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Biological parameters, life table 
and thermal requirements of 
Thaumastocoris peregrinus 
(Heteroptera: Thaumastocoridae) 
at different temperatures
L. R. Barbosa1, F. Santos2, E. P. Soliman3, A. P. Rodrigues1, C. F. Wilcken3, J. M. Campos4, 
A. J. V. Zanuncio5 & J. C. Zanuncio6

Temperature affects the development, population dynamics, reproduction and population size 
of insects. Thaumastocoris peregrinus Carpintero et Dellape (Heteroptera: Thaumastocoridae) is a 
eucalyptus pest. The objective of this study was to determine biological and life table parameters of 
T. peregrinus on Eucalyptus benthamii at five temperatures (18 °C; 22 °C; 25 °C; 27 °C and 30 °C) with a 
relative humidity (RH) of 70 ± 10% and photoperiod of 12 hours. The duration of each instar and the 
longevity of this insect were inversely proportional to the temperature, regardless of sex. The nymph 
stage of T. peregrinus was 36.4 days at 18 °C and 16.1 days at 30 °C. The pre-oviposition period was 
5.1 days at 30 °C and 13.1 days at 18 °C and that of oviposition was 7.6 days at 30 °C and 51.2 days at 
22 °C. The generation time (T) of T. peregrinus was 27.11 days at 22 °C and 8.22 days at 30 °C. Lower 
temperatures reduced the development and increased the life stage duration of T. peregrinus. Optimum 
temperatures for T. peregrinus development and reproduction were 18 and 25 °C, respectively.

The frequent introduction and establishment of exotic insect pests on eucalyptus plantations in Brazil are impact-
ing and reducing productivity. The bronze bug Thaumastocoris peregrinus Carpintero & Dellapé (Hemiptera: 
Thaumastocoridae), an Australian eucalyptus pest was first recorded in Brazil in 20091. At high infestations, this 
insect decreases the photosynthetic rate, leading to partial or total plant defoliation, and in some cases, plant 
death2,3.

Studies have focused on the biology4–6, chemical control7, chemical ecology8,9, morfology10, remote sensing for 
monitoring11,12 and biological control13–16 of this pest, aiming to minimize losses. However, the effect of temper-
ature on the biological parameters of this species is not yet well known.

Ambient temperature is one of the most important abiotic factors affecting the survival, development rate, 
abundance, behavior and fitness of insects17–20. In fact, each insect species has an optimum temperature at which 
they thrive, with lower and upper limits for development21,22. High temperatures can decrease fecundity, hatch-
ing and survival of these organisms23, while low temperatures can affect the sex ratio (reduce male proportion), 
behavior, and population distribution of insects24.

The study of temperature in life-history variables, such as nymph development period, adult longevity and 
fecundity is crucial to the development of pest-management strategies25. The temperature decrease Parapoynx 
crisonalis (Lepidoptera: Pyralidae) life tables26 and Brachmia macroscopa (Lepidoptera: Gelechiidae) development 
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and fecundity27. Thus, the objective of this study was to evaluate the effect of different temperatures on biological 
parameters of T. peregrinus.

Results
Nymph development.  The nymph development period of T. peregrinus differed across temperatures 
(Kruskal-Wallis on ranks; df = 4, H = 168.42, P < 0.001) (Table 1). Furthermore, this parameter affected the dura-
tion of each instar (first-instar, Kruskal-Wallis on ranks; df = 4, H = 219.31, P < 0.001; second instar, Kruskal-
Wallis on ranks; df = 4, H = 198.67, P < 0.001; third instar, Kruskal-Wallis on ranks; df = 4, H = 172.49, P < 0.001; 
fourth instar, Kruskal-Wallis on ranks; df = 4, H = 134.77, P < 0.001; and fifth instar, Kruskal-Wallis on ranks; 
df = 4, H = 126.4, P < 0.001) of this insect.

Adult reproduction and longevity.  The pre-oviposition period of T. peregrinus decreased linearly with 
increased temperature, ranging from 13 (18 °C) to 5 (30 °C) days (Table 2). The fertility of this insect was similar 
at 22 °C (64 eggs), 18 °C (45.9 eggs), 25 °C (58.1) and 27 °C (49.1), while it was lower at 30 °C (22 eggs) (Table 2).

Female longevity of T. peregrinus was longest at 22 °C (53 days) and that of males at 18 to 22 °C (57 and 54 
days, respectively) (Table 2). Temperature did not affect the sex ratio of this insect (GLM-binomial: χ2190 = 1.96, 
p = 0.74) (Table 2).

Survival analysis.  Temperature affected the survival rates of T. peregrinus nymphs (Mantel-Haenzel Test; 
χ2 = 53.6, P < 0·0001) (Fig. 1A), females (Mantel-Haenzel Test; χ2 = 60.9, P < 0·0001) (Fig. 1B), and males 
(Mantel-Haenzel Test; χ2 = 103, P < 0.0001) (Fig. 1C).

Survival analysis using the Cox’s Proportional Hazards model showed a higher death risk (hazard ratio; HR) 
for nymphs and adults (females and males) of T. peregrinus as temperature increased (Table 3) and (Fig. 2).

Threshold development and thermal constants.  The linear regression estimative for the tempera-
ture limit of T. peregrinus first, second, third, fourth and fifth instars was 7.70, 9.85, 10.33, 10.24 and 10.45 °C, 
respectively (Fig. 1). The T. peregrinus thermal constant (K) per instar was 79.34 degree-day (DD) (first), 58.58 
DD (second), 55.57 DD (third), 62.24 DD (fourth) and 88.91 DD (fifth). The accumulated temperature for the 
nymph-to-adult period of this insect was 338.50 DD, with a temperature limit of 9.93 °C (Fig. 1).

Life table.  The net reproductive rate (R0) of T. peregrinus was higher at 25 °C (6.39) and 18 °C (4.45), the latter 
being similar to that at 22 °C (4.00). The net reproduction rate was lower at 30 °C (0.13). The generation time (T) 

°C First instar Second Third Fourth Fifth Ny-Ad.

18 °C
6.79 ± 0.23a 6.30 ± 0.21a 6.02 ± 0.23a 6.93 ± 0.22ª 10.42 ± 0.31a 36.37 ± 0.26ª

n = 84 n = 75 n = 71 n = 63 n = 58 n = 52

22 °C
6.46 ± 0.14a 5.59 ± 0.17a 5.97 ± 0.21a 6.02 ± 0.26b 8.78 ± 0.29b 32.47 ± 0.33b

n = 93 n = 82 n = 70 n = 63 n = 51 n = 36

25 °C
4.561 ± 0.13b 3.82 ± 0.11b 4.05 ± 0.11b 4.24 ± 0.09c 6.15 ± 0.14c 22.69 ± 0.16c

n = 87 n = 81 n = 74 n = 65 n = 60 n = 52

27 °C
4.07 ± 0.12c 3.45 ± 0.11b 3.58 ± 0.16c 3.90 ± 0.14c 5.34 ± 0.24 cd 20.0 ± 0.25d

n = 78 n = 71 n = 60 n = 52 n = 41 n = 33

30 °C
3.45 ± 0.11d 2.81 ± 0.09c 2.69 ± 0.12d 2.97 ± 0.23d 4.43 ± 0.26d 16.13 ± 0.20e

n = 81 n = 77 n = 58 n = 45 n = 35 n = 23

Table 1.  Duration (mean ± SE) of each instar and of the nymph period (days) (Ny-Ad.) of Thaumastocoris 
peregrinus (Heteroptera: Thaumastocoridae) reared at different temperatures, RH of 60 ± 10% and photoperiod 
12:12 (L: D) h. Means followed by the same letter per line do not differ by the Tukey test (p ≤ 0.05).

°C 18 °C 22 °C 25 °C 27 °C 30 °C

N 20 11 20 13 8

Preov 13.10 ± 0.61ª 9.09 ± 0.41b 6.20 ± 0.24c 6.31 ± 0.59c 5.13 ± 0.55c

Ovip. (days) 36.3 ± 3.8ab 51.2 ± 6.4b 29.9 ± 6.4a 21.5 ± 3.4a 7.6 ± 3.4c

Eggs/female 45.9 ± 4.6ab 64.0 ± 9.08b 58.1 ± 8.5ab 49.08 ± 9.18ab 22.8 ± 12.5a

Eggs/fem./day 1.1 ± 0.1ª 1.2 ± 0.09ab 1.6 ± 0.1bc 1.9 ± 0.19c 1.8 ± 0.4ac

Fem. Long. (days) 41.84 ± 3.9cd 53.6 ± 6.2b 34.3 ± 3.6bc 24.69 ± 3.11ab 10.4 ± 3.4a

Male Long. (days) 57.4 ± 3.4c 54.1 ± 7.0c 35.4 ± 1.8b 32.62 ± 3.29b 11.3 ± 2.9a

Sex ratio* 0.48ª 0.58ª 0.48ª 0.53a 0.61a

Table 2.  Duration (mean ± SE) of the pre-oviposition (Preov.) and oviposition (Ovip.) (days), eggs per female 
(Eggs/female), eggs/female/day (Eggs/fem./day) and female (Fem. Long.) and male (Male Long.) longevity of 
Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) males and females at different temperatures, RH of 
60 ± 10% and photoperiod 24:12 (L: D) h. Means followed by the same letter per line do not differ by Tukey test 
(p ≤ 0.05).
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of T. peregrinus varied between 27.11 days at 22 °C to 8.22 at 30 °C, and the intrinsic growth rate (rm) and finite 
increase (λ) of T. peregrinus were higher at 25 °C (0.046 and 1.047, respectively) and lower at 30 °C (0.084 and 
0.919, respectively) (Table 4).

Discussion
Temperature strongly influences insect development in both single generation progeny and in organisms that are 
established and successfully continued for multiple generations28. Thaumastocoris peregrinus development and 
reproduction reinforces the temperature effect on insects29, with the duration of its juvenile stage decreasing as 
temperature increases, as found for Corythucha ciliate (Say) (Hemiptera: Tingidae) and Loxostege sticticalis (L.) 
(Lepidoptera: Crambidae)30.

The shorter duration of each instar and of the adult period of T. peregrinus at higher temperatures is due to 
increased metabolism, food intake and energy, allowing the insect to reach the next stage31,32. Other factors, such 
as poor food quality9,33,34, decreased the survival and/or insect growth rate35. The ladybird Harmonia axyridis 
(Pallas) (Coleoptera: Coccinellidae)36,37, the dragonfly Ischnura verticalis (Odonata: Coenagrionidae)38, and the 
locust Romalea microptera (Orthoptera: Romaleidae)39 had shorter juvenile stages at increased temperatures.

Figure 1.  Relationship between temperature, development speed (1/days) of nymph and period of nymph-
adult of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), RH of 60 ± 10% and photoperiod 12:12 
(L: D) h.____Development time (Days)  Velocity of development (1/D).
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Thaumastocoris peregrinus had a shorter pre-oviposition period with increased temperature, indicating the 
effect of this parameter on this organism. This is also reflected in the mating and egg laying of T. peregrinus as 
reported for Phenacoccus madeirensis Green (Hemiptera: Pseudococcidae)40 and Leptocoris achinensis (Dallas) 
(Hemiptera: Alydidae)41 and food/temperature and bioecology interactions42 as reported for Cimex lectularius 
(Linnaeus 1758; Hemiptera: Cimicidae)43. The number of eggs per T. peregrinus female at 26 °C on Eucalyptus 
urophylla x Eucalyptus camaldulensis5 and Eucalyptus scoparia at different temperatures4 and with E. tereticornis 
at 25 °C44 varied within certain limits45. The longer pre-oviposition period, at least for some T. peregrinus females 
at lower temperatures could be due to the longer time required for this predator to develop its ovary46.

Thaumastocoris peregrinus female and male longevity was increased at temperatures between 18 to 22 °C, 
which could be due to reduced metabolic processes at lower temperatures, affecting development and life his-
tory47. At low metabolic rates, certain physiological processes are suppressed, for example reproduction48, in 
order to maintain more crucial processes for survival. The effect of low temperatures on longevity have been 
reported for Monosteira unicostata Mulsant & Rey 1852 (Hemiptera: Tingidae) and Cleruchoides noackae Lin & 
Huber, 2007 (Hymenoptera: Mymaridae)49,50.

The optimal temperature range for T. peregrinus development and reproduction between 25 and 30 °C was 
similar to those reported for egg, nymph and egg-adult periods, respectively, for this bug44,51, as well as for Nezara 
viridula (L.) (Hemiptera: Pentatomidae) collected in soybean fields at climatically different locations28. The linear 
increase in the ratio between instars and of the adult stage duration of T. peregrinus (1/D) confirms the energy 
gain for its physiological processes52.

The low survival at high temperatures indicates a phenotypic plasticity for T. peregrinus in different 
environments53.

The higher thermal constant of T. peregrinus nymph development, 338.50 DD with a minimum of 9 °C shows 
the impact of low temperatures on this insect51,54. This result was also observed for Axinoscymnus cardilobus (Ren 
and Pang) (Coleoptera: Coccinellidae), with 204 DD; it took 67 days at a minimum of 9.07 °C to complete one 
generation, while this was 120 days55 at 17 °C. However, the accumulated temperature for the nymph-to-adult 
period of T. peregrinus, with 395.43 DD with a temperature limit of 9.93 °C shows its high adaptive potential. This 
species needed 905.65 DD in Canberra, Australia, to complete a generation and survived at temperatures below 
1.5 °C, with adults recovering at higher temperatures51.

The e R0, rm, T and λ of T. peregrinus showed shorter development periods and higher growth rates with 
increased temperature, similar to that reported for Megacopta cribraria (F.) (Hemiptera: Plastaspidae)56 and 
Jakowleffia setulosa (Jakovley, 1874) (Hemiptera: Lygaeidae)57. These characteristics are important to understand 
the impact of temperature on insect growth, survival, reproduction and population increase58,59. This is necessary 
because the energy generated by the anabolism and catabolism metabolic processes for insect growth and repro-
duction depends on the environmental temperature60.

The environmental temperature affected the development, fertility, longevity and mortality of T. peregrinus. 
Thus, the definition of thermal requirements for T. peregrinus can assist traditional techniques in managing this 
pest. As well, this important data can be used in simulating population dynamics, monitoring, population peaks, 
occurrence, ecological zoning and modeling in order to manage this pest.

°C HR

95% CI

z- value*Lower Upper

18 °C Reference

22 °C 1.85 1.20 2.87 0.005

25 °C 1.39 0.85 2.27 0.1806

Nymph 27 °C 2.53 1.58 4.04 <0.001

30 °C 4.16 2.64 6.56 <0.001

18 °C Reference

22 °C 0.33 0.13 0.81 0.016

Female 25 °C 1.41 0.75 2.65 0.283

27 °C 3.05 1.43 6.50 0.003

30 °C 12.61 4.96 32.07 <0.001

18 °C Reference

22 °C 1.03 0.49 2.18 0.923

Male 25 °C 6.87 3.11 15.19 <0.001

27 °C 6.84 2.97 14.82 <0.001

30 °C 100.3 29.24 344.18 <0.001

Table 3.  Relative risk estimates for Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) reared at 
different temperatures using multivariable Cox regression analysis. *Wald statistic value (z). Abbreviations: 
Hazard Ratio (HR); Confidence Interval (CI).
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Material and Methods
Insect rearing and temperature conditions.  The experiments were conducted at the Forest Entomology 
Laboratory of Embrapa Florestas in Colombo, Paraná state, Brazil. Thaumastocoris peregrinus was reared in the 
laboratory at 24 ± 2 °C, 60 ± 10% RH, and a photoperiod of 12:12 h L:D on bouquets of Eucalyptus benthamii 
Maiden & Cambage (Myrtales: Myrtaceae) branches. The branches were fixed in a piece of foam to prevent 
drowning the insects in a 500-mL glass flask filled with water61,62. The effect of temperature on various biologi-
cal parameters of T. peregrinus was evaluated at five constant temperatures (18, 22, 25, 27 and 30 ± 2 °C) with a 
photoperiod of 12:12 L: D and RH 70 ± 10% in climatic chambers (BOD Specification: Type B.O.D M.S.Mistura; 
model MSM 011/G; SERIES 1002.0157, Volts 220, W700).

Nymph development.  Newly hatched T. peregrinus nymphs were individually placed in acrylic plates 
(2.8 cm diameter × 1.5 cm) with a Eucalyptus benthamii fresh leaf disk (2.1 cm diameter) with its petiole intro-
duced in a hydrogel layer (hydroplan-EB/HyC, SNF SA Floger) to maintain the leaf turgor. The eucalyptus leaf 
discs were replaced every two days. The duration and viability of T. peregrinus instars were assessed daily. Instar 
changes were evaluated based on the exuvia presence. Survival was evaluated in relation to the number of live 
individuals beginning each instar.

Adult reproduction and longevity.  Thaumastocoris peregrinus adults (<24 h old) were sexed based on 
its morphological characteristics6. A couple of this insect was placed per Petri dish (5.0 cm in diameter) with a 
fresh E. benthamii leaf disc (4.9 cm diameter). The pre-oviposition (female emergence to the first egg laying) and 
oviposition period, fecundity (number of eggs per female per day), longevity and mortality of T. peregrinus were 
evaluated. The males were not replaced. Mortality data were used to calculate longevity. Females were maintained 
until death, and egg numbers were use in the analysis.

Development thresholds and thermal constants.  The temperature development threshold (Tt) and 
thermal constant (K) of T. peregrinus were estimated using the hyperbole method63, based on the duration of the 
different instars, the nymph stage and the egg-adult period at 18, 22, 25, 27 and 30 ± 2 °C. The T. peregrinus instar 
development rate and nymph-to-adult period was regressed against temperature using a linear equation given by 

Figure 2.  Kaplan–Meier survival curve for Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) nymph 
and adult at different temperatures. (A) Nymph stage; (B) Female adults; C) Male adults.

Temp.

Life table parameters*
Ro T (d) rm Λ

18 °C 4.56 ± 0.46ab 25.66 ± 1.413a 0.027 ± 0.001a 1.027 ± 0.002a

22 °C 4.00 ± 0.595 ab 27.11 ± 2.383 a 0.025 ± 0.002 a 1.026 ± 0.002 a

25 °C 6.39 ± 0.856 b 15.19 ±  ± 0.602 bc 0.046 ± 0.002 b 1.047 ± 0.002 bc

27 °C 2.71 ± 0.510 cd 22.79 ± 3.668 ac 0.030 ± 0.005 a 1.031 ±  ± 0.005 a

30 °C 0.13 ± 0.074 e −8.22 ± 4.169 d −0.084 ± 0.063 a 0.919 ± 0.006 ac

Table 4.  Fertility life table of Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae) reared at different 
temperatures (Temp.), RH of 60 ± 10% and photoperiod 24:12 (L: D) h. Means followed by the same letter per 
column do not differ by Tukey test (p ≤ 0.05). *Reproductive net rate (R0), mean generation time (T), innate 
ability to increase (rm), finite rate of increase (λ).
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the formula: 1/D = a + bT, where, 1/D is the insect development time (D) in days, and T is the temperature (°C). 
The intercept ratio over the slope of the regression line corresponds to the threshold temperature (Tt) and the 
thermal constant (K) was estimated by taking the inverse of the slope (1/b)64.

Life table analysis.  The T. peregrinus fertility life table at each temperature was built with specific survival 
at age x (lx), specific fertility (mx) and number of offspring reaching the age x in the next generation (lxmx). These 
data were used to calculate the net reproductive rate (R0), time between generations (T), innate ability to increase 
(rm) and finite rate of increase (λ) of this insect65.

Biological parameter analysis.  All data were first analyzed using the Shapiro-Wilk and Bartlett tests to 
determine data normality and homogeneity. The data related to each instar duration and of the nymph-to-adult 
period did not conform to normality, even after log transformation. Therefore, the comparisons were made using 
the non-parametric Kruskal-Wallis test. Pre-oviposition, oviposition, fecundity, oviposition rate and female and 
male longevity data were normally distributed, and thus they were analyzed using a linear model followed by a 
post hoc pairwise comparisons performed using Tukey HSD test (function glht, package multcomp)66. Sex ratio 
was analyzed using a generalized linear model (GLM) assuming binomial distribution67,68. The analyses were 
performed with the software R, version 3.3.2. The fertility life table was analyzed by Jackknife and the averages 
compared by Student’s t-test using the software SAS version 9.169.

Survival analysis.  Survival curves were fitted and analysed using Kaplan-Meier survival probabilities (R 
version 3.3.2, “survival”, “survminer” packages)70,71 followed by a pairwise comparisons Mantel-Haenszel Test 
(Log-Rank test) and Cox Proportional-Hazard Model (PH Model). The data evaluated at 30 °C was used as the 
reference for the other treatments (temperatures) on Multivariate Cox regression. Individuals who did not die by 
the end of the nymph period were censored (0 = death event did not occur; 1 = death event occurred). The adult 
individuals were not censored, because the experiment finished with the death of all insects (females and males).
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