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ABSTRACT High-throughput cultivation studies have been successful at bringing
numerous important marine bacterioplankton lineages into culture, yet these fre-
quently utilize natural seawater media that can hamper portability, reproducibility,
and downstream characterization efforts. Here we report the results of seven experi-
ments with a set of newly developed artificial seawater media and evaluation of cul-
tivation success via comparison with community sequencing data from the inocula.
Eighty-two new isolates represent highly important marine clades, including SAR116,
OM60/NOR5, SAR92, Roseobacter, and SAR11. For many, isolation with an artificial
seawater medium is unprecedented, and several organisms are also the first of their
type from the Gulf of Mexico. Community analysis revealed that many isolates were
among the 20 most abundant organisms in their source inoculum. This method will
expand the accessibility of bacterioplankton cultivation experiments and improve re-
peatability by avoiding normal compositional changes in natural seawater.

IMPORTANCE The difficulty in cultivating many microbial taxa vexes researchers
intent on understanding the contributions of these organisms to natural systems,
particularly when these organisms are numerically abundant, and many cultivation
attempts recover only rare taxa. Efforts to improve this conundrum with marine bac-
terioplankton have been successful with natural seawater media, but that approach
suffers from a number of drawbacks and there have been no comparable artificial
alternatives created in the laboratory. This work demonstrates that a newly devel-
oped suite of artificial seawater media can successfully cultivate many of the most
abundant taxa from seawater samples and many taxa previously only cultivated with
natural seawater media. This methodology therefore significantly simplifies efforts to
cultivate bacterioplankton and greatly improves our ability to perform physiological
characterization of cultures postisolation.

KEYWORDS: Gulf of Mexico, SAR11, artificial seawater, coastal microbiology, high-
throughput culturing, marine microbiology

The study of microorganisms and their roles in remediation and biogeochemical
cycling requires the observation of microbial communities and genetics in nature

coupled with experimental testing of hypotheses both in situ and in laboratory settings.
The latter is best accomplished by cultivation of microorganisms, yet the majority of the
microorganisms observed under a microscope are not readily cultivated (1–3). High-
throughput, dilution-to-extinction culturing (HTC) with natural seawater has been
responsible for the isolation of strains representing numerically abundant clades such
as SAR11 (4, 5), SUP05/Arctic96BD-19 (6), OM43 (7), a small-genome Roseobacter strain
(8), and others. HTC benefitted from the oligotrophy theory and the research of Don
Button and colleagues (9, 10), which demonstrated that because marine systems are
frequently in a state of nutrient limitation, adaptation by the microbial denizens has led
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to unusual genomics and physiology that must be accounted for in cultivation strat-
egies. These oligotrophic microorganisms are generally small, with streamlined ge-
nomes that eschew many complicated regulatory systems (11), resulting in slow growth
and complicated nutrient requirements, including poor or no growth at high carbon
concentrations (4, 7, 9, 10, 12). Thus, successful HTC experiments have provided a
noncompetitive growth environment with naturally occurring compounds at in situ
concentrations.

Until now, this has been accomplished predominantly via filtration and autoclaving
of natural seawater by using protocols (9, 10, 13) that avoided excessive nutrients found
in “traditional” artificial marine media (14) (see Table 3) and provided complex, but
largely unknown, natural dissolved organic matter (DOM) components. However, in
spite of its success, there are many drawbacks to using a natural seawater medium.
First, it requires regular access to large volumes (20 liters or more) of seawater, which
can be a major logistical hurdle for research labs not located near a coastal source
and/or without vessel access. Second, natural seawater is inherently complex and
undefined, thus limiting the amount of physiological characterization that can be
accomplished postisolation (e.g., salinity growth optima or single-carbon substrate
utilization). Third, seawater at a given location may experience significant intra- and
interannual chemical fluxes, thereby creating “vintages” from specific sample collec-
tions that can prevent reproducible growth or repeated transfers when attempting to
passage an organism from one vintage to another. We therefore developed a complex
yet defined low-nutrient set of artificial seawater media (ASM) incorporating the theory
of Button and colleagues and published measurements for marine systems, including
the Gulf of Mexico, that account for variable salinity in coastal ecosystems (12, 15–18)
(see Table S1 in the supplemental material; all supplemental material for this article may
be found at https://thethrashlab.com/publications/).

RESULTS AND DISCUSSION

To create the JW1 medium (Table 1; see Table 3), the basic salt mixture was derived by
using values in the medium designed by Kester et al. (19). Concentrations of phosphate,
iron, and trace metals were taken from a defined medium for SAR11 (12), with modified
vitamin concentrations based on data in references 20 and 21. DOM is one of the most
important yet least understood components of natural seawater, having varied carbon
and nitrogen constituents that can be difficult to distinguish (22). A complex but
defined list of carbon and nitrogen compounds was used to generate our modular
DOM mixtures (see Table S1 in the supplemental material), and the total carbon and
nitrogen concentrations were based on previously reported Gulf of Mexico data
(16–18). Ultimately, our modular recipe allows for customization of the different carbon
and nitrogen components, making it easily adaptable to a variety of environments.

Using the media in Table S1 in the supplemental material, we conducted seven HTC
experiments with a combined total of 3,360 distinct cultivation wells according to the
protocol in reference 15 and included community characterization (via 16S rRNA gene
tag sequencing) of the source water for each experiment. These experiments used
water collected from six sites along the southern Louisiana coastline (Fig. 1) that
represent varied estuarine-marine systems (23). Our goals in sampling these different
sites were to provide varied source inocula and to simultaneously collect coastal
northern Gulf of Mexico microbial biogeography data. Initial cultivability (10) ranged
from 0 to 53.1% (Table 2), and 82 of the 231 positive cultures across all of the
experiments were capable of repeated transfer after initial exchange from polytetra-
fluoroethylene (PTFE) to polycarbonate flasks and/or did not contain multiple organ-
isms. The 82 isolates represent various marine clades of Gammaproteobacteria, Beta-
proteobacteria, Alphaproteobacteria, and Actinobacteria (see Table S1 and Fig. S1 to S3
in the supplemental material), including five isolates from the Roseobacter clade, 23
isolates from the so-called “oligotrophic marine Gammaproteobacteria” (24), two iso-
lates from clade OM43, and most notably the first two reported isolates of SAR11 and
SAR116 from the Gulf of Mexico (see Table S1). The maximum observed cell yields of
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cultures grown in the JW1 to JW4 media generally ranged between 105 and
106 cells·ml�1, as determined by flow cytometry, with growth rates spanning a wide
range (see Fig. S4 in the supplemental material).

Phylogenetic inspection shows that the ASM provided for cultivation success similar
to that provided for by natural seawater media, as evidenced by the numerous close
relationships to cultivars obtained with natural seawater media (designated with HTCC,
HIMB, and IMCC) (see Fig. S1 to S3 and Table S1 in the supplemental material).
LSUCC0245 is only the second isolate from SAR11 subclade Va, and LSUCC0261
represents only the third isolate from SAR11 subclade IIIa (25, 26). Two clades were
notable for their phylogenetic novelty in the Gammaproteobacteria—those containing
LSUCC0096 and LSUCC0101 (see Fig. S1). The clade containing LSUCC0096 was affili-
ated with a sole isolate, HIMB30, of the OM252 clade, and therefore, Louisiana State
University Culture Collection (LSUCC) isolates represent a significant expansion of
cultured representatives of this group. Similarly, LSUCC0101-type organisms matched
best to an only recently recovered isolate, IMCC14953 (27), and this clade likely
represents a novel gammaproteobacterial family on the basis of the depth of branching
and best-BLAST identities of 91% to sister clade members (see Fig. S1).

Comparison of isolate sequences with operational taxonomic units (OTUs) from
whole-community sequencing of the source water demonstrated that our method
frequently captured some of the most abundant organisms in the system (Fig. 2 and 3;
see Table S1 in the supplemental material). For the most successful experiment,

TABLE 1 JW1 medium components

Component Concn

Basic components
Cl 0.54 M
Na 0.48 M
Mg 52 mM
S (SO4

2�) 30 mM
Ca 10 mM
K 10 mM
Br 0.8 mM
B 0.42 mM
Sr 0.09 mM
F 0.055 mM
Fe 101 nM
P (PO4

3�) 51 �M
HCO3

� 10 mM
Total inorganic Na 45 �M
Total organic Nb 23 �M
Total organic Cc 71 �M

Trace metals
Mn 9 nM
Zn 1 nM
Co 0.5 nM
Mo 0.3 nM
Se 1 nM
Ni 1 nM

Vitamins
B1/thiamine 500 nM
B2/riboflavin 0.7 nM
B3/niacin 800 nM
B5/pantothenate 425 nM
B6/pyridoxine 500 nM
B7/biotin 4 nM
B9/folic acid 4 nM
B12 0.7 nM
myo-Inositol 500 nM
4-Aminobenzoic acid 60 nM

aAs NO3
�, NO2

�, and NH4
�.

bAs urea and amino acids.
cAs amino acids, carboxylic acids, sugars, and fatty acids.
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designated CJ2, 11 of the 30 isolates cultivated represented 7 of the top 20 OTUs
(Fig. 3). Specifically, LSUCC0245/SAR11 subgroup Va was the 6th ranked OTU, while
LSUCC0247/OM60/NOR5 clade was 7th, LSUCC0225 and 0226/SAR116 were 8th, and
LSUCC0227 and 0268/OM43 were 10th (Fig. 3). Similar results were obtained in the
other experiments, although success was varied (Fig. 2; see Table S1 in the supple-
mental material). Often, if members of the dominant taxa were not recovered in a
particular experiment, a representative of that OTU was recovered in a separate
experiment. For example, the SAR11 subclade Va isolate LSUCC0245, represented by
OTU10, was recovered only in the CJ2 experiment (Fig. 3), but it nevertheless repre-
sented the 3rd, 6th, 8th, and 8th ranks in CJ, JLB, LB, and Tbon source waters,
respectively (Fig. 2A, C, E, and F). In an even more extreme example, cultivation was
totally unsuccessful at LB and ARD, yet isolates from other cultivation attempts repre-
sented 5 and 3 of the top 25 OTUs, respectively, in the rank abundance curves from
those experiments (Fig. 2B and E, respectively). While the SAR11 subclade Va organism
and some other isolates were cultivated only once, several other closely related taxa
were obtained more frequently. For example, 10 isolates of the OM252 clade, repre-
sented by OTU55, were cultured from three different experiments. This OTU showed
various relative abundances (ranks 20 to 540) but regular occurrence, being observed

TABLE 2 Initial cultivability statistics and salinity values for seven HTC experiments

Site Date

No. of wells:

P X Va

%
Cultivability Medium

Medium
salinity

Source
salinityInoculated Positive

CJ 9/12/14 460 15 0.033 1.27 0.026 2.6 JWAMPFe 34.8 24.6
ARD 11/24/14 460 1 0.002 1.5 0.001 0.1 JW1 34.8 1.7
JLB 1/9/15 460 61 0.133 1.96 0.073 7.3 JW1 34.8 26
FWCb 3/21/15 460 301 0.654 2 0.531 53.1 JW4 5.8 5.4
LB 6/9/15 460 0 0 1.8 0 0 JW4 5.8 1.4
Tbon 7/24/15 460 41 0.089 1.56 0.06 6 JW3 11.6 14.2
CJ2 10/1/15 460 61 0.133 2 0.071 7.1 JW2 23.2 22.2
aAccording to V � �ln(1 � p)/X, where p is the number of positive wells divided by the number of inoculated wells and X is the number cells
inoculated per well (10). Percent cultivability � V � 100.

bSample was counted by microscopy and believed to have underestimated the total number of cells, resulting in a higher percent cultivability.
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FIG 1 Locations of the seven experiments along the coast of the northern Gulf of Mexico (map data
copyright 2016 Google; imagery copyright 2016 TerraMetrics).
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and Tbon (F). The LSUCC isolates with the best BLAST hits to the representative sequence for a given OTU are in bold. Stars indicate OTUs with cultured representatives
from other LSUCC experiments. Isolates with matching OTUs with ranks lower than 60 are detailed in Table S1 in the supplemental material.
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FIG 3 Positions of LSUCC isolates relative to matching OTUs within the top 60 ranks for the most successful experiment,
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in four of the seven experiments within the top 35 ranks (see Table S1 in the
supplemental material). Continued cultivation efforts will provide opportunities for
biogeographic analyses of individual isolates, as well as the efficacy and reproducibility
of the cultivability of organisms from abundant clades.

Why some experiments were more successful than others can only be speculated
upon at this time. There are numerous potential reasons why some organisms have not
been isolated at all or why some organisms can be cultivated under some circum-
stances but not others, even though they are present in the starting inocula. It may
have to do with a dependence on an unsupplied compound or combination of
compounds, the specific concentration thresholds of compounds, or the requirement
for a better surface than PTFE. There is also evidence that many taxa are dormant and
can be cultivated after stochastic release from dormancy (28). Additionally, our thresh-
old of 104 cells·ml�1 for calling a culture positive may prevent us from obtaining certain
taxa that are always at low abundance or those that have not achieved this threshold
in the allotted time.

Beginning in March 2015, we attempted to match salinity with measured values
obtained with the JW2 to JW4 media by diluting the basic salts and Mg/Ca components
(excluding P) (Table 3). Our motivation for making these adaptations was the evidence
that salinity is one of the most important determinants of microbial community
composition, if not the most important one, in general (29, 30) and in estuarine
environments in particular (31–33). The six sites ranged in salinity from 1.4 to 26 ppt
(Table 2). The values at CJ, CJ2, and JLB were the most similar to those of marine
environments (�22 ppt), while Tbon was brackish (14.6 ppt) and ARD, FWC, and LB
nearly qualified as freshwater (�6 ppt) (Table 2). We matched salinity as closely as
possible for the FWC, LB, Tbon, and CJ2 experiments (Table 2), but the impact of these
efforts was inconclusive. Although there may be a trend emerging across all of our
experiments whereby cultivability is correlated with the similarity between in situ and
medium salinities, as of now, there are too few data points to ascertain a significant
pattern.

We attribute the success of the ASM to keeping constituent concentrations close to
environmentally relevant values and providing a complex suite of carbon and nitrogen
sources while simultaneously keeping the total organic C level low. However, there are
still many taxa that remained uncultivated. Notably, the most dominant members of
these communities were Actinobacteria, belonging to either the OM1 clade (i.e., “marine

TABLE 3 Comparison of the compositions of natural seawater, marine broth 2216, and
JW artificial seawatera

Element Seawater
Marine
broth 2216 JW1 JW2 JW3 JW4

Chlorine 19 19.8 19.2 12.8 6.4 3.2
Sodium 10.5 8.8 11 7.4 3.8 2
Magnesium 1.35 2.2 1.27 0.85 0.42 0.211
Sulfur 885 0.72 0.96 0.64 0.32 0.16
Calcium 0.4 0.65 0.41 0.28 0.14 0.07
Potassium 0.38 0.32 0.39 0.26 0.13 0.07
Bromine 0.65 0.054 0.063 0.042 0.022 0.01
Carbon 0.028 4.78 0.0008b 0.0008b 0.0008b 0.0008b

Boron 0.0046 0.0047 0.0046 0.003 0.0015 0.00075
Silicon 0.003 0.00085
Fluorine 0.0013 0.00109 0.001 0.0009 0.00046 0.00023
Nitrogen 0.0005 0.72 0.0096c 0.0096c 0.0096c 0.0096c

Phosphorus 0.0007 0.045 0.0016 0.0016 0.0015 0.0008
Iron 0.00001 0.0226 0.000006 0.000006 0.000006 0.000006
aAll values are in grams per liter. The data in the seawater and marine broth 2216 columns are from
reference 14.

bC as mixed amino acids, fatty acids, carboxylic acids, and sugars (17, 18).
cN as NO3

�, NO2
�, NH4

�, urea, and amino acids (17, 18). Differences between JW media and seawater in
some element values are related to the geochemical nature of the Gulf of Mexico compared to the Atlantic
subtropical gyre.
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Actinobacteria” [34]) in marine samples (OTU1; Fig. 2A, C, and F and 3) or the hgcI clade
in more freshwater samples (OTU2; Fig. 2B, D, and E). Furthermore, it must be remem-
bered that because of incubation in the dark, this method excluded the cultivation of
phototrophs, yet some, like Synechococcus, were among the most abundant organisms
in some samples (e.g., OTU4; Fig. 2A). Incubation in the light could prove fruitful for the
isolation of phototrophs.

We did not attempt to precisely match the concentrations of inorganic nutrients in
our media to those at sampled sites during these experiments, but this could also be
a key way to improve cultivability. At 5, 2, and 38 �M, the concentrations of ammo-
nium, nitrite, and nitrate, respectively, in our ASM are near the measured values at the
sites where we sampled for the cultivation experiments; however, these values fluctu-
ated (see Table S1 in the supplemental material). The nitrate concentration at site CJ
was measured at 0.6 �M, while it was measured at 85 �M at ARD and Tbon (see
Table S1). Our ASM phosphate concentration (51 �M) was based on previous success
with the cultivation of SAR11 (12); however, this was considerably higher than the in
situ levels (1 to 3 �M) (Table 2; see Table S1). Measurements of other constituent
concentrations (e.g., DOM components) could help determine what drives the success-
ful cultivation of more of the microbial majority. Additionally, we expect the physio-
logical and genomic characterization of our isolates to shed additional light on why
some taxa may have been preferentially isolated rather than others. On the basis of our
observations, future experiments will include additional alterations to the medium to
try to obtain additional key members of the microbial consortia.

Nevertheless, while there is always room for improvement, this is the first reported
isolation of SAR11, SAR116, OM43, HIMB11-type members of the Roseobacter clade, and
many other taxa in ASM, which validates the JW medium design and provides a suite
of isolates from the Gulf of Mexico that should prove valuable for linking genomics and
physiology with biogeography. The modularity of our media also facilitates easy
customization for targeted cultivation approaches informed by genomics, metagenom-
ics, or marine chemistry. Furthermore, the success of the ASM recipes in the HTC
context fulfills the goal of providing a portable, reproducible cultivation strategy that
can be utilized by researchers constrained in their capacity to obtain seawater and
thereby provides another valuable tool for the cultivation of important marine clades.

All of the cultures described here are currently archived and available upon request
as part of the LSUCC.

MATERIALS AND METHODS
Sampling. One liter of surface water was collected at each site (see Table S1 in the supplemental
material) in a sterile, acid-washed polycarbonate bottle (Nalgene). Duplicate 120-ml volumes were
filtered serially through 2.7-�m Whatman GF/D and 0.22-�m Sterivex (Millipore) filters, which were
immediately stored on ice and transferred to �20°C upon return to the lab until DNA extractions
were performed. For biogeochemical measurements, duplicate 50-ml volumes of the 0.22-�m filtrate
were collected and placed on ice for measurements of SiO4, PO4

3�, NH4
�, NO3

�, and NO2
� at the

University of Washington, Marine Chemistry Laboratory (http://www.ocean.washington.edu/story/
Marine�Chemistry�Laboratory). Ten milliliters of whole water for cell counts was fixed with 10% (final
volume) formalin and placed on ice immediately. Temperature, pH, dissolved oxygen, and salinity were
measured with a handheld YSI 556 multiprobe system.

HTC experiments. The remaining surface water was stored on ice and immediately returned to the
lab for use in HTC experiments as described by Thrash et al. (15). Briefly, a subsample was filtered through
a 2.7-�m GF/D filter, stained with 1� Sybr green (Lonza), and enumerated with a Guava EasyCyte
(Millipore) flow cytometer. For each experiment, a total of 480 dilution-to-extinction cultures were
established with five 96-well (2.1 ml per well) PTFE plates (Radleys, Essex, United Kingdom) containing
artificial media (see Table S1 in the supplemental material). Each well was inoculated with an estimated
1 to 3 cells from the 2.7-�m-filtered water, and plates were stored in the dark at in situ temperatures and
monitored for growth at 2 to 4 weeks, depending on the temperature, and again at 6 weeks. Growth was
monitored with a Guava EasyCyte (Millipore) flow cytometer, and isolates reaching at least 104 cells·ml�1

were transferred to 50-ml polycarbonate flasks and cryopreserved in liquid N2 with 10% glycerol or 5%
(final volume) dimethyl sulfoxide. Normally, all of the isolates reaching this minimum growth were
transferred, with one exception, experiment FWC. In that experiment, cells were counted by microscopy
(35), and we believe the total cell concentration in our inoculum was underestimated. The resultant
cultivability was �53%, and we therefore subselected only 60 wells for transfer. All transferred isolates,
upon reaching at least 105 cells·ml�1, were collected on 25-mm, 0.22-�m polycarbonate filters (Millipore),
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and DNA extractions were performed with the MO BIO PowerWater DNA kit in accordance with the
manufacturer’s instructions. Additional cryogenic stocks were also made at this stage to increase the
number preserved in the LSUCC. Isolate 16S rRNA genes were amplified with recombinant Taq (Invitro-
gen) and primers 27F/1492R (S-d-Bact-0008-d-S-20/S-*-Univ-1492-a-A-21) (36) under the following PCR
conditions: denaturation at 94°C for 30 s, annealing at 50.8°C for 30 s, elongation at 72°C for 2 min, and
a final elongation step at 72°C for 10 min; repeated 35 times. Prior to Sanger sequencing, successful PCR
products were cleaned with the QIAquick PCR purification kit (Qiagen) to remove any inhibitors and PCR
materials. Sanger sequencing of amplicons, with both the forward and reverse primers, was completed
at the Michigan State RTSF Genomics Core (https://rtsf.natsci.msu.edu/genomics/). Sanger sequences
were automatically curated by the Finch software (Geospiza Finch Suite distribution v 2.21.0) as provided
by the Michigan State RTSF Genomic Core. Forward and reverse sequences were assembled, when
sufficient overlap permitted, via the CAP3 web server (http://doua.prabi.fr/software/cap3), after conver-
sion of the reverse read to its reverse complement at http://www.bioinformatics.org/sms/rev_comp.html.
The purity of isolates was evaluated on the basis of the consistency of the quality scores across the length
of the read. All chromatograms are available in the supplemental material with the reference to this
report linked to “Supplementary Information.”

Community iTag analysis. Community DNA was isolated from the Sterivex filters by removing the
filters from their housing under sterile conditions in a biosafety cabinet. Filters were then extracted with
the PowerWater kit as well. DNA was sequenced in the 16S rRNA gene V4 region (515F 806R) with
Illumina MiSeq 2 � 250-bp paired-end sequencing at Argonne National Laboratories (37). Raw 16S rRNA
gene amplicon data were analyzed with mothur v.1.33.3 (38) by using the Silva v119 database (39).
Briefly, 16S rRNA sequences were assembled into contigs and discarded if the contig had any ambiguous
base pairs, possessed repeats of �8 bp, or were �253 bp long. Contigs were aligned with the Silva rRNA
v.119 database, checked for chimeras with UCHIME (40), and classified by using the Silva rRNA v.119
database. Contigs classifying to chloroplast, eukaryotes, mitochondria, or “unknown” affinities were
removed from the data, and the remaining contigs were clustered into distinctive OTUs with a 0.03
dissimilarity threshold (OTU0.03). Rank abundance curves were arranged by plotting the mean relative
abundance of two biological replicates collected and sequenced separately, with only the top 60 OTUs
included for clarity. Complete OTU tables are available upon request. Plots were created in R (v. 3.2.1) (41)
with the graphing program GGPLOT2 (v. 2.0.0) (42). To determine which OTUs represented LSUCC
isolates, sequences from the OTU representative fasta file, provided by mothur with get.Oturep(), was
used to create a database file against which the LSUCC isolate 16S rRNA genes could be used in a BLAST
search. The commands used are (BLAST v 2.2.26) formatdb -i database.faa -o T -p F and blastall -i
queryfile.faa -d database.faa -p blastn -b 2 -v 2 -o outputfile.txt.

All of the best hits ranked at �98% identity, with the exception of three sequences that had 96 to
97% matches to very low-ranking OTUs (LSUCC0175, LSUCC0115, and LSUCC0141). The BLAST results
(BOR_bestblasthit), OTU rep file (BOR_16S.rep.fasta), OTU taxonomic assignments (BOR_16S.taxonomy),
and OTU table (BOR_OTU.csv) are available in the supplemental material with the reference to this report
linked to “Supplementary Information.”

Phylogenetic trees. Full-length or, if a contig was unavailable, forward 16S rRNA gene sequences
from isolates were compiled with best hits from BLAST to the NR database and sequences of known
representatives of the various marine clades to which isolates were matching (All fasta files are
provided in the supplemental material). Sequences were aligned with MUSCLE (43) and culled with
Gblocks (44), and phylogeny was inferred with FastTree2 (45). These processes were linked by using
a custom shell script (FT_pipe) that is also available in the supplemental material with the reference
to this report linked to “Supplementary Information.” Visualization was performed with Archaeop-
teryx (46).

Nucleotide sequence accession numbers. Community 16S rRNA gene sequence fastq files are
available at the NCBI Sequence Read Archive under accession numbers SRR3085688 to SRR3085701.
Individual isolate sequences have been submitted to NCBI under accession numbers KU382357 to
KU382438.
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