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Abstract

Background: When testing for SNP (single nucleotide polymorphism) associations in related individuals,
observations are not independent. Simple linear regression assuming independent normally distributed residuals
results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of
type I error is often successfully corrected by genomic control. However, this reduces the power of the test when
relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength
of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the
consequences of variance inflation on hypothesis testing and compare the results with those of genomic control
correction. We apply the developed theory to the publicly available HapMap trio data (N = 129), the Sorbs (a
self-contained population with N = 977 characterised by a cryptic relatedness structure) and synthetic family studies
with different sample sizes (ranging from N = 129 to N = 999) and different degrees of relatedness.

Results: We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the
variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability.
Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance
inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with
larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family
study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases
rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation
while the opposite holds for larger significance levels. When genomic control is applied, type I error is preserved while
power decreases rapidly with increasing variance inflation.

Conclusions: Stronger relatedness as well as higher heritability result in increased variance of the effect estimate of
simple linear regression analysis. While type I error rates are generally inflated, the behaviour of power is more
complex since power can be increased or reduced in dependence on relatedness and the heritability of the
phenotype. Genomic control cannot be recommended to deal with inflation due to relatedness. Although it
preserves type I error, the loss in power can be considerable. We provide a simple formula for estimating variance
inflation given the relatedness structure and the heritability of a trait of interest. As a rule of thumb, variance inflation
below 1.05 does not require correction and simple linear regression analysis is still appropriate.
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Background
When testing for SNP associations in related individuals,
one has to account for the non-independence of observa-
tions [1]. An appropriate method is to test for the SNP
effect assuming a mixed model y = b1 + b2s + g + e
with phenotypes y, intercept b1, effect b2, SNP geno-
types s, polygenic random effects g and residuals e [2–5].
Recently, several extensions of this concept were proposed
[6]. However, fitting this mixed model is mathematically
challenging as well as computationally expensive when
performed within a genome-wide context and for large
sample sizes. For this reason, the correlation of pheno-
types is often neglected and the standard linear model
y = β1 + β2s + ε is used assuming independent normally
distributed residuals ε.
The impact of relatedness on the correctness of simple

linear regression analysis also depends on the heritability
of the trait of interest. This is obvious if considering traits
of high heritability such as height (80%) [7]. However, we
demonstrate in the present paper that even if heritabil-
ity is relatively small (e.g. circulating serum chemerin
with estimated 16% heritability [8]) proper correction
is still required if highly related samples are analysed.
Otherwise, the type I error of the uncorrected test statis-
tic is inflated [9, 10] and increases further with higher
heritability and stronger relatedness [1, 10, 11]. In this
context, stronger relatedness means more and stronger
related pairs of individuals in the analysis sample. Often,
inflation of type I error is corrected by genomic control,
a phenomenological approach proposed by Devlin &
Roeder [12]. They showed that dependency structures
of observations can lead to extra variance compared to
the situation of independence. Although genomic control
works fine to reduce type I error inflation, it reduces
the power in case of higher relatedness and heritabil-
ity [5]. Assessing the power of the uncorrected test in
dependence on the degree of relatedness is difficult. We
showed in a simulation study [13] that for the uncor-
rected test under relatedness, there is a gain in power
for low p-value thresholds but a loss in power for higher
p-value thresholds. Another simulation study [11]
reported that the power did not notably differ if
relatedness is ignored.
In the present paper, we aim to investigate how heri-

tability and strength of relatedness contribute to variance
inflation of the effect estimate and present simple approx-
imation formulae. We evaluate subsequently the impact
of variance inflation on type I error and power of the test
and identify situations in which simple linear regression is
still valid. Additionally, we prove that the expectation of
effect estimates is not influenced as noticed by simulation
studies [1, 11] and explain why allele frequencies appear
to have only little impact on type I error and power (see
[1, 14]).

The paper is organized as follows: In the “Methods”
section, we present the underlying theory and derive the
equations. We first introduce the notation of relatedness
structure. Then, we present both, the general linear model
of SNP-phenotype association under relatedness and its
counter-part of ignored relatedness. We show unbiased-
ness of the effect estimate of the SNP of the second model
and derive its variance inflation under relatedness. We
study the impact of variance inflation on hypothesis test-
ing and compare our results with those of genomic control
correction. In the “Results” section, we analyse the relat-
edness structure of the publicly available HapMap data,
an isolated population and synthetic family structures and
their impact using the derived formulae. Major formu-
lae derived in the paper were implemented in an R script
provided as Additional file 1.

Methods
Almost all of the equations presented in the sections
below are derived in Additional file 2. Notations and a list
of symbols are provided in Additional file 2: Sections 1
and 7, respectively.

Relatedness
When dealing with relatedness, it is important to under-
stand what exactly it means that one individual “is related”
to another individual. We introduce the corresponding
notation following Wang [15]. We assume bi-allelic mark-
ers (SNPs) without missing genotypes throughout. SNP
genotype si of the ith individual corresponds to the num-
ber of reference alleles 0, 1 or 2.
We denote φ and δ as the probabilities that only one

allele and both alleles, respectively, are inherited IBD
(identical by descent) from a common ancestor. Then,
relatedness is defined as G = φ/2 + δ. It holds that
0 ≤ G ≤ 1. Of note, different kinds of relatedness,
e.g. a parent child pair (φ = 1, δ = 0) or full siblings
(φ = 1/2, δ = 1/4), can yield the same G. In these cases
the expectation ofG equals 1/2. The true underlying relat-
edness structure is often unknown. However, it can be
estimated on a sufficiently rich data basis such as genome-
wide SNP arrays. For estimation, we applied the method
described in [15]. Our analysis is based on these relat-
edness estimates rather than relationships obtained from
pedigrees which are often not available or prone to errors.
For estimation of relatedness, SNP weights are required
which depend on the respective allele frequencies. For
this purpose, allele frequencies for each SNP s were
assessed by the simple estimate p̂ = ∑n

i=1 si/2/n for n
samples.
For most of the approximation formulae presented

below, we require that the mean relatedness, i.e. the aver-
age of the entries Gij, i �= j, is small, i.e. less than 0.01.
This applies for example for a sufficiently large number
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of trios or families or even large pedigrees over several
generations (see Table 1 below).

Modelling a SNP - phenotype association
We assume that phenotypes y follows the “true” mixed
model

yi = b1 + b2si + gi + ei (1)

with intercept b1, SNP effect b2, random (polygenic)
effects g = (g1, g2, . . . , gn) and residuals e =
(e1, e2, . . . , en) for i = 1, 2, . . . , n observations. For the
random effects, we assume that g ∼ Nn

(
0, σ 2

gG
)
is multi-

variate normal with a certain variance σ 2
g and relatedness

matrix G. The possible dependence of phenotypes of two
individuals i and j originates from the polygenic random
effects gi and gj. The random effects depend on the relat-
edness of both individuals which can be expressed in
terms of Gij varying between zero and one. This implies
that the polygenic contribution to the phenotype ranges
from “independent” to “identical” for a pair of individu-
als. We assume that residuals are uncorrelated between
observations and distributed as multivariate normal e ∼
Nn(0, σ 2

e I) with certain variance σ 2
e and identity matrix I.

The heritability of y = (y1, y2, . . . , yn) can be expressed
through R2

h = σ 2
g /

(
σ 2
g + σ 2

e

)
.

Ignoring relatedness results in the following simpler
model to be fitted to the data:

yi = β1 + β2si + εi (2)

assuming uncorrelated residuals ε = (ε1, ε2, . . . , εn) only.
We aim at deriving analytical formulae for the expectation
and variance of β̂2 given the true model, i.e. we analyse
the impact of relatedness on the estimates obtained with
Eq. (2).
After some calculations (Additional file 2: Section 2.2),

it follows that the expected value E(β̂2) = b2 is not biased

by relatedness irrespective of its structure. However, the
variance of β̂2 is affected:

V(β̂2) = σ 2
e∑n

i=1 (si − s̄)2
1

1 − R2
h(

1 + R2
h

∑n
i=1

∑n
j �=i=1Gij(s̄2 − 2s̄si + sisj)
∑n

i=1 (si − s̄)2

)

.

(3)

Without heritability, i.e. R2
h = 0, the phenotypes for

all pairs of individuals are uncorrelated and the last two
terms of Eq. (3) simplify to 1. In this case, we obtain

Vβ = σ 2
e∑n

i=1 (si − s̄)2
.

This variance is equivalent to the variance of the stan-
dard linear model as shown in [16]. For the last term of
V(β̂2) in Eq. (3), we define the inflation factor

λ = 1 + R2
h

∑n
i=1

∑n
j �=i=1Gij(s̄2 − 2s̄si + sisj)
∑n

i=1 (si − s̄)2
(4)

which depends on the heritability R2
h and the pairwise

relatedness matrix G. Using λ, V(β̂2) can be rewritten as

V(β̂2) = λ

1 − R2
h
Vβ. (5)

As we will see in the “Hypothesis testing” section, the
empirical variance of the effect estimate is also inflated
by factor 1/

(
1 − R2

h
)
. Hence, this factor is cancelled out

when estimating the corresponding T statistic.

Expected variance inflation
An approximation formula for λ can be obtained by sep-
arately deriving the expectations of the numerator and
denominator of Eq. (4) as shown in Additional file 2:
Section 3.2:

λ′ = 1 + R2
h
G2 − 2

nGr

n − 1
(6)

where

Table 1 Estimated variance inflation under relatedness

Study n λ̄ λ̄10% λ′ λ′
f ;m;c Ḡ R2t

HapMap 129 1.288 (0.074) 1.295 (0.051) 1.297 - 0.006 0.152

SFS1 129 1.284 (0.087) 1.293 (0.051) 1.294 1.295 0.007 0.153

SFS2 999 1.306 (0.050) 1.313 (0.020) 1.314 1.299 0.001 0.143

Sorbs 977 1.410 (0.135) 1.448 (0.071) 1.449 - 0.001 0.100

SFS3 999 2.006 (0.139) 2.022 (0.083) 2.021 2.002 0.002 0.044

Variance inflation and related measures are compared between the data sets HapMap, SFS1 (synthetic family study 1), SFS2, Sorbs and SFS3 assuming R2h = 0.9. Provided are
the sample size n, average inflation λ̄ of all SNPs, average inflation λ̄10% estimated for SNPs with minor allele frequencies >10%, expected (theoretical) inflation λ′ obtained
from estimated relationships, expected inflation λ′

f ;m;c obtained from true relationships (synthetic family studies only), mean relatedness Ḡ and heritability R2t corresponding to
inflation λ′

t = 1.05. Standard deviations are given in parentheses
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G2 =
n∑

i=1

n∑

j �=i=1
G2
ij,

Gr =
n∑

i=1

⎛

⎝
n∑

j �=i=1
Gij

⎞

⎠

2

correspond to the sum of squared elements and the sum of
the squared row sums of G, respectively. Approximating
E(λ) by λ′ is valid if the number n of observations is large
and the mean relatedness

Ḡ = 1
n(n − 1)

n∑

i=1

n∑

j �=i=1
Gij

is small. Interestingly, Eq. (6) is independent of the allele
frequency explaining the empirical observations of [1, 14].
For details, see Additional file 2: Section 3.2.

Relationship between heritability and inflation
There are some useful transformations of Eq. (6): If λ′ is
available for a specific heritability R2

h, it is easy to derive
the inflation λ′

t for an alternative heritability R2
t given the

same relatedness structure. As can be seen from Eq. (6), it
holds that

R2
t = λ′

t − 1
λ′ − 1

R2
h, (7)

λ′
t = 1 + (λ′ − 1)

R2
t

R2
h
. (8)

See also Additional file 2: Section 3.3.

Example family structures
Using Eq. (6), inflation λ′ can be estimated for arbitrary
family structures. As an example, assume a family study
with f families with one father per family. Each father is
mated with m mothers and each mother has c children.
Then, the number of samples is n = (cm+m+ 1)f . Given
these relationships as relatedness matrix G, inflation λ′
can be explicitly calculated by

λ′
f ;m;c =1 + R2

h
[((

c3 + c2
)
f − 2c3

)
m3

+ ((
3c3 + 16c2 + 12c

)
f − 4c3 − 16c2

)
m2+

((
3c2 + 12c

)
f − 2c3 − 16c2 − 8c

)
m

]
/

[
(16c2 + 32c + 16)fm2+
(
(32c + 32) f − 16c − 16

)
m + 16f − 16

]
.
(9)

The formula is implemented in an R script (see
Additional file 1). The special case of m = 1, c = 1
corresponds to trios in which Eq. (9) simplifies to

λ′
f ;1;1 = 1 + R2

h
f − 1
3f − 1

. (10)

Another example is a study with an increased number
of pairwise relationships (m = 2, c = 3) where Eq. (9)
simplifies to

λ′
f ;2;3 = 1 + R2

h
243f − 314
216f − 24

. (11)

Details of these formulae are provided in Additional
file 2: Section 3.4 and Additional file 3.

Hypothesis testing
Assume we observe phenotypes y and SNP genotypes
s obeying Eq. (1). We are interested whether the phe-
notype is associated with the SNP. For the simplified
regression model in Eq. (2), this corresponds to testing
the null hypothesis of β2 = 0. Thus, the test statistic
T = β̂2/Sβ as presented in [17] is evaluated. S2β denotes
the empirical variance estimate of β̂2. Evaluating the dis-
tribution of the test statistic under the null hypothesis
is required for assessing the type I error. The distribu-
tion of the test statistic under the alternative hypothesis
is required for calculating the power of the test. In refer-
ence to Additional file 2: Section 5.1, the effect estimate
β̂2 is normally distributed, and, if the variance of S2β is

small, one can replace S2β by its expected value E
(
S2β

)
.

This implies that T is approximately normally distributed
with expectation and variance as follows

T ∼ N

⎛

⎜
⎜
⎝

E(β̂2)
√

E
(
S2β

) ,
V(β̂2)

E
(
S2β

)

⎞

⎟
⎟
⎠ .

Assuming the null hypothesis, one obtains E(β̂2) = 0.
Further, using V(β̂2) = λVβ/

(
1 − R2

h
)
as shown in Eq. (5)

and E
(
S2β

)
≈ Vβ/

(
1 − R2

h
)
as given in Additional file 2:

Section 4.2, the distribution of T can be calculated:

T ∼ N(0, λ). (12)

See also Additional file 2: Section 5.2.
Considering the alternative hypothesis, it holds that

E(β̂2) = b2 and E
(
S2β

)
≈ Vβ/

(
1 − R2

h
)
in analogy to

the null hypothesis. In the following, we assume a fixed
explained variance of the SNP R2

s . Thus, the SNP effect
is described by only one parameter. Alternatively, if spec-
ifying a fixed SNP effect b2, test statistics would also
depend on the allele frequency, i.e. two parameters would
be required. For a given R2

s , it holds that

E(T) ≈
√

(n − 1)R2
s = μ (13)

as shown in Additional file 2: Section 5.3. Finally, an
approximation of the distribution of T under the alterna-
tive hypothesis can be derived:

T ∼ N(μ, λ). (14)
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Here, caused by relatedness, the empirical variance
of the effect estimate E

(
S2β

)
is deflated compared to

Vβ/
(
1 − R2

h
)
by a certain factor ν as shown in Additional

file 2: Section 4.2.
Further, assume FN

(
x|μ, σ 2) is the cumulative distribu-

tion function of the normal distribution with expectation
μ and variance σ 2. Given the quantile zα/2 of the stan-
dard normal distribution corresponding to a two-sided
test with significance level α, the type I error of the test
applying Eq. (12) can be derived

err = 2FN(zα/2|0, λ). (15)

Similarly, the power of the test applying Eq. (14) is

pwr = FN
(
zα/2|μ, λ

) + 1 − FN
(−zα/2|μ, λ

)
. (16)

Genomic control
Genomic control [12] is a simple and often used method
to correct for variance inflation. Given a sample of n real-
isations T̂1, T̂2, . . . , T̂n of T under the null hypothesis, an
estimate of λ according to Additional file 2: Section 6 is

λ̂ =
median

(
T̂2
1 , T̂2

2 . . . , T̂2
n

)

0.456
.

Genomic control correction is performed by calculating
Tgc = T/

√
λ̂ and using Tgc as new test statistic. Correct-

ing the variance inflation of T under the null hypothesis
(see Eq. (12)), the test statistic Tgc is approximately stan-
dard normally distributed:

Tgc ∼ N(0, 1). (17)

Since

errgc = 2FN(zα/2|0, 1) = α, (18)

the type I error of the test is preserved.
In contrast, correction of the alternative statistic T dis-

tributed as shown in Eq. (14) yields

Tgc ∼ N
(

μ
√

λ̂
, 1

)

. (19)

Thus, genomic control correction reduces the expecta-
tion of the test statistic, and with it, the power of the test
in comparison to Eq. (16) unless λ is close to 1:

pwrgc = FN

(

zα/2

∣
∣
∣

μ
√

λ̂
, 1

)

+ 1 − FN

(

−zα/2

∣
∣
∣

μ
√

λ̂
, 1

)

.

(20)

Samples
To apply our equations to real data, we consider HapMap
CEU (CEPH (Centre d’Etude du Polymorphisme Humain)
from Utah) trio data for two reasons. First, these geno-
type data is freely accessible and well understood so that

our results can easily be reproduced. Secondly, the relat-
edness structure is simple in order to promote under-
standing of our equations. A simple relatedness structure
also supports simulation of genotype data to obtain results
under different settings, e.g. increased sample size. Fil-
tering of HapMap SNPs and samples prior to analysis
is described in Additional file 4. A matrix of pairwise
relatedness estimates for all HapMap CEU samples is pro-
vided as Additional file 5. In summary, 1,020,215 SNPs
measured in 129 HapMap samples belonging to 43 trios
were available for analysis. Additional file 6 contains a
detailed list of samples and the reason for exclusion where
applicable, whereas Additional file 7 provides the list of
SNP identifiers used for analysis. The Perl script pro-
vided as Additional file 8 together with the sample list in
Additional file 6 and the SNP list in Additional file 7 can be
used for converting the HapMap CEU data [18] to a CSV
(comma separated values) file which is further analysed.
Furthermore, we analysed a sample of the Sorbs who

are an ethnic minority in Germany with putative genetic
isolation [13, 19]. The Sorbs sample is characterised by a
complex relatedness structure and therefore suitable for
analysis of variance inflation. As done in [13], 471,012
autosomal SNPs were filtered for call rate < 95%, devi-
ation from Hardy-Weinberg equilibrium with p < 10−6

and platform association with p < 10−7. After filtering,
424,476 SNPs measured in 977 samples were available for
analysis.
Finally, synthetic genotypes were simulated for three

studies each consisting of f families with one father per
family, m mothers per father and c children per mother
as described in Additional file 2: Section 3.4. In order to
evaluate the results obtained for the HapMap data, a study
(SFS1, synthetic family study 1) was simulated for n = 129
samples with parameter set f = 43, m = 1, c = 1. For the
second study (SFS2), the relatedness structure was kept
similar but the sample size was increased to n = 999, i.e.
the parameter set was f = 333,m = 1, c = 1. For stronger
relationships but the same n = 999 samples, we simulated
a third study (SFS3) with parameter set f = 111, m = 2,
c = 3. For all synthetic studies, we sampled 110,000 SNPs
where the reference allele of each SNP was drawn from a
beta distribution (shape a = 0.5, shape b = 0.5).

Simulation
For simulation and analysis of the results, we used the sta-
tistical software package R [20]. The script is provided as
Additional file 1. Instead of sampling SNPs for a synthetic
family study, genotypes provided as CSV file can also be
loaded and analysed utilising this R script. The HapMap
and Sorbs genotype data were analysed in this way. In
any case, a random subset of 100,000 non-monomorphic
SNPs was selected for all studies. The R script was
also used to estimate pairwise relatedness according to
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Wang [15], to calculate the variance inflation λ given the
SNP genotypes as presented in Eq. (4) averaged over all
SNPs and to calculate the expected inflation λ′ based on
estimated relationships as shown in Eq. (6). Further, the R
script supports simulation of phenotypes under the null
and alternative hypothesis assuming Eq. (1) for empirical
verification of the test statistics as presented in Eqs. (12)
and (14), respectively. Empirical values of the statistics
were derived by simulations as follows: For each SNP, phe-
notypes are drawn repeatedly from a multivariate normal
distribution where the expectation depends on the SNP
if simulating alternative hypotheses or is independent of
it for simulating null hypotheses. These simulated test
statistics were averaged over phenotype realisations and
the empirical variance was estimated to assess inflation
due to relatedness. The resulting mean test statistics and
their empirical variances were averaged over SNPs and
a standard deviation was calculated to control sampling
errors. Due to the computational burden, simulations
were restricted to 1000 phenotype realisations per SNP
and a random subset of 1000 SNPs.

Results
Variance inflation for examples of relatedness
We apply the formulae derived in the “Methods” section
to assess and compare variance inflation between different
scenarios of relatedness structure and heritability. Given
the genotypes of a SNP s, the estimated relatedness matrix
G and the heritability R2

h one can calculate the variance
inflation based on Eq. (4).
Different relatedness structures result in different

degrees of variance inflation. We demonstrate this on an
example of a synthetic family study consisting of f fami-
lies with one father per family, m mothers and c children.
Further, assume that each study comprises the same num-
ber n of individuals but differs in c and m. Therefore,
we set f = floor(n/(cm + m + 1)) (“floor” returns the
largest integer not greater as the argument) and estimate
the expected variance inflation of the effect estimate by
evaluating Eq. (9). Figure 1 shows the expected inflation
λ′
f ;m;c for heritability R2

h = 0.9 and different settings of
m and c resulting in the same sample size n = 1000. For
example, a trio study with f = 333, m = 1 and c = 1
(n = 999) results in λ′

333;1;1 = 1.3. This value can also be
obtained via Eq. (10). A more extreme example is a family
study with f = 111, m = 2 and c = 3 (n = 999) which
results in λ′

111;2;3 = 2 (see also Eq. (11)). Inflation λ′ also
depends on sample size, but notable differences can only
be observed for small sample sizes (i.e. n < 100).
For a random subset of 100,000 non-monomorphic

SNPs, we estimated the variance inflation for the real
HapMap trio data, the Sorbs data and the above men-
tioned synthetic family studies SFS1 (corresponding to
HapMap study), SFS2 (corresponding to trios with a larger
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1

2

3

4

5

6

7

8

9

10

m

c

1.30

1.56

1.80

2.04

2.27

2.50

2.72

2.95

3.17

3.39

1.38

1.70

2.00

2.29

2.57

2.85

3.12

3.39

3.66

3.92

1.43

1.80

2.15

2.49

2.82

3.14

3.46

3.77

4.08

4.38

1.47

1.89

2.28

2.67

3.04

3.41

3.77

4.12

4.47

4.81

1.51

1.97

2.41

2.84

3.26

3.66

4.06

4.45

4.83

5.19

1.54

2.04

2.53

3.00

3.46

3.91

4.34

4.77

5.18

5.56

1.57

2.12

2.65

3.16

3.66

4.15

4.61

5.06

5.52

5.90

1.60

2.19

2.76

3.32

3.86

4.37

4.87

5.34

5.81

6.26

1.63

2.26

2.88

3.47

4.05

4.59

5.11

5.63

6.04

6.59

1.66

2.33

2.99

3.62

4.23

4.81

5.36

5.82

6.30

6.88

Fig. 1 Expected variance inflation for synthetic family studies. The
figure presents the expected variance inflation λ′

f ;m;c for heritability

R2h = 0.9 and family studies with varying numbers of mothersm and
children c, each between 1 and 10, and with a total of about n= 1000
individuals. The background colour corresponds to the values
presented and ranges from white for the minimum to black for the
maximum inflation

sample size of n = 999) and SFS3 (corresponding to the
same sample size as SFS2 but a higher average related-
ness). Results for R2

h = 0.9 are presented in Table 1. The
empirical variance inflation λ is smallest for HapMap and
SFS1, the latter two are in well agreement as expected.
The higher sample size for SFS2 results in slightly higher
inflation. The Sorbs inflation is even higher than for SFS2.
As expected, SFS3 shows the strongest inflation. Using λ′
instead of λ results in slightly higher values due to the
Taylor expansion used to derive Eq. (6) (see Additional
file 2: Section 3.2). But the difference is without practical
relevance. Restricting to minor allele frequencies > 10%
improves the agreement (see Table 1 column λ̄10%). The
expected variance inflation λ′ calculated from the esti-
mated relatednessmatrix agrees well with λ′

f ;m;c calculated
from true relationships. Of note, if heritability R2

t drops
below 10% for HapMap, Sorbs, SFS1 and SFS2 accord-
ing to Eq. (7), inflation becomes irrelevant (λ′

t < 1.05, see
Table 1 for details). However, inflation for the extreme
situation of study population SFS3 is still λ′

t = 1.11 as
calculated with Eq. (8).

Numerical validation of test statistics
The distributions of the test statistic T in Eqs. (12)
and (14) are approximations due to the approximation of
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the variance estimate. To empirically verify these approx-
imations, we simulated multivariate normally distributed
phenotypes and fitted a linear model afterwards. We anal-
ysed the same five study populations as in the previous
section and again assumed R2

h = 0.9. Results are pre-
sented in Table 2 for the null hypothesis and Table 3 for
the alternative hypothesis. The expectation and empiri-
cal variance of T was averaged over SNPs. As expected,
the expectation of T under the null hypothesis is close to
zero for all studies (Table 2). The expectation under the
alternative is close to its theoretical value μ calculated via
Eq. (13) (Table 3), i.e. no relevant biases were observed for
T under both hypotheses. However, the variance of T is
slightly overestimated in comparison to the derived λ val-
ues presented in Table 1 (compare S̄2 of Tables 2 and 3
with λ̄ of Table 1). The difference is more pronounced
for the studies with small samples sizes, i.e. HapMap and
SFS1. For larger studies, the difference is without prac-
tical importance. Although the empirical variance of the
effect estimate is deflated by factor ν (see Additional file 2:
Section 4.2 and Table 2), this deflation is close to 1 in our
data, and again, is without practical relevance.

Examples of inflation factors
Since heritability and relatedness structure directly trans-
late into inflation factors, we study the latter in the fol-
lowing in more detail. To study type I error and power
of the tests, we consider four different inflation scenarios
λ = 1, i.e. no inflation, and λ = 1.05, 1.3 and 2. For exam-
ple, any study comprising unrelated individuals results in
about λ = 1, whereas our study populations SFS1 with
R2
h = 0.15, SFS2 and SFS3 with R2

h = 0.9 result in about
λ = 1.05, 1.3 and 2, respectively. See also Table 1 for the
latter three scenarios.

Impact of inflation on type I error
In the situation of statistical testing, the variance of T
under the null hypothesis is relevant for the type I error.
Its inflation originates from heritability R2

h and the family

Table 2 Simulation results for the test statistic T under the null
hypothesis

Study T̄ S̄2 ν

HapMap 0.002 (0.037) 1.330 (0.096) 0.992

SFS1 -0.000 (0.037) 1.321 (0.107) 0.992

SFS2 -0.001 (0.037) 1.309 (0.076) 0.999

Sorbs -0.001 (0.037) 1.412 (0.144) 0.999

SFS3 0.001 (0.043) 2.015 (0.166) 0.997

The test statistics T̄ averaged over replicates and SNPs and the average of the
empirical variances S̄2 are compared between HapMap, SFS1 (synthetic family study
1), SFS2, Sorbs and SFS3 assuming the null hypothesis and R2h = 0.9. Standard
deviations are presented in parentheses. We further provide an estimate of the
deflation factor ν for the empirical variance of the effect estimate

Table 3 Simulation results for the test statistic T under the
alternative hypothesis

Study T̄ S̄2 μ

HapMap 1.619 (0.037) 1.343 (0.095) 1.600

SFS1 1.619 (0.036) 1.336 (0.112) 1.600

SFS2 4.472 (0.036) 1.330 (0.076) 4.468

Sorbs 4.420 (0.039) 1.432 (0.148) 4.418

SFS3 4.479 (0.046) 2.030 (0.162) 4.468

The test statistics T̄ averaged over replicates and SNPs and the average of the
empirical variances S̄2 are compared between HapMap, SFS1 (synthetic family study
1), SFS2, Sorbs and SFS3 assuming the alternative hypothesis with R2s = 0.02 and
heritability R2h = 0.9. Standard deviations are presented in parentheses. We further
provide the expected value μ of the test statistic T

structure as shown in Eq. (4). Variance inflation λ impacts
the distribution of the test statistic under the null hypoth-
esis as shown in Eq. (12) and affects the type I error of the
test as depicted in Eq. (15). In Fig. 2, we present the type I
error dependent on the significance level without inflation
λ = 1 and inflation with λ = 1.05, 1.3 and 2 as in the above
mentioned scenarios. Type I error for λ = 1.05 is simi-
lar to λ = 1 justifying the 1.05 threshold typically applied
to ignore inflation. However, the type I error increases
rapidly with increasing inflation.
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Fig. 2 Comparison of type I errors with respect to different degrees
of variance inflation. The figure provides a comparison of type I errors
dependent on the significance level α without variance inflation
λ = 1 and variance inflation with λ=1.05, 1.3 and 2. The negative
common logarithm is presented for α as well as the type I error. The
grey vertical line corresponds to a significance level of α = 0.05
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Impact of inflation on power
For calculating the power, expectation and variance of T
under the alternative is required. As shown in Eq. (4), vari-
ance inflation depends on heritability R2

h and the family
structure. Similar to the null hypothesis, variance infla-
tion λ impacts the distribution of the test statistic under
the alternative as shown in Eq. (14) and affects the power
of the test (Eq. (16)). The expectation of T, see Eq. (13),
depends on the sample size n and the explained vari-
ance by the SNP R2

s . We assume n = 1000 and R2
s =

0.02 resulting in an expectation of the test statistic of
μ = √

(n − 1)R2
s ≈ 4.47. For this expectation, we present

Fig. 3a showing the dependence of power, see Eq. (16),
on the significance level for λ = 1 (no inflation) and
λ = 1.05, 1.3 and 2. The power for λ = 1.05 is similar
to λ = 1, indicating again that this inflation is negligible
for practical purposes. The difference is more pronounced
for the other power curves with λ > 1.05. Irrespective
of the variance of the test statistic, the power curves are
intersecting at 50%. For the selected expectation, this cor-
responds to −lg(α) ≈ 5.11 (“lg” refers to the common
logarithmwith base 10). Thus, for smaller significance lev-
els, the power increases with increasing inflation while the
opposite occurs for larger significance levels.

Correction with genomic control
In case of inflation, an often applied method of correc-
tion is genomic control. If this correction is applied in
the situation of relatedness, the distribution of the test
statistic (Eq. (17)) under the null hypothesis is approxi-
mately standard normal. This implies that the type I error
α (Eq. (18)) is preserved. In contrast, correcting the test
statistic by the inflation factor reduces the expectation

(Eq. (19)) under the alternative hypothesis which in turn
reduces the power (Eq. (20)) of the test. In Fig. 3b, we pro-
vide the power dependent on the significance level after
genomic control without inflation λ = 1 and with infla-
tion λ=1.05, 1.3 and 2. Comparing Fig. 3a and b, power
loss of genomic control increases rapidly with increas-
ing λ. Thus, genomic control cannot be recommended for
inflations λ > 1.05 induced by relatedness.

Discussion
Relatedness induces a dependency structure to pheno-
typic data, and therefore, needs to be addressed appropri-
ately in genetic association studies. However, the impact
of relatedness on key statistical properties is insufficiently
studied and major insights rely on simulation studies only.
Here, we provide a full theory of the impact of relatedness
on linear regression analysis of a quantitative phenotype.
We derive analytical formulae of test statistics and pro-
vide a simple approximate formula of the dependence of
variance inflation on the relatedness structure. We stud-
ied the impact of relatedness on type I error and power
and confirmed a number of phenomena observed in simu-
lation studies. Moreover, we showed that genomic control
cannot be recommended to deal with relatedness-induced
inflation. All formulae were implemented in an R script
provided as supplement (Additional file 1).
First, we derived formulae of the impact of relatedness

on effect estimates and variances of a linear regression
model. We proved that the expectation is unbiased in
agreement with [1, 11] who observed this fact on the basis
of simulation studies. We derived an approximation for-
mula of the variance inflation given the relatedness and
the heritability of the phenotype. We also proved that the
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Fig. 3 Comparison of power with respect to different degrees of variance inflation. Both figures provide a comparison of power in percent
dependent on the significance level α without variance inflation λ = 1 and variance inflation with λ=1.05, 1.3 and 2. Figure a corresponds to the
uncorrected test statistic, whereas Figure b refers to the test statistic after genomic control. The negative common logarithm is presented for α. The
grey vertical line corresponds to a significance level of α = 0.05. An explained variance of R2s = 0.02 was assumed. Sample size was set to n = 1000
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standard error of the effect estimate is underestimated if
applying the standard linearmodel. This is reflected by the
deflation factor ν derived in Additional file 2: Section 4.2.
Again, this issue was observed by [1] on the basis of a
simulation study.
We estimated this variance inflation for “real” genotype

data obtained from HapMap trios and the Sorbs and for
synthetic genotypes of three different family studies of
varying degree of relatedness. For a heritability of 90%, we
showed that there is a relevant inflation for all of these
studies. In contrast, if heritability drops below 10%, the
inflation is only relevant in the extreme situation of study
population SFS3. See also Additional file 9 for additional
results of scenarios with varying degree of heritability.
The polygenic effect was modelled via a multivariate

normal distribution with the relatedness matrix as covari-
ance matrix. Alternatively, the polygenic effect could
be modelled by single markers as proposed by Zhang
et al. [3]. Results are similar even for small numbers of
SNPs contributing to the polygenic effect (see Additional
file 10).
For analysis, we utilised relatedness estimates obtained

from genomic data rather than estimates obtained from
pedigree data. First, correct pedigree data are difficult to
assess especially for non-family studies or studies with
cryptic relatedness as observed in isolated populations,
e.g. the Sorbs [13]. Second, [5, 14] argued that estimates
from marker data reflect true genetic relationships better
then estimates from even a correct pedigree. In contrast
to [5] who applied kinship estimates as presented in [21],
we estimated pairwise relatedness with the method pro-
posed by Wang [15]. The latter has several advantages as
correction for allele frequency estimates. Otherwise, relat-
edness estimates could be biased [15, 21], see also Fig. 1 in
Additional file 11. However, in our hands using the kinship
matrix [5, 21] or the IBS(identical by state)-based matrix
[4, 22] as alternative estimators, this has little impact on
the inflation results (see Additional file 11). Further, the
method in [15] results in a diagonal of the estimated relat-
edness matrix identical to 1 which is required for our
derivations in Additional file 2: Section 2.2.
In general, inflation depends on the allele frequency of

a SNP. However, considering our approximation formula
Eq. (6), this dependency can be neglected if the sam-
ple size is sufficiently large and the average relatedness is
small. This explains corresponding empirical observations
of [1, 14].
As different combinations of relatedness structure and

heritability yield the same variance inflation, we further
focused on different degrees of variance inflation to study
type I error and power. For this purpose, we derived an
analytical approximation of the test statistic given the
variance inflation. The approximation was successfully
verified in a simulation study.

We showed analytically that the type I error increases
with inflation. With our formula, we could confirm the
empirical observation of [1, 11] that type I error of the test
increases with higher heritability and stronger relation-
ships. Similarly, [9] observed an inflated type I error when
the family structure is ignored.
A major result of our study is that the power increases

with increasing inflation if the significance level is small
while the opposite occurs for larger significance levels.
We already observed this phenomenon in a previously
published simulation study [13]. This explains a num-
ber of contrary empirical observations presented in the
literature, e.g. [1, 9] noted that the power of the test
is reduced when ignoring the family structure. How-
ever, [11] observed similar power irrespective whether
accounting for the family structure or not. By our for-
mula, we could show that the power could be either
increased or decreased under inflation in dependence on
the underlying significance threshold.
Our formulae can also be applied to compare the impact

of family structures between studies. Power and type I
error were analysed previously in [1, 5] for a nuclear
pedigree (NP) of 1011 individuals belonging to 337 sib
trios. Applying our formulae (Additional file 3), this family
structure results in an inflation factor of 1.45 for R2

h = 0.9.
Interestingly, the same value was observed for the Sorbs
sample.
Since genomic control is an often applied method to

correct for inflated test statistics, we studied its results in
the situation of relatedness-induced inflation. We could
show that genomic control maintains the correct type
I error which is in line with [5, 12]. However, we also
showed that genomic control seriously impairs power.
This was acknowledged by [12] for increased inflation and
by [5] for higher heritability and stronger relationships.
According to our results, genomic control cannot be rec-
ommended to deal with inflation due to relatedness. One
has to remark that genomic control was originally devel-
oped to correct for population stratification [23, 24]. In
contrast to other studies [12, 14, 21], we did not consider
additional population structure here. Results for selected
settings of heritability and explained variance of the SNP
are presented in the paper. More scenarios can be easily
analysed using our R script provided as Additional file 1.
The properties of various correction methods as well as

simple linear regression are compared in [10]. Here, we
investigated the linear model in detail, provided an easy
to apply approximation formula of the impact of related-
ness on variance inflation and identified scenarios where
simple linear regression analysis is still valid. We agree
with Aulchenko [14] that a variance inflation below 1.05
is negligible regarding power and type I error. If vari-
ance inflation is larger, we advice to apply methods which
explicitly account for relatedness, e.g. by mixed model
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analysis [1, 5, 9, 25–27]. Nonetheless, these models need
to be carefully applied due to several pitfalls [28]. For a
summary of correction methods and software tools, see
also [29].

Conclusions
We developed approximation formulae to study the
impact of relatedness on type I error and power. We could
prove a number of empirical observations made in simu-
lation studies. Stronger relatedness as well as higher heri-
tability result in increased variances of the effect estimates
of simple linear regression analyses. As a consequence,
type I error rates are generally inflated. The behaviour of
power is more complicate since relatedness could either
increase or reduce it in dependence on the effect size of a
SNP, the heritability of the phenotype and the significance
threshold. Genomic control cannot be recommended to
deal with relatedness-induced inflation. Variance infla-
tion below 1.05 can be safely ignored, i.e. simple linear
regression analysis is still appropriate in this case.

Additional files

Additional file 1: R script for simulation. This R script supports simulation
of synthetic genotypes for a family study. Instead of genotype simulation,
genotypes can also be loaded from a CSV file. Allele frequencies are
calculated, monomorphic SNPs are filtered and pairwise relatedness is
estimated. Given SNP genotypes and a value for the heritability, variance
inflation λ is calculated. Additionally, the expected λ′ is estimated. Finally,
the script simulates phenotypes under the null and alternative hypothesis
and provides results regarding the T statistic. The R library “mvtnorm” is
required for sampling multivariate normally distributed phenotypes.
Parameters can be modified to simulate different scenarios. However, the
number of samples, the number of SNPs and the number of phenotype
realisations per SNP should be limited to reduce the computational
burden. For example, running the script on an Intel Xeon X5560 CPU (2.80
GHz) for synthetic family study 3 (SFS3) with parameter set f = 111,m = 2,
c = 3 (n = 999), 100000 SNPs, 1000 phenotype realisations per SNP and
1000 SNPs required 8.3 GB RAM and took <1 min for genotype sampling,
8 min for estimation of pairwise relatedness, 21 min for λ estimation and
about 2.5 h for each of the phenotype simulations under the null and
alternative hypothesis, respectively. (R 6 kb)

Additional file 2: Theoretical background. This file provides the
theoretical background and derivations of equations presented in the
manuscript. (PDF 231 kb)

Additional file 3: Maxima script for deriving expected variance inflation.
This script can be used with MAXIMA [30] for deriving formulae for the
expected variance inflation λ′

f ;m;c for synthetic family studies. (WXM 1 kb)

Additional file 4: Preparation of HapMap data. This document provides
details regarding the filtering of samples and SNPs of the HapMap data.
(PDF 97 kb)

Additional file 5: Pairwise relatedness estimates of HapMap samples. This
file contains a matrix of pairwise relatedness estimates resulting from the
preliminary analysis of 174 HapMap CEU samples. Sample identifiers for the
pair of individuals under consideration are given in the first row and in the
first column, respectively. A value of -1 occurs if pairwise relatedness could
not be estimated because of disjoint SNP sets. (CSV 571 kb)

Additional file 6: Sample selection of HapMap genotype data. This file
provides annotations for 174 HapMap CEU samples. The columns FID
(family identifier), IID (individual identifier), dad, mom, sex (1=male,
2=female), pheno (always 0), population (always CEU) correspond to the

columns of relationships_w_pops_121708.txt filtered for CEU samples as
provided by HapMap. The column ctr contains a unique trio identifier and
equals NA when the sample does not belong to a complete trio family. The
reason for exclusion is provided where applicable, otherwise NA is stated
and the sample is included in our study. (CSV 8 kb)

Additional file 7: SNP selection of HapMap genotype data. This file
contains a list of HapMap SNP identifiers used for our analyses. rsid
(reference SNP identifier) refers to the first column of the genotype data
files as provided by HapMap. (CSV 10000 kb)

Additional file 8: Perl script for converting HapMap genotype data. This
Perl script requires the sample list of Additional file 6, the SNP list of
Additional file 7 and HapMap raw data. The HapMap project website is not
available anymore, however, genotype data can still be retrieved from
ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/2010-08_phaseII+III/. The
converted genotypes are saved in a CSV file. Folder and file locations must
be adapted before running the script. Running the script on an Intel Xeon
X5560 CPU (2.80 GHz) required 800 MB RAM and took about 5 minutes.
(PL 2 kb)

Additional file 9: Comparison of different degrees of heritability. This file
contains additional tables with inflation results for different degrees of
heritability. (PDF 75 kb)

Additional file 10: Comparison of methods for modelling the polygenic
effect. This file provides additional tables with inflation results for different
polygenic models. (PDF 67 kb)

Additional file 11: Comparison of different relatedness estimators. This
document summarizes different methods for estimating relatedness,
presents corresponding inflation results and shows the impact of small
allele frequencies on relatedness estimates. (PDF 140 kb)
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