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Abstract: Artificial intelligence (AI) as a branch of computer science, the purpose of which is to
imitate thought processes, learning abilities and knowledge management, finds more and more
applications in experimental and clinical medicine. In recent decades, there has been an expansion of
AI applications in biomedical sciences. The possibilities of artificial intelligence in the field of medical
diagnostics, risk prediction and support of therapeutic techniques are growing rapidly. The aim of
the article is to analyze the current use of AI in nutrients science research. The literature review was
conducted in PubMed. A total of 399 records published between 1987 and 2020 were obtained, of
which, after analyzing the titles and abstracts, 261 were rejected. In the next stages, the remaining
records were analyzed using the full-text versions and, finally, 55 papers were selected. These papers
were divided into three areas: AI in biomedical nutrients research (20 studies), AI in clinical nutrients
research (22 studies) and AI in nutritional epidemiology (13 studies). It was found that the artificial
neural network (ANN) methodology was dominant in the group of research on food composition
study and production of nutrients. However, machine learning (ML) algorithms were widely used
in studies on the influence of nutrients on the functioning of the human body in health and disease
and in studies on the gut microbiota. Deep learning (DL) algorithms prevailed in a group of research
works on clinical nutrients intake. The development of dietary systems using AI technology may
lead to the creation of a global network that will be able to both actively support and monitor the
personalized supply of nutrients.

Keywords: artificial intelligence; artificial neural networks; machine learning; nutrients

1. Introduction

The term “artificial intelligence” was first proposed in 1955 by the American computer
scientist John McCarthy (1927–2011) in the proposal of a research project, which was carried
out the following year at Dartmouth College in Hanover, New Hampshire [1,2].

Artificial intelligence (AI) as a branch of computer science, the purpose of which is to
imitate thought processes, learning abilities and knowledge management, finds more and
more applications in experimental and clinical medicine. In recent decades, there has been
an expansion of AI applications in medicine and biomedical sciences. The possibilities
of artificial intelligence in the field of medical diagnostics, risk prediction and support of
therapeutic techniques are growing rapidly. Thanks to the use of AI in ophthalmological [3],
radiological [4] and cardiac [5] diagnostics, measurable clinical benefits have been obtained.
AI was used in research on new pharmaceuticals [6]. The development of AI also provides
new opportunities for research on nutrients and medical sensing technology [7].

1.1. Artificial Neural Networks (ANNs)

ANNs as a currently widely used modeling technique in the field of AI were inspired
by the structure of natural neurons of the human brain. ANNs are mathematical models
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designed to process and calculate input signals through rows of processing elements, called
artificial neurons, connected to each other by artificial synapses. There are three types
of layers forming ANNs. The input layer captures the raw data and passes them to the
hidden layer. In this second layer, the learning process takes place. The results of the
analysis are collected in the output layer and the output data are created. A neural network
may consist of hundreds of single units. An ANN is a parameterized system that has
weights as adjustable parameters. Due to the need for estimation of these parameters,
ANNs require large training sets. ANNs acquire knowledge by detecting patterns and
relationships between data, i.e., through experience, not as a result of programming.

An ANN reveals its particular usefulness in the case of the need for modeling datasets
with non-linear dependencies. In solving biomedical problems, raw data can be both
literature and experimental data. In the last two decades, ANNs have been used, among
others, to create an experimental decision algorithm model open to improvement, aimed at
evaluating the results of biochemical tests confronted with both reference values and clinical
data [8]. This technique was also used in evaluation of cell culture cross-contamination
levels based on mass spectrometric fingerprints of intact mammalian cells [9]. The particular
usefulness of ANNs has been proven in pharmaceutical analyses [10]. An interesting
application of ANNs is the prediction of the relationship between the Mediterranean dietary
pattern, clinical characteristics and cognitive functions [11]. The usefulness of ANNs has
been proven in body composition analyses, which have clearly non-linear characteristics [12].
Using ANN modeling, significant benefits can be obtained in clinical dietetics.

It is worth noting that the fuzzy logic methodology (FLM) can be combined with
neural networks. The idea of this area of AI is to strive for greater accuracy, dimensionality
and simplification of the structure. There is a possibility to create fuzzy neural networks
and convert FLM-based models into neural networks.

1.2. Machine Learning (ML)

ML is an AI area related to algorithms that improve automatically through experience.
ML algorithms have the potential to create mathematical models for decision making.
The process of creating these models is based on large sets of training data, without
programming. The popularization of the use of ML algorithms took place in the last decade
of the 20th century in search engine applications. In the following decades, there were
high hopes for significant discoveries in the field of organic synthesis with the use of
increasingly advanced ML algorithms [13]. Despite the fact that these hopes have not been
fully met, this area of AI has important applications both in biomedical sciences and in
clinical medicine. Machine learning—both supervised and unsupervised—can be applied
to clinical datasets to develop risk models [14]. It can significantly support the analysis of
data obtained from the patient [15].

There are suggestions that ML is the future of computer-assisted diagnostics, biomedi-
cal research and personalized medicine [16]. Machine learning techniques are becoming
more and more popular in diabetes research: in blood glucose prediction and in the de-
velopment of the so-called artificial pancreas (a closed-loop system) [17]. The use of ML
algorithms in research on the gut microbiota is postulated, especially because of the large
datasets collected in these studies [18]. In a recent report, Liu et al. proved that an ML algo-
rithm integrating baseline microbial signatures of the intestinal microbiota can accurately
predict the patient’s glycemic response to physical effort [19].

Deep learning (DL) is a subtype of ML. It is an AI domain that has found its appli-
cations especially in the techniques of image and voice recognition and foreign language
translation. DL also has an important use in medical diagnostics. The significant advantage
of DL over supervised ML is expressed in the autonomy of the program in the area of
building sets of features used in recognition.
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1.3. Internet of Things (IoT)

The term IoT was first used by British entrepreneur and startup founder Kevin Ashton
in 1999, in the sense of a network of connected objects. This is the concept that objects
(devices) can directly or indirectly collect, process or exchange data via a computer network
or intelligent electrical installation. The term Internet of Everything (IoE) is used to describe
a network of people, processes, data and things connected to the Internet.

In clinical medicine, IoT has a significant application in relation to telemedicine
procedures [20,21], which are becoming more and more widely used, especially during the
COVID-19 pandemic. Important applications of IoT can also be seen in the provision of
detailed information on food products available on the market [22].

2. Materials and Methods

The aim of the article is to analyze the current use of AI in nutrients science research
and to determine the prospects of its further application in this area.

The literature review was conducted in PubMed using a combination of searching
terms: “artificial intelligence” (All Fields) AND “nutrients” (All Fields). A total of 399
records (published between 1987 and 2020) were obtained, of which, after analyzing the ti-
tles and abstracts, 261 were rejected. In the next stage, the remaining records were analyzed
using the full-text versions and 111 papers were selected. These papers were afterwards
divided into four categories: AI in agricultural nutrients research, AI in biomedical, AI
in clinical nutrients research and AI in nutritional epidemiology. In order to limit the
analyzed issues to biomedical aspects, agricultural and environmental nutrients research
was excluded (Figure 1).
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3. Results
3.1. AI in Biomedical Nutrients Research

In the area of biomedical nutrients research, there were identified studies in which
advanced AI methods and systems were applied in relation to the study of the composition of
food products, optimization of nutrient production, the effects of nutrients on the functioning
of the human body in health and disease and research on the gut microbiota (Table 1).

Table 1. The characteristics of the included studies on biomedical nutrients research.
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Topic Number of Studies
[Ref] Nutrients Domains Algorithms Years

Food
composition

6
[23–28]

Proteins,
Minerals (K, Ca,

Mg), Trace
elements

ANN, ML

SVM, LS-SVM, SVR,
GA-RBFN, PLS,

GA-PLS, KohNN,
LASSO, CLAs

1996, 2013, 2016,
2017, 2019

Production of
nutrients

3
[29–31]

Retinol,
Benzoquinones,

Phycobiliproteins
ANN, FLM LM, GA, ANN-GAR,

FFD, GA-Fuzzy 2017, 2020

Influence of
nutrients on
phys./path.

functions

8
[32–39]

Proteins,
Vitamins

(A,B,C,D,K)

ANN, FLM,
ML

SVM, BN, NB, RF,
CLAs

2013, 2014, 2016,
2018, 2019

Gut microbiota 3
[40–42]

Nutrients from
food ML, NV SVM, kNN, RF, CLAs 2015, 2017, 2019

Total 20 1996–2020

Note: Domains: ANN = artificial neural network, ML = machine learning, FLM = fuzzy logic methodology, NV = network visualization;
learning algorithms: kNN = k-nearest neighbor, KohNN = Kohonen neural network, LM = Levenberg–Marquardt algorithm, GA = genetic
algorithm, ANN-GAR = Garson’s algorithm, GA-Fuzzy = fuzzy genetic algorithm, FFD = fractional factorial design, LASSO = least absolute
shrinkage and selection operator, GA-PLS = genetic algorithm-partial least squares, PLS = partial least squares regression, GA-RBFN =
genetic algorithm-radial basis function network, LS-SVM = least squares support vector machine, SVM = support vector machine, SVR =
support vector regression, BN = Bayes net, NB = naive Bayes, RF = random forest, CLAs = clustering algorithms.

According to graphical characteristics of the analyzed works (Figure 2), the ANN
methodology dominated both in food composition study and the production of nutrients.
Among the works on the influence of nutrients on the functioning of the human body in
health and disease and studies on the gut microbiota, ML domain algorithms were used
almost exclusively. The fuzzy logic methodology was used occasionally.

3.1.1. AI in Food Composition Study

The use of AI techniques in studying the composition of food products and testing
their originality dates back to the 1990s. Dettmar et al. used the ANN technique to identify
the region of origin of fruit from a set of 16 variables characterizing samples of orange
juice [23]. The effectiveness of the applied calculation technique was 92.5%.

Yang et al. used the isobaric tag for a relative and absolute quantification proteomic
approach to analyze differentially expressed whey proteins in the human and bovine
colostrum and mature milk to understand the different whey proteomes. It may provide
useful information for the development of nutrient food for infants and dairy products [24].

Moreira et al. used topological maps of the Kohonen neural network in the assessment
of the procedure for sample preparation of cashew nuts [25]. Shen et al. used laser-induced
breakdown spectroscopy (LIBS), least squares support vector machines (LS-SVM) and
LASSO models for the detection of six nutritive elements in Panax notoginseng (traditional
Chinese medicine) samples from eight producing areas [26]. Rasouli et al. applied the whole
space genetic algorithm-radial basis function network (wsGA-RBFN) method to determine
the content of microminerals of Fe2+, Zn2+, Co2+ and Cu2+ in various pharmaceutical
products and vegetable samples (tomato, lettuce, white and red cabbages) [27]. This group
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of studies also includes the research of Soltani et al. who used three different quantitative
structure bitter taste relationship (QSBR) models (artificial neural network, multiple linear
regression and support vector machine) to predict the bitterness of 229 peptides [28].

3.1.2. AI in Research on Production of Nutrients

With regard to research on the optimization of the production of certain nutrients,
several studies have been identified in which AI modeling was intentionally applied.

Huang et al. implemented methods of production of a retinol derivative named retinyl
laurate by an artificial neural network (ANN) [29]. Zheng et al. studied the optimization of
producing 2,6-dimethoxy-ρ-benzoquinone (DMBQ) and methoxy-ρ-benzoquinone (MBQ)
as the potential anticancer compounds in fermented wheat germ. They used algorithms of
an artificial neural network (ANN) combined with the genetic algorithm (GA) [30]. The
ANN model with a Levenberg–Marquardt training algorithm was applied for modeling the
complicated non-linear interactions among 16 nutrients in this production process. Kumar
et al. used GA-Fuzzy—an evolutionary algorithm comprised of the genetic algorithm
(GA) and the fuzzy logic methodology (FLM)—for the optimization of the production of
phycobiliproteins (PBPs) from cyanobacteria [31].

3.1.3. AI in Research on the Influence of Nutrients on Physiological and
Pathophysiological Functions

The most numerous group of works presenting applications of AI models in biomedi-
cal nutrients research is research on vitamins.

Pavani et al. used the neuro-fuzzy model to investigate the influence of alterations
in vitamin K (K1, K2 and K3) on modulating the warfarin dose requirement [32]. An AI
model was used to predict the warfarin dose, and higher vitamin K1 was observed in the
CYP4F2 V433M polymorphism in this study.

The use of AI techniques in research on the influence of vitamin D on the functioning
of the human body was described in articles published in 2019. Yu et al. compared the
expression profiles of miRNAs, lncRNAs, mRNAs and circRNAs, between 1,25-(OH)2D3-
treated endothelial progenitor cells (EPCs) and control cells. They used bioinformatics
analyses to identify differentially expressed RNAs and constructed the competing endoge-
nous RNA (ceRNA) networks with Cytoscape software [33]. Zhang et al. investigated
the effect of 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) on primary chondrocytes cultured
from patients with an osteoarthritis protein–protein interaction (PPI) by a PPI network [34].
They suggested that their study might provide a theoretical basis for the use of vitamin D
in treating osteoarthritis.

Kolhe et al. tried to verify the hypothesis that vitamin C mediates proliferation
and differentiation of bone marrow stromal cells through miRNA regulation [35]. They
performed bioinformatics analyses to identify novel target genes and signaling pathways.
Gene Ontology word clouds were generated using the online Wordle software.

Huang et al. investigated an influence of the active ingredients of licorice (root of
Glycyrrhiza glabra) for muscle fatigue by RNA-Seq and bioinformatics analysis. They used
a machine learning model and a docking tool to predict active ingredients. They identified
hispaglabridin B (HB) as a possible inhibitor of FoxO1 which was useful for preventing
muscle wasting in chronic kidney disease [36].

Li et al. investigated the effects and mechanism of Ginkgo biloba L. on Alzheimer’s
disease by using compound-target-disease and compound-group-target-pathway (CGTP)
network models [37].

Panwar et al. developed in silico models for predicting vitamin-interacting residues
in a protein from its primary structure. They used machine learning techniques such as
various classifiers of SVM, RandomForest, BayesNet, NaiveBayes, NaiveBayesMultinomial
and ComplementNaiveBayes and position-specific scoring matrix (PSSM) features of
protein sequences to identify vitamin-interacting residues in a protein [38]. Yu et al. used
a new predictor, the TargetVita web server, and datasets for predicting protein–vitamin
binding residues using protein sequences [39].
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3.1.4. AI in Research on Gut Microbiota

In recent years, results of research on nutrients and the gut microbiota using AI
techniques have been published.

Devika and Raman used genome-scale metabolic models to differentiate between 36
important Bifidobacterial strains [40]. Shima et al. performed analyses concerning the gut
microbiota, based on a combination of machine learning and network visualization [41].
Mohammed and Guda used AI in the research on enzymes produced by strains of gut
bacteria [42]. They developed ECemble, an approach to identify enzymes and study the
human gut metabolic pathways. ECemble uses an ensemble of machine learning methods
to predict and identify the enzyme classes. They identified 48 pathways that have at least
one bacteria-encoded enzyme and are involved in metabolizing nutrients.

3.2. AI in Clinical Nutrients Research

In the past studies in the field of clinical nutrients research, AI techniques have been
used in projects aimed at creating tools supporting dietary activities and in supplementation,
as well as in the diagnosis and prediction of the risk of chronic diseases (Table 2).

Table 2. The characteristics of the included studies on clinical nutrients research.
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R
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h

Topic Number of Studies
[Ref] Nutrients Domains Algorithms Years

Clinical nutrients
intake

11
[43–53]

Carbohydrate, Lactose,
Protein, Minerals

ML, DL
FLM

LASSO, FFNN,
SVM, kNN,

2003, 2008, 2015,
2017–2019

Diseases risks to
food and

nutrients patterns

4
[54–57]

Carbohydrate,
Triglyceride,

Micronutrients (folate,
B12)

ANN, ML kNN, DTA LR,
RF 2016, 2018, 2020

Disease and trace
elements levels

4
[58–61]

Trace elements (lithium,
zinc, chromium, copper,

iron, manganese)
ML SVM, DTA, RF,

NB
2009, 2012, 2014,

2017

Supplementations 3
[62–64]

Vitamins (A, C, D)
Curcumin, Glycyrrhizic

acid
ML CLAs 2020

Total 22 2003–2020

Note: Domains/methods: ANN = artificial neural network, ML = machine learning, DL = deep learning, FLM = fuzzy logic methodology;
learning algorithms: kNN = k-nearest neighbor, LASSO = least absolute shrinkage and selection operator, FFNN = feed forward neural
network, LR = linear regression, RF = random forest, DTA = decision tree algorithm, SVM = support vector machines, NB = naive Bayes,
CLAs = clustering algorithms.

According to the graphical characteristics of the analyzed works (Figure 2), the DL
methodology dominated in the group of studies on clinical nutrients intake. A marginal
use of the fuzzy logic methodology was noted—it appeared only in one study.

3.2.1. AI in Clinical Nutrients Intake

Among the identified studies on the application of AI in clinical practice, there is
a need to distinguish those that aimed to develop systems that monitor, support and
modulate the nutrition of chronically ill people. Lu et al. presented a novel system based
on AI to accurately estimate nutrient intake, by simply processing RGB depth image pairs
captured before and after meal consumption [43]. Oka et al. compared AI-supported
nutrition therapy with a mobile application (n = 50) versus human nutrition therapy
(n = 50) in a randomized controlled trial [44]. An interesting technological solution in the
AI area was used by Vasiloglou et al. in relation to the clinical problem of controlling
carbohydrate intake in patients with type 1 diabetes. These authors used GoCARB as a
computer vision-based smartphone system in determining plated meals’ carbohydrate
content. In this study, the estimation of carbohydrate content in 54 plated meals made by
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GoCARB was compared to the estimation made by six experienced dietitians. It was found
that GoCARB estimated the carbohydrate content with the same accuracy as professional
nutritionists (p = 0.93) [45].

Chin et al. tested the Automated Self-Administered 24-Hour Dietary Assessment
Tool (ASA24) on the example of lactose with regard to the Nutrition Data System for
Research (NDSR) [46]. ASA24, also known as food diaries, is a web-based tool that enables
multiple, automatically coded, self-administered 24-h diet recalls. NDSR is a dietary
analysis software application widely used for the collection and coding of 24-h dietary
recalls and the analysis of menus. Nine machine learning models have been developed
based on the nutrients common to ASA24 and the NCC database. The results obtained in
this study suggest that computational methods can successfully estimate an NCC-exclusive
nutrient for foods reported in ASA24.

In order to monitor eating behaviors, a rapid automatic bite detection algorithm
(RABID) that extracts and processes skeletal features from videos was constructed. Kon-
stantinidis et al. used it to analyze the eating behaviors of n = 59 patients (three types of
dishes, 45 meals), the results of which showed an agreement between algorithmic and
human annotations (Cohen’s kappa κ = 0.894; F1-score: 0.948) [47].

Chi et al. proposed a knowledge-based system (KBS) for patients with chronic kidney
disease using the Web Ontology Language (OWL) and the Semantic Web Rule Language
(SWRL) [48]. In order to evaluate the designed system in recommending appropriate food
serving amounts from different food groups, information was collected from n = 84 patients.
It was found that the OWL-based KBS can achieve accurate problem solving and reasoning
questions while maintaining the ability to share and extend the knowledge base.

AI techniques can also be useful in diagnosing mild dehydration. Posada-Quintero
et al., using machine learning, investigated the possibility of detecting mild dehydra-
tion with autonomic responses to cognitive stress (n = 17) [49]. Taking into account the
autonomic control indicators based on electrodermal activity (EDA) and pulse rate vari-
ability (PRV) in the Stroop test, they obtained 91.2% overall accuracy of mild dehydration
detection.

In the area of AI applications in the improvement of dietary solutions, two articles
describing prototype solutions should be mentioned. Khan and Hoffmann proposed a
menu construction using an incremental knowledge acquisition system (MIKAS) [50]. This
system asks the expert to provide an explanation for each of their actions, in order to
include the explanation in its knowledge base, so MIKAS could in the future automatically
perform them.

Fuzzy arithmetic has been used to create “Nutri-Educ”—software for proper balancing
of meals, according to the energy needs of the patient. Heuristic search algorithms are used
to find a set of actions, acceptable from a nutritional point of view, that will transform the
initial meal into a well-balanced one [51].

Baek et al. applied the hybrid clustering-based food recommendation method that uses
chronic disease-based clustering and a nutrition knowledge base [52]. Food products are
grouped using the k-means algorithm and food and nutrient data system. Based on the created
clusters and data on food preferences, a knowledge base on diet and nutrition is generated.

Mezgec and Koroušić Seljak introduced a new “NutriNet” tool for food image recog-
nition based on a deep convolutional neural network architecture [53]. It was tested on a
collection of 225,953 images (512 × 512 pixels) of 520 different foods and beverages. This
tool with an implemented training component is used in practice as a part of a mobile app
for the dietary assessment of Parkinson’s disease patients.

3.2.2. AI in Evaluating Diseases Risks in Relations to Food and Nutrients Patterns

AI techniques also appear to be useful in estimating the risk of health problems based
on the analysis of dietary or supplementation patterns. Panaretos et al. used the k-nearest
neighbors algorithm and random forests decision tree to assess the 10-year cardiometabolic
risk in relation to nutrient and food patterns, n = 3042 (2001–2002) [54]. The authors of
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the study, using factor analysis, identified factors from foods and nutrients, respectively,
explaining 54 and 65% of the total variation in intake. ML techniques were found to be
superior compared with linear regression in health score classification.

Berry et al. in n = 1002 twins and unrelated healthy adults groups (PREDICT 1 study)
assessed the inter-individual variability of postprandial metabolic responses (triglyceride,
glucose, insulin) as potential risk factors for cardiometabolic diseases [55]. On the basis of
conducted cohort studies, they developed a machine learning model that predicted both
glycemic (r = 0.77) and triglyceride (r = 0.47) responses to food intake.

Naushad et al. developed a breast cancer prediction model based on an artificial neural
network (ANN) to investigate how micronutrients (foliate, B12) modulate susceptibility
to breast cancer [56]. The developed ANN model explained 94.2% variability in breast
cancer prediction.

This group of studies also includes the article by Shiao et al., who examined n = 106
participants in multi-ethnic colorectal cancer families in terms of prognostic factors of
healthy eating (HEI index) [57]. Machine learning validation procedures were applied,
including the ensemble method, generalized regression prediction, elastic net and leave-
one-out cross-validation methods.

3.2.3. AI in Studying the Relationships between Disease and Trace Elements Levels

In a review of AI application reports, there were identified articles examining the levels
of selected trace elements in biological samples collected from patients with type 2 diabetes.
Tan et al. examined the usefulness of machine learning (Adaboost) in combination with
trace element analysis of hair samples in diagnosing CVD in clinical practice (n = 124) [58].
The same authors examined the levels of several elements, including trace elements:
lithium, zinc, chromium, copper, iron, manganese, nickel and vanadium, in whole blood
of type 2 diabetes patients (n = 53), comparing them with analogous data obtained from
healthy people (n = 105) [59]. In order to construct the model, they used Fisher linear
discriminate analysis (FLDA), a support vector machine (SVM) and a decision tree (DT)
for data analysis. In 2014, the results of the relationships between several element levels
in hair/urine and diabetes mellitus (n = 211) were published using ensemble and single
support vector machine (SVM) algorithms as the classification tools [60].

In addition to the use of AI techniques in the study of the relationship between the
risk of diabetes and trace elements, the study of relationships between schizophrenia risk
and serum levels of macro and trace elements should also be noted. Lin et al. for this
purpose used samples taken from 114 schizophrenia patients and 114 healthy controls
and supervised learning methods [61]. The levels of 39 macro and trace elements were
examined and the best prediction accuracies were achieved by support vector machines.

3.2.4. AI in Studying on Supplementations

Li et al., in a recent report, described the performed bioinformatics analysis and
computation assays using a network pharmacology method to evaluate the properties of
vitamin A as an anti-SARS-CoV-2 regimen [62]. A similar research goal was achieved by the
team of Chen et al., who, using network analysis, tested the potential of a novel combination
of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) against CoV infection [63]. Further,
using network analysis, Fan et al. attempted to identify a molecular mechanism delaying
the onset of psychotic symptoms in Alzheimer’s disease in association with the use of
vitamin D [64].

3.3. AI in Nutritional Epidemiology

In the area of nutritional epidemiology research, there were identified studies in which
advanced AI methods and systems were applied in relation to the dietary assessment, physical
monitoring systems and environmental trace elements monitoring systems (Table 3).
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Table 3. The characteristics of the included studies on nutritional epidemiology.

N
ut

ri
ti

on
al

Ep
id

em
io

lo
gy Topic Number of Studies

[Ref] Nutrients Domains Algorithms Years

Dietary assessment 7
[65–71] Macronutrients ML, DL

FLM ICP, CLAs 2008, 2011,
2018–2020

Physical monitoring
systems

3
[72–74] Macronutrients IoT, ML,

DL FLM
kNN, SVM,

BDLN 2019–2020

Environmental trace
elements monitoring

systems

3
[75–77] Trace elements ANN, ML PNN, KohNN,

PLS 2009, 2017, 2020

Total 13 2008–2020

Note: Domains/methods: ANN = artificial neural network, ML = machine learning, DL = deep learning, FLM = fuzzy logic methodology,
IoT = Internet of Things; learning algorithms: ICP = iterative closest point algorithm, CLAs = clustering algorithms, kNN = k-nearest
neighbor, SVM = support vector machine, BDLN = Bayesian deep learning network, PNN = probabilistic neural network, KohNN =
Kohonen neural network, PLS = partial least squares regression.

In this research area, the algorithms of ML and DL were used predominantly (Figure 2).
The methodology of ANN was used in environmental trace elements monitoring systems.
The application of the IoT methodology was noted in the physical monitoring systems topic.

3.3.1. AI in Dietary Assessment

Mobile applications based on systems using AI are of significant importance in the field
of nutritional prophylaxis (Table 3). In 2008, Sun et al. proposed an electronic photographic
approach and associated image processing algorithms to estimate food portion size [65].
Lu et al., in a recent publication, offered goFOODTM as a dietary assessment system based
on AI. It can estimate the calorie and macronutrient content of a meal, on the sole basis of
food images captured by a smartphone [66].

Yang et al. proposed a new methodological approach in the field of nutritional
epidemiology, Ontology for Nutritional Epidemiology (ONE) [67]. It is a resource to
automate data integration, browsing and searching. ONE can be used to assess reporting
completeness in nutritional epidemiology.

Lo et al. created an objective dietary assessment system based on a distinct neural
network [68]. They used a depth image, the whole 3D point cloud map and iterative closest
point (ICP) algorithms to improve the dietary behavior management.

Fang et al. estimated food energy based on images and the generative adversarial
network (GAN) architecture (n = 45) [69].

Ji et al. assessed the relative validity of an image-based dietary assessment app—
Keenoa—and a 3-day food diary in a sample of healthy Canadian adults (n = 102) [70].
The authors in this randomized controlled trial showed that Keenoa had better validity at
the group level than the individual level and it can be used when focusing on the dietary
intake of the general population.

Hsu et al. used the fuzzy decision model to develop a web-based support system
that searches food composition databases and calculates dietary intake [71]. This research
project was carried out due to the lack of integrated databases for Chinese menus and the
need for a decision-making tool for dietitians in Taiwan.

3.3.2. AI in Physical Monitoring Systems

AI techniques have found their application not only in monitoring the quality and
quantity of nutrients, but also in terms of the level of their expenditure. In the face of the
obesity epidemic, these AI applications are very important. Monogaran et al. described
the use of a monitoring system as an effective diagnosis tool of physical activities by a
wearable smart-log patch with Internet of Things (IoT) sensors [72]. The data were analyzed
using edge computing on a Bayesian deep learning network (EC-BDLN). Tragomalu et al.
analyzed e-health applications for the management of cardiometabolic risk factors in
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children and adolescents [73]. Ramyaa et al. tried to phenotype women based on dietary
macronutrients and physical activity using machine learning, support vector machine
(SVM), neural network and k-nearest neighbors (kNN) algorithms [74].

3.3.3. AI in Environmental Trace Elements Monitoring Systems

Novic and Groselj used an ANN to create a methodology for food specifications
associated with the origin of food. The methodology was tested on honey samples collected
by the TRACE UE project [75]. The data were collected from various regions of Europe and
analyzed for the content of trace elements.

Research on the content of trace elements and rare-earth elements in honey was also
carried out by Drivelos et al. [76] They used probabilistic neural network (PNN) analysis
and constructed a partial least squares (PLS) model for classifying of honey samples
according to their geographical origin and organic characterization.

Tunakova et al. used an ANN to create a neural network model describing the
retentions of trace elements in the human body. They calculated the microelement levels in
the body, knowing the trace element levels in drinking water and urine [77].
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tions; nutritional epidemiology: DAST = dietary assessment; PMSs = physical monitoring systems; ETEMS = environmental
trace elements monitoring systems, [. . . ] = references.

4. Discussion

One of the main problems in analyzing publications on the use of AI in nutrient
research is the range of research areas to be considered. This type of research creates a
very diverse spectrum of problems. They are not limited to the field of biomedical sciences,
but also apply to plant and animal breeding, including the breeding of microorganisms.
The limitations which were found in the methodology of the review were dictated by the
intention to maintain transparency. Therefore, studies that directly or indirectly relate to
human health were included, excluding research on nutrients in agricultural and veterinary
sciences. The review of the publications revealed three application areas of AI technology:
biomedical nutrients research, clinical nutrients research and nutritional epidemiology.
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During the analysis of the reviewed publications presenting the results of research on
nutrients with the use of AI technology, it can be noticed a little later that it gained wider
application in human health research than analogous applications in experimental research
on food. This may have resulted from both some ethical concerns and psychological
resistance, as well as from the imperfections of earlier AI algorithms, which seemed not
yet ready to solve problems concerning the human body. A significant increase in the
number of publications on the use of AI in nutrients research has been recorded in the last
decade (2011–2020). Perhaps the title question from the article by Gedrich et al., “How
optimal are computer-calculated optimal diets?” [78], asked at the end of the last century
was significantly ahead of the medical professions’ mentality.

The use of AI in biomedical nutrients research reflects the need for efficient analysis
of large datasets that could not be analyzed using traditional statistical methods. This
applies in particular to the study of the relationship between nutrients and the functioning
of the human body and in the study of the gut microbiota [40–42]. The increasing use of AI
algorithms in this area is an expression of scientific progress and is becoming not only a
privilege, but even a necessity in the pursuit of obtaining valuable results. The possible
decoding of the gut microbiota functioning mechanisms can bring significant benefits in
the form of possibilities to develop modern and very effective probiotics.

The application of AI algorithms in clinical nutrients research is expressed both by
systems supporting dietary activities, diseases risks in relation to food and nutrients
patterns and supplementation research. An important issue in this research area is the
assessment of the reliability and credibility of the test results obtained using AI techniques.
Another essential issue is the modification of the dietician–patient relationship in the case
of replacing, in whole or in part, the work of a medical professional by AI systems [43–
53]. The problem of trust in AI-based systems, especially in the elderly, remains open.
In the social dimension, however, with the implementation of modern technologies in
everyday activities, an increase in trust in both robotic systems and AI systems in medicine
is observed. Especially on the basis of the articles included in the review, it is possible to
state potentially good-quality effects of using dietary AI systems. Comparing them with
the assessment of professional nutritionists, it is worth noting that in both cases, there
were similar difficulties with regard to estimating the caloric value of some food products
(e.g., GoCARB) [45]. The use of AI systems in dietary assessments enables personalized
nutrition, which in some diseases is a priority.

The development of AI systems in dietetics may lead, in the near future, to a partial
replacement of medical personnel and reducing the need for personal contact with a
nutritionist. In the face of contemporary epidemiological threats, this seems to be of
significant importance. The further dynamic development of dietary systems using AI
technology may lead to the creation of a global network that will be able to both actively
support and monitor the personalized supply of nutrients [79]. In this case, consideration
should be given to geographical and cultural differences in the management of food and
nutrients. Perhaps the development of AI in nutrients research will enable the creation
of personalized nutrition databases as a starting point for modulating daily nutrition, as
enabled by Nutri-Educ based on fuzzy arithmetic [51].

On the basis of this review, it is worthwhile to consider the possibility of creating
AI systems to coordinate both biomedical and clinical nutrients research with nutritional
epidemiology. Perhaps the gut microbiota function may be an important mediator of this
kind of advanced coordination. Therefore, research on the importance of the intestinal flora
is of fundamental importance in the field of nutrients research. A significant challenge for
the near future is the use of AI technology in the creation of gut microbiota biobanks for
the purpose of scientific research [80].

Despite the fact that AI technologies are dynamically developing, the problem in
nutrients research is not currently obtaining more and more advanced algorithms, but the
application of those that have already been developed and are standardly used in other
fields of knowledge, and even in other areas of biomedicine. An important challenge for
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nutrients research is also their integration with research on the use of medical robotics.
Perhaps the development and application of AI in nutrients research requires modification
of both mentality and professional competences, as is already postulated in relation to the
food industry [81].
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