very likely to be spurious without accounting for
the correlation features. On the other hand, the proposed procedure
can cope with the correlations among QTL (by trait grouping) and
control the GWERs close to the target levels.

Performance in QTL hotspot detection: For the second part, we
assume there are six hotspots in the same 100-cM chromosome, and
each hotspot is caused by a single gene. The six hotspots are assumed to
be located at 10.25, 20.35, 31.15, 47.25, 56.40, and 67.20 cM of the
chromosome, respectively. To generate QTL onto the chromosome, the
contributive QTL of the top 100 hotspots in GRAMENE database are
served as the sample populations of the six hotspots. The number of
contributive QTL,C, ranges from 29 to 330 in the top 100 hotspots. For
each simulated replicate, the contributive QTL in the top 100, top 20,
top 50 to 100, top 30 to 60, top 50, and top 10 hotspots are served as the
sample populations of the 1st, 2nd, 3rd, 4th, 5th and 6th hotspots, re-
spectively. Such settings imply that the 2nd and 6th hotspots are stronger
hotspots, and the 3rd hotspot is a weaker hotspot. Once the numberC is
determined, the relative positions and interval lengths of the CQTL are
then randomly chosen from the respective sample population. The trait
names and categories of the sampled QTL are still used, and hence
correlation structure between QTL is similar to the GRAMENE data-
base. The number of simulated replicate is 1000. For each simulated
data set, the EQF matrix (T�236) and reduced EQF matrix (T�9) are
constructed for detecting the QTL hotspots.

To assess the performances of the two methods in detecting QTL
hotspots,weuse the truepositiverate (TPR)andpositivepredictivevalue
(PPV) to jointly measure the correct detection rate, and use the false
discovery rate (FDR) to measure the incorrect detection rate. The TPR
defines the proportion of the six hotspots that are correctly detected, and
the PPV (FDR) defines the proportion of true (false) positive detection
amongallpositivedetections inthechromosomeover the1000replicates

(FDR = 12PPV). To combine both PPV and TPR, we use the F1 score
(Van Rijsbergen 1979)

F1 ¼ 2 ·
PPV ·TPR
PPVþ TPR

; (5)

which is the harmonic mean of PPV and TPR, to measure the correct
detection rate. A high F1 score implies that PPV and TPR are both
high and balanced. The average detected hotspot number, F1 score
and FDRare together used to assess the performance ofmethods, and
a quality method should have the ability to provide the result with
correct hotspot numbers, high F1 score and low FDR in hotspot
detection.

Figure 5 depicts the F1 scores (y-axis), FDRs (x-axis) and average
detected hotspot numbers (the numbers in the brackets) with the dif-
ferent thresholds over the 1000 simulation replicates. The average
threshold of the Q-method is 7.58 (b=7.58). Using this threshold, the
average number of detected hotspot is 9.94 (the true number is 6),
indicating greater possibility of detecting extra false hotspots, and
the associated F1 score and FDR are 0.749 and 0.400, respectively.With
the proposed statistical procedure using the EQF-bin permutation, the
average values of the thresholds g1;0:05, g2;0:05, ..., g7;0:05 and g8;0:05 for
qFreq(1), qFreq(2), ..., qFreq(7) and qFreq(8) are 25.63, 18.45, 14.05,
11.53, 10.07, 9.11, 8.40 and 7.84 (ffib), respectively, and the average
numbers of hotspots detected under these thresholds are 1.59, 3.11,
4.46, 5.60, 6.57, 7.53, 8.52 and 9.46, respectively. The average hotspot
number detected by using g4;0:05 is 5.60, which is closest to the true
number 6. The associated F1 scores are 0.419, 0.681, 0.836, 0.896, 0.891,
0.859, 0.814 and 0.770, respectively, and the associated FDRs are 0.000,
0.001, 0.020, 0.071, 0.148, 0.228, 0.306 and 0.371, respectively. In Figure
5, the closer a result with a threshold is to the upper left corner,
the better it performs, simply because the F1 scores are higher and
the FDRs are lower. Apparently, as compared to the result of the
Q-method with the threshold value b=7.58, the results with g3;0:05,
g4;0:05, g5;0:05, g6;0:05, g7;0:05 and g8;0:05 are closer to the upper left
corner, and those with g1;0:05 and g2;0:05 are farther from the upper
left corner. The results with g4;0:05 and g5;0:05 are better as they provide
closer average hotspot numbers (5.60 and 6.57) to the true number 6,
lower FDRs (0.071 and 0.148) and higher F1 scores (0.896 and 0.891),
and the best result is obtained with g4;0:05, not with g6;0:05, in this
specific setting (see CONCLUSION AND DISCUSSION for the rea-
son). As expected, the Q-method produces a liberal threshold, which
serves as the lower bound for the series thresholds gn;0:05’s, and detects
more spurious hotspots. The proposed procedure can provide much
stricter thresholds, some of which may yield better results with correct
hotspot numbers, higher F1 scores and less spurious hotspots (lower
FDRs), for the assessment. The same results are also obtained with the
QTL-interval permutation (not shown).

Genetical genomics experiments: For the third part, concerning the
information loss, we mimic the simulation study in Neto et al. (2012)
with modification to simulate a small-scale genetical genomics data set,
and then apply the proposed statistical procedure, Q-method, Brei-
tling’s method (the N-method) and Neto’s method (the NL-method)
to analyze the data set for evaluation. The data set contains 100 back-
cross progenywith 5 chromosomes of length 100 cMand 600molecular
traits. Each chromosome contains 50 equally spaced markers. The
600 traits are assumed to belong to three different trait categories. Three
hotspots are considered: (1) A small hotspot A is cause by a gene at
50 cM on the 1st chromosome. The gene controls 100 traits with her-
itabilities 0.3�0.4 showing moderate to high LOD scores (see Figure
S3A) in QTL mapping. The 100 pleiotropic traits are assigned to the
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first trait category; (2) A big hotspot B is caused by a gene located at
50 cMon the 3rd chromosome. The gene influences 300 traits belonging
to the second category. Among the 300 pleiotropic traits, half have
heritabilities 0.1�0.45 showing small to high LOD scores (see Figure
S3B), and half have heritaibilities 0.3�0.45 showing moderate to high
LOD scores (see Figure S3B); (3) A big hotspot C is caused by a gene at
50 cM on the 5th chromosome. The gene controls 200 traits that belong
to the third category. The heritabilities of the 200 pleiotropic traits are
0.1�0.2 showing small LOD scores (see Figure S3C). The pairwise
correlations between traits are shown in Figure S3D. The bin size of
2 cM (4=2 cM) is used in the analysis (similar to that in Neto et al.).
The bin containing the estimated QTL position will be given to 1 (and
0 otherwise) to construct the QTL matrix. Both the proposed statistical
procedure and the Q-method operate on the QTL matrix for detection
analysis. The trait grouping in the proposed procedure considers that
all pleiotropic traits are correctly allocated to the same categories (per-
fect trait grouping). For the N-method and NL-method, we followNeto

et al. (2012) to adopt 1.5-LOD support intervals for the backcross to
decrease the spread of the hotspots.

Figure 6 shows the results of the fourmethods for the simulated data
set. Figure 6A presents the hotspot architecture constructed using a
single-trait LOD threshold of 2.47 and the 5% significance hotspot size
thresholds obtained by the Q-method, N-method, and the proposed
procedure. The permutation thresholds delivered by the Q-method and
N-method are 3 and 11, respectively. Under the thresholds, there are
18 and 38 significant bins (detected hotspots), respectively (see Figure
6A), showing that, in addition to detecting the three true hotspots,
several spurious hotspots are also detected near the true hotspots.
The permutation thresholds obtained by the proposed procedure for
assessing the significance of at least 1, 2, 3 and 4 spurious hotspots are
g1;0:05 ¼ 208, g2;0:05 ¼ 58, g3;0:05 ¼ 47 and g4;0:05 ¼ 34, respectively.
Under these thresholds, there are 1, 1, 4 and 5 detected hotspots, re-
spectively, indicating that less spurious hotspots are detected due to
higher thresholds. Using g3;0:05 ¼ 47 as a threshold, the three true

Figure 4 Observed GWERs for the qFreq(n), n = 1,2, ..., 10, statistics of the proposed statistical procedure and for the Q-method at the a =0.02,
0.04, 0.06, 0.08 and 0.10 levels under varying strengths of QTL correlation: (A) uncorrelated, (B) weakly correlated, (C) moderately correlated, and
(D) highly correlated, respectively. Black lines show the targeted error rates. Red lines show the observed GWERs of the Q-method. Green lines
show the observed GWERs of the qFreq(n), n = 1,2, ..., 10, statistics.
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hotspots (the highest bins on chromosomes 1, 3, and 5) and one spu-
rious hotspot (right next to the true hotspot on chromosome 3) are
significant. Figures 6, B-F, present the hotspot architectures inferred
using the NL-method LOD thresholds of 5.36, 3.04, 2.03, 1.24, and 1.07
that aim to control GWER of 5% for spurious hotspots of sizes 1, 5, 20,
77, and 100, respectively. Under these thresholds, there are 31, 22, 11,
3 and 1 significant bins-(hotspots). Using LOD thresholds of 5.36, 3.04,
2.03, not only the three true hotspots but also some spurious hotspots
(the secondary peaks around the true hotspots) are detected. Using a
LOD threshold of 1.24, only the three true hotspots (on chromosomes
1, 3, and 5) are significant. Using a LOD threshold of 1.07, only the true
hotspot on chromosome 3 is detected as significant. The above shows
that, if trait grouping is perfect, the proposed statistical procedure is
applicable and can obtain comparable results in QTL hotspot detection
in the genetical genomics experiments. But note that if trait grouping is
not perfect, the hotspot thresholds decrease and the possibility of
detecting more spurious hotspots increases (not shown).

To sum up, the simulation study shows that the proposed statistical
procedure can control GWERs at the target levels for the QTL data with
correlationstructure,has theability toproducequality results byoffering
a sliding scale of thresholds fromhigh to low forQTL hotspot detection,
and is applicable to the hotspot analysis in genetical genomics studies.

DISCUSSION
Both genetical genomics experiments and public QTL databases can
provide abundant QTL for genome-wide detection of QTL hotspots to
explore the geneticmechanismofquantitative traits inbiological studies.
A single genetical genomics experiment can produce an adequate in-
dividual-level data set that contains the genotypes and a large enough
number of phenotypes for QTL mapping and further for QTL hotspot
detection. On the contrary, public QTL databases consistently collect
summarized QTL data for many phenotypic traits from numerous
independent experiments that allows for detection of QTL hotspots.

Several methods, mainly for using individual-level data, have been
proposed to detect QTL hotspots (see introduction). In this article,
we develop a statistical procedure for detecting QTL hotspots at the
genome-wide level by using summarized QTL data in public databases.
We first obtain theQTL intervals frompublic databases and use them to
compute the EQF matrix for operation. We then derive a permutation
algorithmon theEQFelementsor theQTL intervals tocomputea sliding
scale of EQF thresholds that range from conservative to liberal for
assessing the significance of QTL hotspots. To consider the correlation
structure among traits, the correlated traits are grouped together as a
trunk or unit of permutation to obtain stricter thresholds. As shown in
simulation study, with the grouping strategy, our statistical procedure
can control the GWERs of the test statistic at the target levels under
varying strengths of correlation among QTL and can provide much
more rigorous thresholds for hotspot detection with higher correct
(lower incorrect) detection rates. Besides, to evaluate the information
loss between the two types of data in hotspot detection, we apply the
proposed procedure, Q-method, Breitling’s method and Neto’s ap-
proach to analyze a simulated genetical genomics data set and compare
their results. It shows that our procedure is comparable to the methods
using individual-level data if the pleiotropic (correlated) traits can be all
grouped together into the same trait categories. In the GRAMENE rice
database, more than 100 QTL hotspots were detected in the genome.
We also conduct a genome-wide comparative analysis of the detected
hotspots and the 122 known genes in the Rice Q-TARO database. The
comparative analysis shows that the QTL hotspots and genes are con-
formable in the sense that they co-localize closely and are functionally
related to the associated traits. An R package of our proposed statistical
procedure called QHOT is available on http://www.stat.sinica.edu.tw/
chkao/ and is being submitted to Comprehensive R Archive Network
(CRAN). The R codes can readily produce both numerical and graph-
ical outputs that would allow visualization of several features, including
the EQF architecture, the QTL components of the hotspots, and nearby

Figure 5 The F1 scores (y-axis), FDRs
(x-axis) and average detected hotspot
numbers (the numbers in the brackets)
of the hotspot detection with the differ-
ent thresholds over the 1000 simulation
replicates. The dots denote the average
thresholds gn,0.05, n = 1,2, ..., 8,
obtained by the proposed statistical
procedure and are 25.63, 18.45, 14.05,
11.53, 10.07, 9.11, 8.40 and 7.84, re-
spectively. The triangle denotes the
average threshold b obtained by the
Q-method and is 7.58. The true hotspot
number is 6.
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known genes, at the genome-wide level (see Figures 2, 3 and S2) for
exploring the interplay among QTL, genes and traits.

TheQTLhotspot detection using public databases relies on the great
number of QTL collected from numerous independent QTL mapping
studies. The collected QTL are usually mapped for various traits and
detected by different statistical tools under a wide range of experimental
parameter settings. Quite often some biologically interesting and pop-
ular important traits are more frequently investigated and mapped for
QTL in the studies, resulting in a group of traits stronglymapping to the
sameor closely linkedQTLmostly due to the genetic correlations among
them. Take rice as an example, the agronomic traits, such as panicle
numbers,grainsperpanicle andgrainweight,plantheight,heading time,
grain quality, insect and disease resistant, sterility, etc., are often in-
vestigated and highly correlated to each other (Swamy et al. 2011;
Trijatmiko et al. 2014; Wu et al. 2016). To account for the correlation
structure among traits, we group and permute these traits together to
determine a series of thresholds for hotspot detection. Other grouping,
such as by the already known correlations between traits or biological
prior knowledge on traits, is also applicable. The simulation study
shows that grouping of highly correlated traits is effective to control

the error rates of falsely detecting a hotspot. If genetically correlated
traits are not grouped together and used as control, the error rates may
inflate greatly and will be higher than the target levels. The error rates
are not sensitive to the situation in which uncorrelated traits are falsely
grouped together. Ideally, we would like to have a perfect grouping, in
which traits are correlated in the same categories and uncorrelated in
different categories (the first and third parts of simulation), or the
pleiotropic traits are all grouped into the same trait categories (the third
part of simulation), to cope with their correlation features. However, in
practice, a perfect grouping is not always possible because correlations
among traits are likely to be common, and the pleiotropic traits may
be allocated to different categories. For example, the yield and
disease resistant are correlated and assigned into different categories
in GRAMENE database. The grain weight and plant architecture are
pleiotropic traits and classified into different categories (Fujita et al.
2013; Xu et al. 2015). The GRAMENE rice database classifies all traits
into nine major trait categories based on the general agronomic con-
sideration, which is imprecise in the sense that traits in the same cat-
egories may have different strengths of genetic correlation, and traits in
different categories still preserve certain degrees of genetic correlation.

Figure 6 Panels (A-F) The proposed statistical procedure, Q-method, N-method and NL- method analyses for simulated example. Panels (A)
Inferred hotspot architecture using a single-trait permutation LOD threshold of 2.47 corresponding to a GWER of 5% of falsely detecting at least
one QTL somewhere in the genome. The hotspots on chromosomes 1, 3 and 5 have sizes 50, 210, and 50, respectively. The blue line at count
11 corresponds to the hotspot size threshold at a GWER of 5% according to the N- method. The red line at count 3 corresponds to the
Q-method’s 5% significance threshold. The thresholds g1,0.05, g2,0.05, g3,0.05 and g4,0.05 obtained by the proposed procedure are 208, 58, 47 and
34, respectively. Panels (B, C, D, E and F) Hotspot architecture inferred using different permutation thresholds by the NLmethod; Hotspot
architectures computed using QTL mapping LOD thresholds of 5.36 (B), 3.04 (C), 2.03 (D), 1.24 (E), and 1.07 (F) that aim to control GWER at
a 5% error rate for spurious QTL hotspots of sizes 1, 5, 20, 77, and 100, respectively. The number in the bracket is the number of detected
hotspots. Results are based on 1000 permutations. Q: The Q-method; N: The N-method.
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This allows us to argue that underestimation of the threshold and the
problem of information loss are still very likely to occur to some extent
in the real example analysis, resulting in excesses of observed over
expected hotspot numbers (as validated in the real example analysis
and simulation study).

In the QTL hotspot analysis using genetical genomics experiments,
the proposed statistical procedure can be extended as follows: First,QTL
mapping is performed toobtain theQTLmatrix; Second, the correlation
coefficients among the traits are computed for grouping reference;Next,
the QTL for the (highly) correlated traits are grouped and permuted
together to obtain a series of thresholds for assessing hotspot signifi-
cance. Note that the trait grouping can be also done in different ways,
such as by principal component analysis or cluster analysis (Abdi and
Williams 2010; Everitt et al. 2011). Such a procedure is easy to imple-
ment and very cheap in computation as compared to the methods by
permuting the original individual-level data in the hotspot analysis (see
The permutation algorithm). It has been observed that QTL or genes for
genetically correlated traits have a tendency to cluster on the same or
adjacent regions of chromosomes in several organisms, which may be
due to linkage, pleiotropy or natural selection for co-adapted traits
(Studer and Doebley 2011; Wu et al. 2015). The grouping strategy
attempts to take the clustering phenomenon into account in the de-
tection of QTL hotspots. In data collection, it would be important to
collect as many QTL and genes for various traits as possible of to
identify the clustering phenomenon and explore the interplays among
QTL, genes and traits. Our real example analysis considers the
8216 QTL for 236 component traits in GRAMENE rice database for
hotspot detection and compares with the 122 known genes in QTARO
database. The results display the clustering phenomenon of QTL and
genes around the detected hotspots. For example, the well-known
pleiotropic gene SCM2 responsible for lodging resistance and yield is
very close to the QTL hotspot [6,115.5-116] (see Figure S2), which
contains QTL for yield, vigor and development. Also, five closely linked
genes, Rc, qSD7-1/qPC7, OsHMA3, qCDT7 and Ghd7, with similar
functions are localized around the detected hotspots [7,44.5-45] and
[7,50-50.5]. Understanding the genetic architectures of quantitative
traits at the genome-wide level has been a key and challenging issue
in various areas of genetics, gene and genomics studies. This would rely
heavily on effectively integrating and analyzing the information on the
QTL and genes from the published literature. Currently, several well-
known databases of important organisms (see INTRODUCTION sec-
tion) have consistently collected the information and allow researchers
access to their well-curated datasets, and, therefore, increasing numbers
of QTL and genes for a variety of traits are available and ready for
further application. There is a need to develop statistical methods
for mining the useful information and knowledge from these databases.
By using public databases, we develop a statistical procedure for detect-
ing QTL hotspots, perform comparative analysis with the known genes
for validation, and also identify several potential QTL regions of genes
(not shown). The R codes can present the EQF architectures for hot-
spots (QTL), genes and quantitative traits region by region along the
genome to overview their connections. Our approach can provide a
way to explore networks among QTL hotspots, genes and traits for
dissecting the genetic architecture of complex traits in broad areas of
biological studies.
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