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Despite the development of non-invasive methods, bone histomorphometry remains the
only method to analyze bone at the tissue and cell levels. Quantitative analysis of transiliac
bone sections requires strict methodologic conditions but since its foundation more 60
years ago, this methodology has progressed. Our purpose was to review the evolution of
bone histomorphometry over the years and its contribution to the knowledge of bone
tissue metabolism under normal and pathological conditions and the understanding of the
action mechanisms of therapeutic drugs in humans. The two main applications of bone
histomorphometry are the diagnosis of bone diseases and research. It is warranted for the
diagnosis of mineralization defects as in osteomalacia, of other causes of osteoporosis as
bone mastocytosis, or the classification of renal osteodystrophy. Bone biopsies are
required in clinical trials to evaluate the safety and mechanism of action of new therapeutic
agents and were applied to anti-osteoporotic agents such as bisphosphonates and
denosumab, an anti-RANKL, which induces a marked reduction of the bone turnover with
a consequent elongation of the mineralization period. In contrast, an increased bone
turnover with an extension of the formation site is observed with teriparatide.
Romosozumab, an anti-sclerostin, has a dual effect with an early increased formation
and reduced resorption. Bone histomorphometric studies allow us to understand the
mechanism of coupling between formation and resorption and to evaluate the respective
role of bone modeling and remodeling. The adaptation of new image analysis techniques
will help bone biopsy analysis in the future.

Keywords: bone biopsy, histomorphometry, bone disease, modeling, remodeling, mechanism of action
of treatment
INTRODUCTION

Despite the development of non-invasive methods as bone densitometry, biochemical markers, and
quantitative computed tomography, bone histomorphometry remains the only method for the
study of bone at the tissue and cellular levels. This method enables measurements at intermediary
levels of bone organization, i.e., the osteon in cortical bone and the bone structural unit (BSU) in
cancellous bone. Bone histomorphometry consists of counting the cells and measuring the bone
n.org July 2022 | Volume 13 | Article 9079141
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tissue components. The field of bone histomorphometry
appeared in the early 1960s and markedly progressed over the
following decades. The sequence of activation-resorption-
formation and the basic multicellular unit (BMU) initially
described by Frost (1–3) led to defining the concept of bone
remodeling. Each remodeling site gives rise to a BSU (4) which
constitutes bone tissue. In addition to the measurements of static
parameters which give an imprint of previous remodeling events,
the introduction of double labeling with tetracycline, which is
laid down at the mineralization front, provides a time dimension
(3). The methods used for the measurements on histological
sections are based on Delesse’s principle (5) which allows the
deduction of 3D parameters from 2D measurements. A variance
in the bone histomorphometric measurements may be observed
which results from the methodology used and the inter-observer
variation. The main methodological factors are the sampling,
staining procedures, and the measuring methods. For these
reasons bone histomorphometry requires strict and
standardized methodological conditions. The diagnosis of the
majority of bone diseases is based on clinical, radiological, and
biochemical examinations but a bone biopsy can be required to
evaluate a mineralization defect, to determine the form of renal
osteodystrophy, or to understand a non-response to treatment.
Bone histomorphometry is the only method for the analysis of
the pathophysiology of bone diseases and is mandatory for the
safety and mechanism of action of new drug at the tissue and
cellular levels. It also allows to investigate and understand the
mechanism of coupling between resorption and formation
during the remodeling process and the role of the modeling.
Our purpose was to review the evolution of bone
histomorphometry across the years including the improvement
in the methods, the development of new parameters, the
conditions required for a suitable analysis, the knowledge in
bone tissue metabolism under normal and pathological
conditions, and the understanding of the mechanisms of action
of therapeutic drugs in humans. We also considered
future applications.
BONE BIOPSY

A bone biopsy is necessary to obtain a bone sample.

Procedure
A horizontal transiliac bone biopsy is the preferred method (6). It
gives a sample with two cortices and a sufficient amount of
spongy bone (7), in contrast to the vertical biopsy which provides
only one cortex (8). Transiliac bone biopsy must be taken at the
standard site i.e., 2 cm below the summit of the iliac crest and
2 cm behind the antero-superior iliac spine. It requires local
anesthesia of both the internal and external periosteum. Bone
biopsy is safe and generally well-tolerated. The incidence of
complications reported is low, at 0.52% with mainly
hematomas, pain, transient femoral neuropathy, and skin
infection (9). If a follow-up biopsy must be performed, it must
be done on the opposite side to avoid the prior callus. Several
Frontiers in Endocrinology | www.frontiersin.org 2
types of trephines for bone biopsy have been used (7). The 2 mm
diameter Jamshidi needle (10) does not allow for suitable
evaluation of bone turnover and mineralization (11). Trephines
with a diameter of 5 mm were responsible for a large sampling
variation (12, 13). A trephine of 7.5 mm inner diameter, as
Bordier trephine modified by Meunier, provides a transiliac
sample with two cortices and a sufficient amount of spongy
bone suitable for histomorphometry. An electrically driven
trephine has also been proposed (14). The trephine teeth must
be perfectly sharpened to avoid compression artifacts and
fracture of the specimen which may compromise the analysis.
The experience of the operator is another factor that contributes
to the quality of the sample (9).

In Vivo Tetracycline Labeling
Prior to biopsy, the administration of fluorochromes allows the
measurement of dynamic parameters of bone formation and
consequently under specific conditions, the assessment of bone
turnover. There are several fluorochrome regimens (15, 16) but
tetracycline is a safe tissue marker (3). Tetracycline incorporates
into new bone at the time of the mineralization and remains as
long as the bone is not resorbed (17). Alizarin, another tissue
marker, inhibits the bone formation and must not be used in
humans (18). Its use must be limited to animal studies and given
just before the biopsy. Different tetracycline regimens have been
used and the choice mainly depends on the availability in the
center. They are equivalent despite some differences observed
with respect to their uptake by the mineralizing bone. Parfitt
et al. (19) showed that the extent of surfaces labeled with
demethy lch lor t e t racyc l ine were h igher than wi th
oxytetracycline. The difference may be explained by a lower
blood level, a shorter half-life, and a lower affinity for binding to
the crystal for oxytetracycline than demethylchlortetracycline
(20). Different schedules of double labelings are used but the
current procedure is to administer tetracycline for two sequences
of 2 days 10 days apart, with the biopsy being performed 3-5 days
after. Tetracycline deposited, along the calcification front in
bone, appears as two distinct lines visualized on unstained
bone sections under ultraviolet light (3) (Figure 1). More
recently, another labeling schedule has been proposed (21). It
is based on a quadruple labeling with a first double labeling at
baseline and a second one a few months later (≤ 3 months). This
method allows longitudinal analysis of short-term changes of
bone formation in one single biopsy. This technique presents two
advantages over paired biopsies: only one sample is collected in
each patient and each serves as his/her own pre-treatment
control, eliminating problems due to the inter-individual
variability in histomorphometric variables (22). The second
labelling must be administered less than three months after the
first one to avoid the resorption of the first set of labels and to
allow the calculation of parameters expressed with bone surface
as referent because bone surfaces used for the calculation of the
baseline parameters are those measured at the time of biopsy.
The potential variation of the extent of bone surface after 1-2
months is very low and markedly lower than the inter-
individual variation.
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Histological Techniques
Fixation and Embedding
Bone samples must be processed without prior decalcification.
Upon the collection, the sample must be placed in fixative,
methanol, 70% ethanol, or 10% phosphate-buffered formalin
(pH 7). However, alcoholic fixatives are recommended to
preserve the tetracycline labels. The embedding compound
must be as hard as the calcified bone to preserve the integrity
of the bone architecture during sectioning. Different embedding
materials have been used such as Epon or Bioplastic but methyl
or glycol methacrylate are the most convenient (23, 24). In
addition, these plastics may be dissolved before staining but
this procedure may damage the bone architecture. As
polymerization of methacrylates is an exothermic reaction,
enzyme activity and antigenic characters are lost by high
temperatures. Several authors have reported modifications of
the conventional methacrylate techniques performed at low
temperatures allowing the preservation of enzymes activities
(25–28)

Sectioning
Sections, 5 to 20 µm thick, are cut using special microtomes
equipped with tungsten carbide-edged knives or with diamond
or glass knives (24). Sections can be also obtained by polishing.
These knifes must be perfectly sharpened to obtain sections of
good quality. The block is oriented so that the cortices are
perpendicular to the knife edge. It is recommended to obtain
two or three sets of sections in the central part of the sample,
separated by 200-300 µm to avoid replicate sampling of a single
surface event (29–31).

Staining
The initial objectives of stain were to unequivocally differentiate
osteoid and mineralized bone and to identify cells. Von Kossa was
initially recognized as the reference method (24, 32) but it was not
Frontiers in Endocrinology | www.frontiersin.org 3
ideal for cellular details. Villanueva osteochrome and tetrachrome
have also been used (33) and a modification of the osteochrome
was described and allowed the simultaneous assessment of
tetracycline and osteoid seams (34). Solochrome Cyanin R (35)
is very good for staining osteoid and for observing the bone texture
under polarized light (Figure 2A) but the manufacturer ceased
production several years ago. A stain for osteoid tissue in the fresh,
unembedded bone sample has also been reported (36). Toluidine
blue stains the calcification front as a granular metachromatic dark
line but the most suitable way to identify the calcification front is
the use of tetracycline labeling (37). Today, Goldner’s trichrome is
the most widely used (38–40). It allows a clear identification of
osteoid and bone cells with a sufficient contrast for analyses with
image analyzers (Figure 2B).

Besides the assessment of bone structure and remodeling,
specific staining techniques are applied for either diagnosis or
research purposes. The diagnosis of a bone mastocytosis is
confirmed by the count of mast cells on histological bone
sections. Mast cells are identified on sections stained with
May-Grünwald-Giemsa, acridine orange or toluidine blue pH
2.6. Based on the principles of metachromasia, mast cells
granules are stained purple by toluidine blue pH 2.6 (41, 42)
(Figure 2C). The contamination of dialysis with aluminum led to
the accumulation in patients with chronic renal failure
undergoing haemodialysis (43). Aluminum accumulation has
also been reported after regular consumption of aluminum-
based antiacids (44). Overload of aluminum was shown to be
responsible for vitamin D resistant osteomalacia. Measurement
of serum aluminum was not sufficiently discriminant for
assessment of aluminum intoxication in these patients. Bone
aluminum can be shown by a specific histochemical staining with
aurine tricarboxylic acid (aluminon staining). Aluminum
deposits appear as a deep pink to red line on the mineralized
surfaces (Figure 2D) (45–47). Other stainings have been
reported such as acid solochrome azurine (Mordant blue) or a
technique described byWalton et al. (48) where aluminum forms
a complex with the carboxylate group of the phoxine dye.

Osteoclasts are known to have a high tartrate-resistant acid
phosphatase (TRAP) content. A staining procedure allows
specific identification of osteoclastic acid phosphatase. This
technique has been shown to stain only osteoclastic acid
phosphatase enzymes and not induce artifacts (49). As
previously mentioned, it requires a prior embedding process at
low temperature to not alter the enzyme activity. TRAP is located
in lysosomes and reflects the osteoclasts function (50,
51) (Figure 2E).

Bone microdamage is essential in the assessment of bone
quality because its accumulation, due to fatigue loading, may lead
to fracture (52). The method allowing the detection of
microdamage in bone must distinguish in vitro microdamage
caused by the histological process from the naturally occuring
one. This requires making bulk staining, i.e., staining before
embedding and sectioning. The first technique used basic fuchsin
(53). However basic fuchsin is not specific because it binds to
exposed collagen but does not bind to the mineral phase (54).
Different dyes such as oxytetracycline, xylenol orange, green
FIGURE 1 | Double tetracycline labels. Unstained section under ultraviolet
light; x100.
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calcein, and calcein blue bind microcracks (55). They fluoresce at
different wavelengths and colors and can be sequentially used to
follow the progression of microcracks in vitro (56). Some dye,
e.g., xylenol orange, do not hamper the reading of tetracycline
labeling (57) (Figure 2F).

Several years ago, techniques staining the cement lines were
described. They were based on the use of either gallocyanin
associated with Villanueva which stained cement lines in blue or
purple (40) or toluidine blue dissolved in 0.1% formic acid (58)
which stained cement lines in dark blue. More recently, the
interest of analyzing the cement lines has been raised to identify
remodeling and modeling-based formation. To date, these two
phenomena were usually differentiated by the morphological
aspect of these cement lines which, by definition, are crenated
after remodeling and smooth after modeling. Recently, an
Frontiers in Endocrinology | www.frontiersin.org 4
immunostaining of osteopontin has been reported, which
differentiates osteopontin-rich smooth cement lines formed by
modeling from osteopontin-poor scalloped cement lines
generated by remodeling process (59).
HISTOMORPHOMETRY

Stereological Principles
Bone histomorphometry consists in the measurement of a three-
dimensional structure on a two-dimensional thin section. Basic
stereological theorems based on the Delesse principle (5) report
the mathematical proofs that a volume can be extrapolated from
the area of its profiles and there is a relationship between its
surface and the profile of its boundary length (60–64). However,
A B

C D

E F

FIGURE 2 | (A) Bone section stained with solochrome cyanin R under polarized light showing the lamellar texture of bone tissue (x100); (B) Goldner trichrome
differentiates mineralized bone in green and osteoid seam covered by osteoblasts (Ob) in red (x200); (C) Mast cells (*) in bone marrow characterized by the presence
of metachromatic granules in the cytoplasm after toluidin blue pH 2.6 staining (x400); (D) Aluminon staining showing the aluminum deposition (!) along the
calcification front (x100); (E).TRAP staining of osteoclasts (Oc) (x200); (F): Microcrack (!) stained after bulk staining with xylenol orange (x200).
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the prerequisite of most stereologic theorems is that the structure
is isotropic, i.e., dispersed and randomly oriented in the space
(65, 66). This condition is not always fulfilled in bone, as the
microarchitecture is mainly determined by the mechanical
forces, except in iliac bone. In cortical bone, the main axis of
the Haversian canals is parallel to the longitudinal axis of the
diaphyseal cortex (67) and cancellous bone consists of trabeculae
more or less oriented (68). Random, but anisotropic, sections
obtained with a fix axis and called “vertical sections”, can provide
an unbiased estimation (69). This sampling procedure has been
applied to bone by Vesterby et al. (70) where the vertical axis is
parallel to the cylindrical core surface, the sections are obtained
with a random rotation around the axis, and a cycloid test grid
is used.

Measuring Methods
Validation
Different methods have been used for the quantification of the
bone components. The first step before using a method is its
validation, i.e., the evaluation of accuracy, reproducibility,
and linearity.

The accuracy depends on the lack of bias and the precision.
Measurements are biased when they systematically differ from
the true value. The precision is given by the narrow dispersion of
measurements (66). The reproducibility reflects the variation
between repeated measurements performed either by the same
observer (intra-observer variability) or by different observers
having the same experience (inter-observer variability). The
linearity assesses the relationship between the measures and
the true values for a large range of values. These evaluations
are performed by using standard micrometers for image
analyzers and standard bone sections and are applied for the
measurements of distance, length, and area.

Methods
Initially, the measurements were performed with a manual
point-counting method using integrative eyepieces which
consisted of projecting straight or semicircle parallele lines and
points on the microscopic field (66). More recently, this method
has been almost abandoned and replaced by interactive
computerized analyzers.

Semi-automatic systems are composed of a microscope
equipped with a drawing tube, a digitizing tablet, and a cursor.
The image of the cursor light is projected on the microscopic
field and the measurement is performed by tracing the structure
to be measured on the digitizing tablet. The x and y coordinates
of each point of the tablet are integrated by a computer which
gives the results according to the previously selected program
package (71–73).

With the development of computerized technique, the
automatic method image analyzer processes, developed 50
years ago (74, 75), have been equipped with cameras whose
imaging system uses separate charge-coupled devices (3CCD)
which capture the image of the microscopic field. The image
recorded in the computer is displayed on a high-definition video
monitor (76–80). Bone tissue is detected according to a selected
color threshold and parameters of bone structure and
Frontiers in Endocrinology | www.frontiersin.org 5
microarchitecture are automatically provided. In addition,
interactive measurements of parameters reflecting the bone
turnover can be also obtained (80, 81). The equipment now
associates automatic and semi-automatic systems. The
measurements of the different components of the bone tissue
can be performed on a live image and traced directly on the
computer screen with x-y positions of the enhanced live overlay
linked to the motorized x-y stage. In addition, live image
stitching makes it possible to obtain large mosaic-images that
offer the advantage of a wide field and very high resolution.

Histomorphometric Parameters
Terminology
A standardization of the nomenclature for histomophometric
parameters was initially established by the ASBMR committee in
1987 (82) and updated in 2013 (31). The objective of this
nomenclature is to clarify the terminology used in the past and
gives the abbreviations which must be used in all bone
histomorphometric studies. The principle is to express all data
by using the same format, i.e., Source-Measurement/Referent
where the source is the region (cortical (Ct), cancellous (Cn),
endocortical (Ec), periosteal (Ps) bone, or total core (Tt)). All
measurements must be expressed as an index of the amount of
tissue analyzed which are mainly bone surface (BS), bone (BV)
volume, or tissue (TV) volume of the region analyzed. Only the
measurements of distance, i.e., width, can be given without
referent. The data can be expressed in two-dimensional, e.g.,
width (Wi), perimeter (Pm) and area (Ar), or three-dimensional
e.g., thickness (Th), surface (S) and volume (V), terminology, but
only one type of terminology can be used in an article.

Parameters of Bone Resorption
The main problem in assessing bone resorption is to analyze a
structure which has disappeared (Table 1). Eroded surfaces are
identified by their irregular and crenated aspects with the
presence of osteoclasts but resorption cavities may not be deep
and without the presence of osteoclast. The identification of
eroded lamellae under polarized light may help the
characterization of lacunae (83). As previously mentioned,
osteoclasts can be identified by the presence of tartrate resistant
acid phosphatase. Erosion depth reflects the activity of osteoclasts.
Different procedures to assess the erosion depth have been
reported. The first one was based on the inverse relationship
between erosion depth and the interstitial width, i.e., the distance
between two BSU situated on opposite sides of a trabecula (84).
However, this relationship is influenced by any changes of the
wall width and trabecular thickness (85, 86). Other authors
evaluated erosion depth by counting the number of eroded
lamellae and measuring the thickness of lamellae (87). In
addition, these authors separated eroded cavities according to
the presence of osteoclasts, mononuclear, or preosteoblastic cells
related to the stages of resorptive phase. This method depends on
the ability to suitably identify these different cell types, only on
their morphology. This method has never been used by other
groups. A computerized method (88) and an interactive
reconstruction approach (80) have been used to reconstruct the
bone surface before the onset of the resorption. This method
July 2022 | Volume 13 | Article 907914
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allows only an estimation of the erosion depth (mean and
maximum) and volume because measurements are performed
independently of the resorption stage, including resorption
cavities not totally achieved. Despite an underestimation of
the erosion depth, a correlation has been found with
deoxypyridinoline, a marker of the bone resorption (80). A true
final erosion depth has been obtained with a similar method
applied only on cavities covered with a thin layer of osteoid,
ensuring that the resorption has ended (89) but with this method
there is a limit to the number of measurements that can be done.

Parameters of Bone Formation
Bone formation includes two stages, the first one is the matrix
apposition by the osteoblasts followed, after a delay, by the
mineralization process. They can be quantified by the static
parameters of bone formation (Table 1) and by the dynamic
parameters derived from the measurement of tetracycline labels
(90) (Table 2). Activation frequency (Ac.f; #/year) is the
probability that a new remodeling will appear at any point on
the bone surface and represents the birthrate of a new remodeling
site (91). Activation frequency is derived from parameters of
formation while the activation of a remodeling results in
resorption. A coupling between resorption and formation is
required for a valid interpretation of activation frequency.
Frontiers in Endocrinology | www.frontiersin.org 6
Parameters of Bone Structure
The bone mass and microarchitecture are major determinants of
the bone strength and the measurements of cortical thickness and
cancellous bone volume were two of the first parameters assessed
(Table 3). In recent years, non-invasive imaging methods such as
quantitative microcomputed tomography (microCT) or high-
resolution peripheral quantitative computed tomography (HR-
pQCT) provide three-dimensional structural parameters at
peripheral sites (hip and spine) but these techniques detect only
mineralized tissue. MicroCT can be also applied to bone samples
allowing the measurement of 3-dimensional microarchitecture
parameters. Most of the parameters obtained by non-invasive
methods correlate with those measured by histomorphometry (93).
However, due to the difference in resolution (80 µm for HR-pQCT
and less 5 µm for histomorphometry), differences may be observed
for a few parameters such as cortical porosity (94), as pores with a
small diameter cannot be detected by microCT in contrast
to histomorphometry.

The trabecular connectivity is another determinant of the
bone strength. Parameters have been described including the
strut analysis (76) and the evaluation of the spatial distribution of
trabeculae, their connectivity, and complexity (42, 81, 95–97).
Trabecular bone pattern factor (TBPf; #/mm) and Euler number
provide an estimation of the trabecular bone connectivity and
complexity and have been shown to correlate with bone strength
independently to the bone quantity (98). Fractal dimension (FD)
reflects the degree of complexity (99–102). The fractal dimension
can be assessed on images acquired by radiography, microCT,
and on histological sections. A correlation between the fractal
dimension and mechanical properties of bone have been
reported (103–105).

These microarchitecture parameters provide different and
complementary informations on the trabecular network. They
have been used until the development of microCT, and several
microCT outcomes were derived from them, e.g., connectivity
was derived from the Euler number (106).

Reproducibility of Bone Histomorphometry
Even when suitable methods have been applied, several factors
can influence measurements as variations in the results may be
observed between laboratories and few centers around the world
TABLE 1 | Measured parameters reflecting the bone remodeling and
mineralization.

Parameters Abbreviations Units

Osteoide surface OS/BS %
Osteoid volume OV/BV %
Osteoid thickness O.Th µm
Eroded surface ES/BS %
Erosion depth E.De µm
Eroded volume EV/BV %
Osteoclast surface Oc.S/BS %
Osteoclast number Oc.N/BS #/mm
Single labeled surface sLS/BS %
Double labeled surface dLS/BS %
Inter label distance Ir.L.Th µm
BS , bone surface; BV, bone volume.
TABLE 2 | Derived histomorphometric parameters of bone remodeling and mineralization.

Parameters Abbreviations Formulae Units

Mineralization rate MAR Ir.L.Th/Ir.L.t µm/day
Mineralizing surface MS/BS ((dLS+ sLS/2)/BS) %
Bone formation rate BFR/BS MAR * MS/BS µm3/µm2/day
Activation frequency Ac.f (BFR/BS)/W.Th #/yr
Adjusted appositional rate Aj.AR MAR/(MS/OS) µm/day
Mineralization lag time Mlt O.Th/Aj.AR days
Osteoid maturation time Omt O.Th/MAR days
Formation period FP W.Th/Aj.AR days
Active formation period FPa+ W.Th/MAR days
Quiescent period QP FP *(QS/OS) days
Resorption period Rs.P FP * (Oc.S/OS) days
Reversal period Rv.S FP * (ES-Oc.S/OS) days
July 2022 | Volume 13 | A
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have the equipment and expertise (107). For these reasons, the
methods must be precisely described in manuscripts reporting
histomorphometric studies. The main causes of these variations
may be due to the sampling, laboratory processing, and
measuring methods.

Inter-Sample Variation
Several studies investigated different locations of iliac biopsies as the
iliac crest is not perfectly isotropic and the trabecular organization
can vary between sites within the ilium (65). Even if some
differences are observed between the left and right side (108–110)
or between different localizations within iliac crest, they were not
significant in a group of patients (109–113). However, in a single
patient having repeated biopsies, these variations must be
considered to affirm the efficacy of treatment (109, 110, 113) and
to design the patient group size in clinical trials to detect significant
differenceswhen repeatedbiopsies are conducted (114).Within one
core, the variance decreases when the number ofmicroscopic fields
and sections increase (115, 116). This points out the
recommendation to use a trephine with a 7.5 mm inner diameter
and to measure a total tissue area of at least 30 mm2 (30, 31) on
sections cut in 2-3 plans separated by 200-300 µm.

Laboratory Processing
Different staining dyes have been applied to differentiate osteoid
and mineralized tissue. Despite significant correlations, some
differences were reported between Masson trichrome and
toluidine blue (111) or solochrome cyanin and trichrome
(117). The measurement of distance may be also influenced by
the thickness of the sections (66, 118) and the section obliquity
during sectioning. They result in an apparent profile of the
structure different from the true value and this variation
depends on the thickness of the section and the angle from an
ideal perpendicular section. For cortical sections, the projection
error is negligible, regardless of the section thickness. For the
other thickness measurements, the obliquity can be corrected by
multiplying the measured values by p/4 (66).

Measuring Methods
Previous studies reported a good correlation between parameters
measured by a manual point counting method and computerized
Frontiers in Endocrinology | www.frontiersin.org 7
image analyzers (72, 73) with coefficients of correlation ranging
from 0.90 to 0.98 (73). The variation between methods was found
higher than the inter-observer variation (119). However, some
variations may exist between different equipments requiring a
validation procedure when a new equipment is acquired. It also
points out the potential problems associated with the use of
control data from other laboratories using different
methods (119).

Inter-Observer Variation
Inter-observer variation may be important when measurements
are performed by different laboratories using different techniques
such as staining, magnification or measuring methods (119–
121). It shows that it is difficult for one group to refer to the
normal range established by another group without a previous
cross-calibration. The experience of the observer is also a major
factor of inter-observer variation (120). However, when
measurements are performed by two experienced observers
from the same group, inter-observer variation is lower than 6%
(73, 115).
BONE BIOPSY AS A DIAGNOSIS TOOL

Initially, transiliac bone biopsy was widely used for the diagnosis
of metabolic bone diseases, mainly osteoporosis. The main
question was whether the iliac crest represents the entire
skeleton, as the iliac crest is an unloading site without a high
fracture risk. Relationships between the iliac bone and vertebrae
were reported for the amount of bone and strength (122–125). A
cancellous bone volume per tissue volume (Cn-BV/TV) lower
than 11% was defined as the “vertebral fracture threshold” in
osteoporotic patients (Figure 3) (126) and was used for many
years as the reference value for the diagnosis of osteoporosis.
Despite differences in microarchitecture and turnover between
the iliac crest and the other skeletal sites, especially the sites
prone to fracture as vertebra and femoral neck (127), significant
correlations were found (95, 128) and age-related changes were
observed in all sites (129). During the 1980s, the development of
non-invasive methods, such as bone densitometry, allowed for
the diagnosis of osteoporosis. However, bone histomorphometry
remains the only method that allows the analysis of bone at the
intermediary level of organization, i.e., the osteon in cortical
bone and the bone structural unit in cancellous bone and to
assess some key features, e.g., the mineralization or the
bone texture.

Normative data for histomorphometric parameters,
according to age and sex, have been established in most of
histomorphometry laboratories (112, 130–139) which allows to
conclude an abnormal bone remodeling, mineralization, and
structure (140).

Presently, the main indications of bone biopsy are the
diagnosis of osteomalacia, the characterization of renal
osteodystrophy, or the investigation of bone fragility not
responding to osteoporotic treatment to exclude a bone
mastocytosis or any other rare causes of secondary
TABLE 3 | Histomorphometric parameters of bone structure and
microarchitecture.

Parameters Abbreviations Units

Measured parameters
Cortical thickness Ct.Th µm
Cortical porosity Ct.Po %
Bone volume BV/TV %
Surface density BS/BV %
Wall thickness W.Th µm
Derived parameters
Trabecular thickness* Tb.Th µm
Trabecular number Tb.N #/mm2

Trabecular separation Tb.Sp µm
*An indirect evaluation of trabecular thickness can be calculated from area and perimeter
which is based on a plate model (92).
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osteoporosis. Beside the quantitative analysis, qualitative
observation of bone sections provides additional information
as a normal lamellar or woven texture, the presence of
microcallus, mineralization defects, and any abnormalities in
the bone marrow.

Osteomalacia
Osteomalacia can be diagnosed on biochemical and radiological
signs but bone biopsy is the only means to diagnose osteomalacia
when these signs are not evident. Osteomalacia is characterized
by osteoid accumulation with a thickening of osteoid seams
associated with a decreased mineralization rate and an
elongation of the mineralization lag time (141) (Figure 4).
Double labels may be undetectable and appear diffused. A
decreased mineralization rate alone is not specific of
osteomalacia, it may be a sign of osteoblast activity diminution
with a reduced matrix apposition. An increase in osteoid
thickness with a normal mineralization rate may reflect an
increased apposition rate (32). Osteomalacia is due to vitamin
D deficiency but can also complicate chronic renal failure and be
a consequence of aluminum intoxication in hemodialysis
patients (142–144). Osteomalacia can also occur as a
complication of previous gastric surgery, coeliac disease, or
long-term parenteral nutrition (145). Recently, mineralization
defects in jaw biopsies have been reported in bisphosphonate-
treated patients suffering from an osteonecrosis of the jaw.
Osteomalacia cannot be considered as the cause of
osteonecrosis but may contribute to its development (146, 147).

Renal Osteodystrophy
Renal osteodystrophy is the bone manifestation of chronic
kidney disease which may have different aspects. The first
histological studies report that skeletal effects were both
hyperparathyroidism and mineralization defects (148, 149).
These bone abnormalities with the systemic disorders of
Frontiers in Endocrinology | www.frontiersin.org 8
mineral and bone metabolism are designed by the term
Chronic Kidney Disease-Mineral and Bone Disorder (CKD-
MBD). Biochemical markers of formation and resorption and
parathyroid hormone levels may help to determine the type of
CKD-MBD but cross-sectional studies have shown some
discrepancies between biomarkers and bone histology. The
bone biopsy has been recognized as the gold standard for the
diagnosis and classification for renal osteodystrophy (150, 151)
and is recommended when there are inconsistencies among
biochemical parameters, unexplained fractures, severe vascular
calcifications, a suspicion of aluminum toxicity, or before
bisphosphonate treament (152). However, most nephrologists
are reluctant to perform biopsies and the number of biopsies in
renal insufficient patients remains insufficient. In these cases, the
use of a smaller diameter trephine can provide information on
the bone status. Renal osteodystrophy is classified according to
the level of turnover, the mineralization, and the volume of bone
(TMV classification). The predominant hyperparathyroid form
is characterized by a marked increase in bone turnover with
extended osteoid surface covered by osteoblasts, deep eroded
surface with numerous osteoclasts, and an increase in labeled
surfaces (Figure 5A). A fibrosis is often observed. The presence
of thick osteoid seams with diffuse tetracycline labels signifies
osteomalacia. In this latter form the turnover may be reduced
(Figure 5B). Adynamic bone disease is characterized by a
marked decrease of the bone turnover with absence of active
bone formation or resorption and a low bone volume
(Figure 5C). Mixed uremic osteodystrophy associates high
turnover, mineralization defects and normal bone volume
(152–154).

Bone Mastocytosis
Systemic mast cell disease is associated with either osteoporosis
or osteosclerosis with possible skin lesions. When biological
analyses suggests a mastocytosis, the bone biopsy allows for the
FIGURE 3 | The measurement of the trabecular bone volume in osteoporotic patients with one vertebral fracture allowed to define a “vertebral fracture threshold” at
11% [From Meunier et al. (126)].
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confirmation of an increased number of mast cells in the bone
marrow. There has not been, however, a study that examined the
sensitivity and specificity of the histologic analysis compared
with tryptase measurement. An increased bone turnover is often
reported with an unbalanced coupling between resorption and
formation but without any mineralization defect (41, 155).
Quantitative backscattered electron imaging showed a poorly
mineralized bone in mastocytosis with osteosclerosis (156). The
diagnosis is based on an increased number of mast cells in bone
marrow, which may be close to the bone surface (Figure 2C).
Mast cells are identified on bone sections stained with toluidine
blue pH 2.6, May-Grünwald-Giemsa or acridine orange.

Endocrine Diseases
Bone fragility related to an alteration of the bone remodeling
exists in several endocrine diseases such as hyperthyroidism and
Cushing’s syndrome (157). The high risk of fracture observed in
acromegaly despite a normal BMD results from an alteration of
the trabecular and cortical bone structure and architecture with a
marked reduction of the osteoblasts number and activity (158).
BONE BIOPSY AS A RESEARCH TOOL

Initially, histomorphometric studies allowed for the
characterization of bone diseases and osteoporosis appeared
heterogeneous with different levels of remodeling (159, 160).
The identification of high remodeling osteoporosis led to find
endocrine disturbance such as primary hyperparathyoidism or
hyperthyroidism (161). The analysis of bone biopsies also helped
to understand the mechanism of remodeling, the coupling
between resorpt ion and formation, the process of
mineralization, and thus, the pathogenesis of bone diseases
(162). These studies showed that bone loss results from a
negative balance at the bone structural unit, i.e., the amount of
bone formed being lower than those previously resorbed,
associated, or not with increased remodeling (163–165). The
association of a high remodeling rate with deep resorption
cavities produces a loss of trabecular plates. It may result in a
Frontiers in Endocrinology | www.frontiersin.org 9
trabecular perforation that has a major deleterious effect on the
bone strength (166) (Figure 6). However, further studies showed
that bone loss is not the only cause of bone fragility (52). The
development of techniques that can be applied to bone sections
has allowed the assessment of the other components of the bone
quality. Besides the amount of bone and the microarchitecture,
the material composition of bone (collagen and mineral) and the
accumulation of microdamages contribute to the bone strength.
In addition to bone histomorphometric analysis, bone biopsy can
be used to assay collagen crosslinks. A decrease in bone turnover
is associated with an accumulation of pentosidine (167) which is
negatively correlated with bone strength (168–170). Bone
material’s intrinsic properties can be analyzed by Fourier
Trans formed Infrared Microspectroscopy and the
biomechanical behavior can be assessed by micro- or nano-
indentation of bone samples (171, 172). All these components
are controlled by the remodeling and any modifications of one of
them result in bone fragility (157).

The coupling of osteoclasts and osteoblasts at the same
remodeling site has been approched by the analysis of bone
sections of hyperparathyroid patients showing that osteoclastic
bone resorption and osteoblastic bone formation occur in a
bone-remodeling compartments (BRC) (173). These authors
observed that the canopy is separated from the bone marrow
cavity by a monolayer of flat cells expressing osteoblast-like cell
markers which is connected to capillaries. The contacts between
these canopies and bone marrow capillaries initiate the bone
remodeling (174).

During the past 30 years, basic and clinical studies have
markedly enhanced the knowledge of the pathogenesis of bone
diseases and especially on osteoporosis. The identification of
molecules involved in the remodeling or the gene mutation in
rare bone diseases have allowed for the development of new
therapies (175). The magnitude of efficacy of new drugs is based
on the fracture risk and bone mineral density but their approval
requires a quantitative analysis of bone biopsies to assess their
mechanisms of action at the tissue and cell level. Preclinical
evaluations are firstly performed in animals, rodents, and large
animals. However, especially in rodents, the histological
A B

FIGURE 4 | Osteomalacia is characterized by thick and extended osteoid seams (A, solochrome cyanin R, x100) and diffuse tetracycline labels (►) (B, unstained
section under ultraviolet ligth; x100).
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procedures and the timing of double fluorochrome labeling must
be adapted (176). Anti-osteoporotic treatments are divided in
two main categories, inhibitors of the resorption and stimulators
of bone formation.

Fluoride was one of the first treatments given in osteoporosis.
High cumulative doses of fluoride induce a bone fluorosis which
is characterized by a bone sclerosis due to an increased number
of osteoblasts but with a toxic effect at the cell level (177)
(Figure 7). Given at lower doses of 50 to 75 mg/day of sodium
fluoride, it induced an increase in bone mass and osteoid
parameters but also in mineralization defects (178–180). A
marked decrease in trabecular bone quality was observed after
long-term treatment (181). An abnormal mineral structure
characterized by the presence of large crystals is present in
newly formed bone which results in an increase in mineral
density without improving the bone quality (182).
Frontiers in Endocrinology | www.frontiersin.org 10
Bisphosphonates are synthetic analogues of pyrophosphate,
with a phosphate-calcium-phosphate (PCP) bond. Many
members of this class have been synthesized and divided into
non-nitrogen-containing (etidronate, clodronate, tiludronate)
and nitrogen-containing (pamidronate, alendronate,
ibandronate, risedronate, zoledronate) bisphosphonates (183).
Despite a different mechanism of action at the molecular level,
and a different affinity to bone mineral, they strongly bind to
hydroxyapatite crystals and inhibit the bone resorption (184). At
the bone tissue level, the main effect of bisphosphonates is a
marked decrease in the bone turnover. After 2 or 3 years,
mineralizing surface and activation frequency decrease by 95%
with alendronate (29), 80% with risedronate (185, 186), 73% with
ibandronate (187), 91% with zoledronate (188) and 67% with
pamidronate (189). Despite a marked decrease in the
biochemical marker of bone resorption, no significant
A B

C D

E F

FIGURE 5 | Different histological forms of renal osteodystrophy. (A) High bone remodeling with increased bone resorption (R) and formation (F) associated with
numerous tetracycline labels (!) (B); Osteomalacia with thick osteoid seams (C) and diffuse tetracycline labels (D) (D) ;Adynamic bone with no active bone surface
(E) with no tetracycline label (F). (A, C, E), Goldner trichrome; (B, D, F), unstained sections under ultraviolet light; x100.
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reduction in eroded surface was reported (29, 185, 187, 188)
which may be explained by a prolonged reversal phase. Due to
the coupling between resorption and formation, a marked
decrease in bone formation is also observed with no evidence
of an increase in bone mass despite a marked increase in bone
mineral density measured by DEXA. All these observations
suggest an increased secondary mineralization related to the
low turnover (190, 191). In summary, the consequence of the
inhibitory effect of bisphosphonates on bone resorption is a
decreased remodeling which results in a reduced remodeling
space, a preservation of the cancellous bone microarchitecture
with no change in bone mass, and an increase in bone mineral
Frontiers in Endocrinology | www.frontiersin.org 11
density. All these effects contribute to improve the bone strength.
The marked decrease in bone turnover with bisphosphonates has
been suggested to inhibit the repair of microcracks and favor
their accumulations (192). An increased microcrack density has
been observed in dogs receiving high doses of bisphosphonates
(193) but this has not been confirmed in humans (194).

Selective estrogen receptor modulators (SERM) are
compounds which have estrogen agonist actions in some
tissues and estrogen antagonist actions on other tissues. In
postmenopausal women, raloxifene induces a trend in
decreased eroded surface, bone formation rate, and activation
frequency. These results suggest that the effects of raloxifene on
bone tissue are similar to estrogen (195).

Strontium ranelate was initially presented as an agent with a
dual mechanism of action able to stimulate the formation and
reduce the resorption. This assumption was supported by in vitro
studies (196, 197) and preclinical investigations in rodents (198).
However, in postmenopausal osteoporotic women, strontium
ranelate does not significantly modify the parameters of bone
formation or resorption after 1 to 3 years of treatment (199). A
second large clinical trial confirmed the absence of significant
increase in bone formation and the decrease of bone resorption
at the bone tissue level (200), despite a significant improvement
of the bone mineral density and fracture rate. A recent study
reports decreases of crystallinity and carbonate content and the
possibility that strontium may create bounds with collagenous
and non-collagenous proteins but does not modify the
nanomechanical properties (201).

The anabolic effect of parathyroid hormone in osteoporotic
patients was reported in the mid-1970s (202, 203). The effect of
intermittent administration of teriparatide, the fragment 1-34 of
parathyroid hormone, varies according to the study. No
significant increase in mineralizing surface and bone formation
rate after 18 months (204) or a decrease between 6 and 18
months (205) of treatment have been reported. In contrast,
significant increases in the formation and resorption were
observed after 28 days and 2 years (206). Beside a classical
remodeling-based formation, a contribution of a modeling-
based formation has been proposed with intermittent PTH (1–
34) administration (204, 206). In these studies, the criterion to
identify modeling surfaces was the presence of smooth cement
lines. Instead of the creation of new formative sites without prior
resorption, an extended bone formation beyond the limit of the
scalloped reversal line onto the adjacent quiescent surface has
been suggested, i.e., an overflow from the remodeling surface
rather than de novomodeling (21, 207, 208). Abaloparatide binds
to the RG subtype of parathyroid hormone type 1 receptor with a
higher affinity than teriparatide. No major difference in both
static and dynamic histomorphometric variables have been
observed between placebo, teriparatide, and abaloparatide
(209). Nevertheless, compared to teriparatide, serum bone
formation marker (sP1NP) decreases after 3 months and the
increase in the resorption marker (sCTX) was lower with
abaloparatide (210).

Odanacatib, an investigational agent previously in
development, is a cathepsin K inhibitor which reduces bone
FIGURE 7 | Skeletal fluorosis characterized by an osteosclerosis with
increased osteoid surfaces and mineralization defects in the trabeculae and
around the osteocyte lacunae. Solochrome cyanin R; x50.
FIGURE 6 | Trabecular perforation due to osteoclastic (Oc) resorption.
Goldner trichrome; x100.
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resorption via a mechanism distinct from other anti-resorptive
drugs. Secretion of cathepsin K from the osteoclast results in
degradation of type I collagen. The absence of cathepsin K activity
in humans due to a CTSK mutation results in pycnodysostosis, a
rare bone disease characterized by osteosclerosis and fractures
(211, 212). Whereas other antiresorptive drugs decrease osteoclast
activity or differentiation with a subsequent reduction in bone
formation, odanacatib permits persistent osteoclast viability and
activity and selectively inhibits the removal of matrix protein
(213). At the bone tissue level, treatment with odanacatib did not
change the dynamic parameters of bone formation and may
increase the osteoclast number. An increased bone formation
was observed at the periosteal surface contributing
to the thickening of the cortices (214, 215). However,
despite significant reduction of the fracture rate, odanacatib
was ultimately withdrawn from the regulatory approval
process after it was found to be associated with an increased risk
of stroke.

Denosumab is a fully-human monoclonal antibody that binds
receptor activator for nuclear factor kB ligand (RANKL), an
essential factor for osteoclast differentiation and activity.
Denosumab binds and reversibly inhibits the activity of
RANKL and, therefore, the formation, activity, and survival of
osteoclasts. As an antiresorptive agent, denosumab treatment
induces a marked reduction in bone remodeling with both a
decreased resorption and consequently, a diminution of
formation. These effects observed after 2 and 3 years (216) are
maintained after extension of the treatment up to 5 (217) and 10
(218) years. However, in contrast to bisphosphonates which
remain incorporated in bone until resorption occurs, the effects
of denosumab are reversible after discontinuation (219).
The decreased bone turnover results in an elongation of
the secondary mineralization and thus, an augmentation of the
degree of mineralization (218). In addition, a reduction of the
endocortical erosion depth with no change of the mean wall
thickness also contributes to the greater gain of BMD with
denosumab than with other antiresorptive agents (220). The
persistence of a modeling-based formation process has also been
suggested (221); when the remodeling is very low, modeling bone
formation may sparsely occur to preserve the bone mass (222),
especially in loaded regions (223). A transient increase in
endogeneous PTH level after denosumab administration has
been evoked (224) but not confirmed (225).

Romosozumab, a bone forming agent, is a humanized
monoclonal antibody that binds and inhibits sclerotin, thereby,
promoting osteoblast differentiation and activity. Sclerostin is a
protein produced by osteocytes that inhibits the bone formation
by inhibiting canonical Wnt signaling. Inherited sclerostin
deficiency is characterized by a high bone mass (226). At the
bone tissue level, romosozumab treatment induces an early and
transient marked augmentation of bone formation parameters
associated with a reduction of the resorption (22). This dual and
opposite effect reflects a transient absence of coupling between
resorption and formation. The occurence of a modeling-based
bone formation, previously reported in animal studies (227, 228),
has been confirmed in humans (229). However, a self-regulatory
Frontiers in Endocrinology | www.frontiersin.org 12
mechanism of the bone formation suggested by experimental
studies (230) explains that later in treatment, only the decreased
bone resorption remains associated with a decreased bone
turnover as a consequence of the coupling. These effects result
in an increased bone mass and improved microarchitecture.
Romosozumab is the first anti-osteoporotic agent having both
an anabolic and an antiresorptive action.
BONE HISTOMORPHOMETRY IN
THE FUTURE

Computerized microscopy image analysis is widely used for
diagnosis and prognosis in various fields of clinical practice
and has improved the analysis of bone diseases. Recently, deep
learning techniques have been developed (231) and applied in
digital image processing (232), allowing for cell detection and
classification (233). The application of these methods to bone
histomorphometry will likely allow for easier diagnosis. The
utility of machine learning based on biochemical testing,
imaging, and clinical data has been reported in the diagnosis
and fracture prediction in osteoporosis [see review (234)].
Combined with bone histomorphometry, the investigation of
the molecular profile of circulating mesenchymal stem cells
may provide information on the individual’s osteogenic
potential (151)

Many questions remain regarding the mechanism of
coupling, the role of the reversal phase, and the several weeks
separating the osteoclastic resorption and the osteoblastic
formation (235–237). Numerous factors released during the
resorption phase have been identified as playing a role in the
coupling between resorption and formation. These factors may
be released from the resorbed bone matrix, secreted by
osteoclasts or transported by microvesicles (238, 239). But the
initiation of remodeling is not only based on the levels of these
different factors but also requires a determinant for a specific site
where osteoclasts and osteoblasts will successively work (240). A
bone-remodeling compartment (BRC) separated from the bone
marrow cavity by a monolayer of flat cells from the osteoblast
lineage has been described (173). The extent of this canopy over
remodeling sites varies in several pathological situations and a
reduced canopy surface is associated with a smaller extent of
bone-forming surfaces (173). Bone loss in postmenopausal
osteoporosis is associated with absences of canopy above
formation and eroded surfaces. Furthermore, an accumulation
of arrested reversal surface and a decreased extent of surface of
formation with a modification of osteoblasts morphology from a
cuboidal to flattened shape is observed (241). A loss of BRC
canopies is also reported in multiple myeloma (242),
Cushing ’syndrome (243), and glucocorticoid-induced
osteoporosis (244). In recent years, additional observations
have been provided by the Delaisse group (245, 246). At the
beginning of the reversal period, mononuclear cells remove
the demineralized collagen before the onset of osteoblasts and
the secretion of the bone matrix. These cells have been initially
identified as macrophages but ultrastructural analysis showed
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that they are bone lining cells able to activate matrix
metaloproteinase (246). By analyzing 3D reconstruction of
serial sections of Haversian systems in human long bone, these
authors captured the events ranging from initiation of resorption
to onset of formation as a functional continuum. They described
a mixed “reversal-resorption” phase characterized by the
presence of both osteoclasts and reversal/osteoprogenitor cells.
The reversal/osteoprogenitor cells gradually matured into
osteoblasts and bone formation is initiated only above a
threshold cell density. The length of the reversal/resorption
period depends on how fast osteoprogenitor recruitment
reaches this threshold (247). The activation of remodeling is
linked to the development of the vasculature close to the bone
surface and this interaction between capillary and canopy
provides osteoblasts progenitors (248). Based on these
observations, an additional mechanism of alendronate has
been recently reported where osteoprogenitors recruitment is
slowed down on eroded surfaces and consequently, the onset of
bone formation is delayed (249). These observations provide
information to better understand how the balance between
resorption and formation is regulated.

A better understanding of existing treatment is essential to
improve their use. Over the past decades, studies have focused on
the effects of new therapeutics for bone remodeling but forgot the
process of modeling described more than 50 years ago (250). A
modeling-based formation was firstly reported for teriparatide
mainly due to an overflow of the remodeling surface (21).
Denosumab strongly inhibits remodeling-based formation but
little remaining modeling has been suggested (221). In contrast
to other existing treatments, the early marked increase in bone
formation with romosozumab results from a higher proportion
of modeling than remodeling based formation (22, 229). Thus,
from these observations, it appears that in addition to the
remodeling, the modeling process may contribute to the
antifracture efficacy of therapeutic agents and needs to be
suitably assessed (251). Denosumab is an effective anti-
osteoporotic agent but a rapid bone loss with an increased
fracture risk is observed after treatment withdrawal, suggesting
a rebound in osteoclast activity. McDonald et al. (252), using
intra-vital imaging, observed a fission of osteoclasts into smaller
motile cells named osteomorphs which were able to refuse and
form osteoclasts in another site. Inhibition of RANKL by
osteoprotegerin treatment results in the accumulation of
osteomorphs able to rapidly fuse into active osteoclasts upon
osteoprotegerin withdrawal. These observations may explain the
Frontiers in Endocrinology | www.frontiersin.org 13
rebound after denosumab discontinuation. These findings will
open new investigations on the pathogenesis and treatment of
bone diseases.
SUMMARY AND CONCLUSION

The diagnosis of the majority of bone diseases is based on
clinical, radiological, and biochemical examinations with the
development of non-invasive methods as bone densitometry,
biochemical markers, and quantitative computed tomography.
Nevertheless, bone histomorphometry remains the only method
for the study of bone at the tissue and cellular levels. Qualitative
and quantitative analyses of transiliac bone biopsies require strict
methodological conditions which have been initially described
more than 60 years ago. Bone biopsy, which is an invasive
method, has limited indicators for diagnostic purposes,
especially in osteoporosis. The iliac crest being an unloading
skeletal site, in contrast to the spine and the femoral neck which
is prone to fracture is the only mean for diagnosing a
mineralization defect. The recommended procedure is to
collect a horizontal transiliac bone biopsy with a 7.5 mm inner
diameter trephine. A previous fluorochrome double labeling is
required to assess the mineralization and the dynamic of bone
formation. For a better representation, sections are cut at 3
different levels and Goldner trichrome staining allows assessing
both resorption and formation parameters. The progress of
image analyzers, improved the analysis of bone sections, and
the development of new image techniques will help the analysis
of bone biopsy in the future. Bone histomophometry will
continue to play a major role in the understanding of the
pathophysiology of metabolic bone diseases and the evaluation
of the safety and mechanisms of action of therapeutics.
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201. Falgayrac G, Farlay D, Ponçon C, Behal H, Gardegaront M, Ammann P, et al.
Bone Matrix Quality in Paired Iliac Bone Biopsies From Postmenopausal
Women Treated for 12 Months With Strontium Ranelate or Alendronate.
Bone (2021) 153:116107. doi: 10.1016/j.bone.2021.116107

202. Reeve J, Hesp R, Williams D, Klenerman L, Zanelli JM, Darby AJ, et al.
Anabolic Effects of Low Dose of a Fragment of Human Parathyroid
Hormone on the Skeleton in Postmenopausal Osteoporosis. Lancet (1976)
1:1035–8. doi: 10.1016/s0140-6736(76)92216-9

203. Reeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OLM, Courpron P, et al.
Anabolic Effects of Human Parathyroid Hormone Fragment on Trabecualr
Bone in Involutional Osteoporosis: A Multicenter Trial. Brit Med J (1980)
280(6228):1340–4. doi: 10.1136/bmj.280.6228.1340

204. Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, et al.
Effect of Daily Treatment With Parathyroid Hormone on Bone
Microarchitecture and Turnover in Patients With Osteoporosis: A Paired
Biopsy Study. J Bone Miner Res (2001) 16:1846–53. doi: 10.1359/
jbmr.2001.16.10.1846

205. Arlot M, Meunier PJ, Boivin G, Haddock L, Tamayo J, Correa-Rotter R, et al.
Differential Effects of Teriparatide and Alendronate on Bone Remodeling in
Postmenopausal Women Assessed by Histomorphometric Parameters. J
Bone Miner Res (2005) 20:1244–53. doi: 10.1359/JBMR.050309

206. Hodsman AB, Kisiel M, Adachi JD, Fraher LJ, Watson PH.
Histomorphometric Evidence for Increased Bone Turnover Without
Change in Cortical Thickness or Porosity After 2 Years of Cyclical hPTH
(1-34) Therapy in Women With Severe Osteoporosis. Bone (2000) 27:311–
8. doi: 10.1016/s8756-3282(00)00316-1

207. Hodsman AB, Steer BM. Early Histomorphometric Changes in Response to
Parathyroid Hormone Therapy in Osteoporosis: Evidence for Novo Bone
Formation on Quiescent Cancellous Surfaces. Bone (1993) 14:523–7.
doi: 10.1016/8756-3282(93)90190-l

208. Compston JE. Skeletal Actions of Intermittent Parathyroid Hormone: Effects
on Bone Remodelling and Structure. Bone (2007) 40:1447–52. doi: 10.1016/
j.bone.2006.09.008

209. Moreira CA, Fitzpatrick LA, Wang Y, Recker RR. Effects of Abaloparatide-
SC (BA058) on Bone Histology and Histomorphometry: The ACTIVE Phase
3 Trial. Bone (2017) 97:314–19. doi: 10.1016/j.bone.2016.11.004

210. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect
of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal
Women With Osteoporosis: A Randomized Clinical Trial. JAMA (2016)
316:722–33. doi: 10.1001/jama.2016.11136

211. Chavassieux P, Karsdal MA, Segovia-Silvestre T, Neutzsky-Wulff AV,
Chapurlat R, Boivin G, et al. Mechanisms of the Anabolic Effects of
Teriparatide on Bone: Insight From the Treatment of a Patient With
Pycnodysostosis. J Bone Miner Res (2008) 23:1076–83. doi: 10.1359/
jbmr.080231

212. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, et al.
Decreased Bone Turnover and Deterioration of Bone Structure in Two Cases
of Pycnodysostosis. J Clin Endocrinol Metab (2004) 89:1538–47.
doi: 10.1210/jc.2003-031055

213. Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for
Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned.
Endocrine Rev (2017) 38:325–50. doi: 10.1210/er.2015-1114

214. Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N,
et al. Odanacatib, a Cathepsin-K Inhibitor for Osteoporosis: A Two-Year
Study in Postmenopausal WomenWith Low Bone Density. J Bone Miner Res
(2010) 25:937–47. doi: 10.1359/jbmr.091035

215. Recker R, Dempster D, Langdahl B, Giezek H, Clark S, Ellis G, et al. Effects of
Odanacatib on Bone Structure and Quality in Postmenopausal WomenWith
Osteoporosis: 5-Year Data From the Phase 3 Long-Term Odanacatib
Fracture Trial (LOFT) and its Extension. J Bone Miner Res (2020)
35:1289–99. doi: 10.1002/jbmr.3994

216. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I,
et al. Effects of Denosumab on Bone Histomorphometry: The FREEDOM
and STAND Studies. J Bone Miner Res (2010) 25:2256–65. doi: 10.1002/
jbmr.149
Frontiers in Endocrinology | www.frontiersin.org 19
217. Brown JP, Reid IR, Wagman RB, Kendler D, Miller PD, Beck Jensen JE, et al.
Effects of Up to 5 Years of Denosumab Treatment on Bone Histology and
Histomorphometry: The FREEDOM Study Extension. J Bone Miner Res
(2014) 29:2051–56. doi: 10.1002/jbmr.2236

218. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter
I, et al. Effects of Long-Term Denosumab on Bone Histomorphometry and
Mineralization in Women With Postmenopausal Osteoporosis. J Clin
Endocrinol Metab (2018) 103:2498–509. doi: 10.1210/jc.2017-02669

219. Brown JP, Dempster DW, Ding B, Dent-Acosta R, San Martin J, Grauer A,
et al. Bone Remodeling in Postmenopausal Women Who Discontinued
Denosumab Treatment: Off-Treatment Biopsy Study. J Bone Miner Res
(2011) 26:2737–44. doi: 10.1002/jbmr.448

220. Chavassieux P, Portero-Muzy N, Roux JP, Horlait S, Dempster DW, Wang
A, et al. Reduction of Cortical Bone Turnover and Erosion Depth After 2
and 3 Years of Denosumab: Iliac Bone Histomorphometry in the
FREEDOM Trial. J Bone Miner Res (2019) 34:626–31. doi: 10.1002/
jbmr.3631

221. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM,
et al. Remodeling- and Modeling-Based Bone Formation With Teriparatide
Versus Denosumab: A Longitudinal Analysis From Baseline to 3 Months in
the AVA Study. J Bone Miner Res (2018) 33:298–306. doi: 10.1002/jbmr.3309

222. Ubara Y, Tagami T, Nakanishi S, Sawa N, Hoshino J, Suwabe T, et al.
Significance of Minimodeling in Dialysis Patients With Adynamic Bone
Disease. Kidney Int (2005) 68:833–9. doi: 10.1111/j.1523-1755.2005.00464.x

223. Zebaze R, Libanati C, McClung MR, Zanchetta JR, Kendler DL, Høiseth A,
et al. Denosumab Reduces Cortical Porosity of the Proximal Femoral Shaft in
Postmenopausal Women With Osteoporosis. J Bone Miner Res (2016)
31:1827–34. doi: 10.1002/jbmr.2855

224. Makras P, Polyzos SA, Papatheodorou A, Kokkoris P, Chatzifotiadis D,
Anastasilakis AD. Parathyroid Hormone Changes Following Denosumab
Treatment in Postmenopausal Osteoporosis. Clin Endocrinol (Oxf) (2013)
79:499–503. doi: 10.1111/cen.12188

225. Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM,
et al. Differential Effects of Teriparatide and Denosumab on Intact PTH and
Bone Formation Indices: AVA Osteoporosis Study. J Clin Endocrinol Metab
(2016) 101:1353–63. doi: 10.1210/jc.2015-4181

226. Van Lierop AH, Appelman-Dijkstra N, Papapoulos SE. Sclerostin Deficiency
in Humans. Bone (2017) 96:51–62. doi: 10.1016/j.bone.2016.10.010

227. Ominsky MS, Niu QT, Li C, Li X, Ke HZ. Tissue-Level Mechanisms
Responsible for the Increase in Bone Formation and Bone Volume by
Sclerostin Antibody. J Bone Miner Res (2014) 29:1424–30. doi: 10.1002/
jbmr.2152

228. Boyce RW, Niu QT, Ominsky MS. Kinetic Reconstruction Reveals Time-
Dependent Effects of Romosozumab on Bone Formation and Osteoblast
Function in Vertebral Cancellous and Cortical Bone in Cynomolgus
Monkeys. Bone (2017) 101:77–87. doi: 10.1016/j.bone.2017.04.005

229. Eriksen EF, Chapurlat R, Boyce RW, Shi Y, Brown JP, Horlait S, et al.
Modeling-Based Bone Formation After 2 Months of Romosozumab
Treatment: Results From the FRAME Clinical Trial. J Bone Miner Res
(2022) 37:36–40. doi: 10.1002/jbmr.4457

230. Boyce RW, Brown D, Felx M, Mellal N, Locher K, Pyrah I, et al. Decreased
Osteoprogenitor Proliferation Precedes Attenuation of Cancellous Bone
Formation in Ovariectomized Rats Treated With Sclerostin Antibody.
Bone Rep (2018) 8:90–4. doi: 10.1016/j.bonr.2018.03.001

231. LeCun Y, Bengio Y, Hinton G. Deep Learning. Nature (2015) 521:436–44.
doi: 10.1038/nature14539

232. Xing F, Xie Y, Su H, Liu F, Yang L. Deep Learning in Microscopy Image
Analysis: A Survey. IEEE Trans Neural Netw Learn Syst (2018) 29:4550–68.
doi: 10.1109/TNNLS.2017.2766168

233. Song T-H, Sanchez V, ElDaly H, Rajpoot NM. Simultaneous Cell Detection
and Classification in Bone Marrow Histology Images. IEEE J BioMed Health
Inform (2019) 23:1469–76. doi: 10.1109/JBHI.2018.2878945

234. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine Learning
Solutions for Osteoporosis-A Review. J Bone Miner Res (2021) 36:833–51.
doi: 10.1002/jbmr.4292

235. Baron R. Importance of the Intermediate Phases Between Resorption and
Formation in the Measurement and Understanding of the Bone Remodeling
Sequence. In: PJ Meunier, editor. Bone Histomorphometry: Second
July 2022 | Volume 13 | Article 907914

https://doi.org/10.1002/jbmr.2074
https://doi.org/10.1016/j.bone.2021.116107
https://doi.org/10.1016/s0140-6736(76)92216-9
https://doi.org/10.1136/bmj.280.6228.1340
https://doi.org/10.1359/jbmr.2001.16.10.1846
https://doi.org/10.1359/jbmr.2001.16.10.1846
https://doi.org/10.1359/JBMR.050309
https://doi.org/10.1016/s8756-3282(00)00316-1
https://doi.org/10.1016/8756-3282(93)90190-l
https://doi.org/10.1016/j.bone.2006.09.008
https://doi.org/10.1016/j.bone.2006.09.008
https://doi.org/10.1016/j.bone.2016.11.004
https://doi.org/10.1001/jama.2016.11136
https://doi.org/10.1359/jbmr.080231
https://doi.org/10.1359/jbmr.080231
https://doi.org/10.1210/jc.2003-031055
https://doi.org/10.1210/er.2015-1114
https://doi.org/10.1359/jbmr.091035
https://doi.org/10.1002/jbmr.3994
https://doi.org/10.1002/jbmr.149
https://doi.org/10.1002/jbmr.149
https://doi.org/10.1002/jbmr.2236
https://doi.org/10.1210/jc.2017-02669
https://doi.org/10.1002/jbmr.448
https://doi.org/10.1002/jbmr.3631
https://doi.org/10.1002/jbmr.3631
https://doi.org/10.1002/jbmr.3309
https://doi.org/10.1111/j.1523-1755.2005.00464.x
https://doi.org/10.1002/jbmr.2855
https://doi.org/10.1111/cen.12188
https://doi.org/10.1210/jc.2015-4181
https://doi.org/10.1016/j.bone.2016.10.010
https://doi.org/10.1002/jbmr.2152
https://doi.org/10.1002/jbmr.2152
https://doi.org/10.1016/j.bone.2017.04.005
https://doi.org/10.1002/jbmr.4457
https://doi.org/10.1016/j.bonr.2018.03.001
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TNNLS.2017.2766168
https://doi.org/10.1109/JBHI.2018.2878945
https://doi.org/10.1002/jbmr.4292
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chavassieux and Chapurlat Histomorphometry and Bone Pathophysiology
International Workshop. Toulouse: Société Nouvelle Imprimerie Fournié
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