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Immune checkpoint inhibitors (ICIs) are widely used to treat various

malignancies. Although the gut microbiome is known to influence the effi-

cacy of ICIs on epithelial tumors, the functional interactions between gut

taxa and colonic mucosa remain poorly understood. Here we performed

transcriptomic profiling and 16S rRNA sequencing to investigate the rela-

tionships between mucosal gene expression and microbial composition with

ICI responses and gastrointestinal immune-related adverse events (GI

irAEs). In responders, genes related to DNA repair and cell cycle signa-

tures were enriched in responders whereas signatures related to innate

immune response, NFAT and IFN-c signaling pathways were enriched in

nonresponders. Gut microbial composition revealed an association between

moderate GI irAE and favorable response to ICI therapy. Favorable thera-

peutic responses to ICI and GI irAE treatments were associated with taxa

classified as Enterobacteriaceae and were related to ribonucleoprotein com-

plex biogenesis, cytokine-mediated signaling pathway, tRNA metabolic

process, and ribonucleoprotein complex assembly in the colon. These find-

ings open new perspectives for improving the efficacy and safety of cancer

immunotherapy.
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1. Introduction

Monoclonal antibodies targeting immune checkpoints

CTLA-4, PD-1 and PD-L1, referred to as immune

checkpoint inhibitors (ICIs), have become a new

standard of care in a wide range of cancers [1–4].
ICIs are distinguished from other targeted therapies

and chemotherapies in their mechanism of action.

ICI enhances T-cell antitumor activity while tradi-

tional antineoplastic agents exert direct cytotoxic

effects [5]. While longer survival is expected in some

patients treated with ICIs, these agents have also

manifested a new class of immune-related adverse

events (irAE), of which gastrointestinal (GI) irAE

are among the most frequent and severe [6]. The

onset of GI-irAE has been attributed to the prolifer-

ation and accumulation of cytotoxic CD8 effector

cells [7]. However, there is no clear evidence linking

the associations between irAE and antitumor effects

of ICI.

Commensal microbes are important for well-being

and aid in regulating homeostasis and maintaining

healthy immune systems. Gut microbes play particu-

larly important roles and are greatly affected by and

contribute to many pathologies [8]. Moreover, longi-

tudinal studies have shown that microbial composi-

tion is altered during inflammatory bowel diseases

including ulcerative colitis and this dysbiosis may

contribute to further disease progression [9,10].

Recent studies have also described the effects of gut

microbes on the efficacy and toxicity of ICIs [11,12].

In inflamed regions, higher abundances of Faecalibac-

terium prausnitzii or Akkermansia muciniphila are

associated with an enhanced antitumor response to

ICIs [13]. Additionally, recent studies showed that

modifying gut microbes could aid in overcoming

resistance to ICI [14,15]. Thus, we hypothesized that

associations between irAE grade, ICI efficacy, and

microbial composition of colon mucosa exist, and if

revealed could further enhance our understanding of

ICI.

To achieve our aim, we studied recently diagnosed

GI irAE patients who had not yet received drug

treatment for colitis and used diagnostic tissue biop-

sies and fecal samples for whole transcriptome and

16S rDNA sequencing analyses. Here, we survey

microbial composition and the transcriptomic land-

scape of the gut mucosa and perform comprehensive

integrative analyses to reveal associations between

mucosal microbiota and gene expression profiles with

ICI responses.

2. Methods

2.1. Patients and samples

Patients diagnosed with GI irAEs (n = 17) during or

after treatment of ICI between March 2017 and March

2019 were included in this study. Clinical, biochemical,

endoscopic, and radiological evaluations were per-

formed during follow-up at the physician’s discretion.

Endoscopy was performed, and biopsies were taken

from inflamed mucosa for the analysis of gut mucosal

microbiota and gene expression profiling. Fecal sam-

ples were obtained from 12 GI irAE patients. All sam-

ples were immediately dry frozen in nitrogen and

further kept at �80 °C before analysis.

GI irAEs were assessed according to the Mayo

endoscopic subscore (1: mild, 2: moderate, 3: severe

colitis) [16]. The outcome of GI irAE was determined

according to response to medical treatments including

glucocorticoid and anti-TNF agents. In the ‘in remis-

sion’ group, medical treatments induced clinical remis-

sion [16], while in the ‘long-lasting colitis’ group,

patients with GI irAEs were refractory to corticos-

teroid and TNF blockade and did not achieve clinical

remission.

Tumor response was assessed in patients with mea-

surable lesions according to the guidelines of the

Response Evaluation Criteria in Solid Tumors version

1.1. Responders were defined as patients who achieved

a best overall response of complete response (CR),

partial response (PR), or stable disease (SD), while

nonresponders were defined as those patients who

showed progressive disease (PD).

The study was performed in accordance with the

Declaration of Helsinki, with the approval of the ethi-

cal committee of Kindai University Faculty of Medi-

cine (#28-224). All patients provided informed consent

prior to enrollment.

2.2. Transcriptome analysis

DNA and RNA were extracted simultaneously from

the same biopsy samples using the AllPrep DNA/

RNA Mini Kit (Qiagen, Valencia, CA, USA). Gene

expression was evaluated in inflamed mucosa (n = 14)

of GI irAE patients using the AmpliSeq Transcriptome

Human Gene Expression Kit (Thermo Fisher Scien-

tific,Foster City, CA, USA). Pooled libraries were sub-

jected to the Ion Chef System (Thermo Fisher

Scientific) for template preparation. Libraries were
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then loaded onto an Ion 550 chip and sequenced with

the Ion S5 sequencing system. The ION TORRENT SUITE

version 5.10 software (Thermo Fisher Scientific) was

used to map read. Raw read-count data files were con-

verted to RPKM (reads per kilobase per million reads)

for read-count normalization. Differential gene expres-

sion (DGE) analysis was performed by Transcriptome

Analysis Console (TAC) software (Thermo Fisher Sci-

entific) with fold change differences > 2.0 or < �2.0.

Statistical tests were performed using ANOVA with a

P value < 0.05 as the significance cutoff, unless other-

wise stated. For prediction modeling, gene expression

data were filtered and preprocessed as previously

described [17]. Summary workflow for transcriptome

analysis is shown in Fig. S1.

2.3. Microbiome analysis

DNA derived from mucosal samples and feces were

processed for 16S rRNA gene amplicon sequencing

using the V2-V4 and V6-V9 16S rRNA region for

single-end sequencing on the Thermo Fisher Scientific

Ion S5 platform (Thermo Fisher Scientific) following

the manufacturer’s instructions. Briefly, library prepa-

ration for the V2, V3, V4, V6, V7, V8, and V9 16S

rRNA region was amplified, followed by end repair

and barcoded-adaptors ligation using the Ion Plus

Fragment Library Kit (Thermo Fisher Scientific). The

pooled library was then sequenced as single-end 400-

bp reads using the Ion S5 sequencing kit (Thermo

Fisher Scientific). The generated FASTQ files were

analyzed using the CLC GENOMICS WORKBENCH version

12.0 (Qiagen) with the Microbial Genomics Module

(Qiagen). Sequence reads were clustered into opera-

tional taxonomic units (OTUs) with a 99% identify

threshold against the Greengenes database, version

13.8. OTUs were analyzed using CALYPSO (version 8.84)

[18]. OTU abundance was normalized with

cumulative-sum scaling (CSS) and log2 transforma-

tion. Samples with a total read count < 1000 were fil-

tered yielding 2469 OTUs for subsequent analyses.

Hierarchical, correlation, network, similarity, and bio-

marker analyses were carried out with Calypso Hierar-

chical radial trees were drawn using an ensemble

method based on multiple similarity measures that

combined Bray–Curtis dissimilarities with Pearson’s

correlation and Spearman’s rho. P values obtained for

the multiple similarity/dissimilarity measures were

combined using the Simes method and corrected for

multiple testing by the FDR. Taxa similarity were

determined by Redundancy analysis (RDA) using the

Bray–Curtis distance metric and significance was deter-

mined using the permutation test for constrained

redundancy analysis. Taxa associated with response to

immune checkpoint inhibition were identified using the

linear discriminant analysis (LDA) effect size method

(LEfSe) implemented in Calypso using default settings

(Kruskal–Wallis test a = 0.05, threshold on the loga-

rithmic LDA score for discriminative features = 2.0).

Quantitative heat tree plots were generated in Micro-

biomeAnalyst with the R package ‘metacoder’ using

median abundance between groups at the species level

and statistically significant taxa (P < 0.05) were identi-

fied using the Wilcoxon Rank Sum test [19]. Summary

workflow for microbiome analysis is shown in Fig. S1.

2.4. Machine learning analysis

Machine learning was carried using Orange an open-

source data mining suite [20]. Data filtering was per-

formed using the built-in filter widget to remove low

count genes with a ~ 30% threshold and after median

normalization was applied, the top 5000 most variable

genes, based on dispersion, were selected. For the selec-

tion of classification features, differentially expressed

genes (DEGs) were selected using a two-tailed t-test

and correction for false positive was performed by

resampling using the permutation test with a = 0.05

and 50 permutations. The rank widget in Orange was

used to select the top 24 ranked genes correlated to ICI

response based on an internal chi-square scoring met-

ric. For the integrative analyses, 5000 genes and 2469

OTUs from the previous analyses were pooled a single

data set and the top 2000 features were selected based

on ANOVA. We deemed 2000 features were an optimal

number to provide classification accuracy while gener-

ating appropriately sized clusters of genes and OTUs

that could be used to extract biological significance. To

obtain these clusters, the selected features were sub-

jected to Louvain Clustering in Orange as an unsuper-

vised method to identify and extract related

communities from a large and complex network. The

cluster index score was used to as a data attribute and

metaclusters were aggregated based on their correlation

(Pearson) and Euclidean distance. Distributed Stochas-

tic Neighbor Embedding (t-SNE, perplexity = 90, PCA

components = 8, and using normalized data by sub-

tracting the column mean and dividing by the standard

deviation), FreeViz (vector-based projection), Multidi-

mensional Scaling (MDS, using PCA (Torgerson) ini-

tialization), and Isometric maps (Isomap, set to

neighbors = 2) were generated in Orange and used for

data visualization. Hierarchical clustering and correla-

tion distance maps for the integrative analyses were

generated with Orange software and Morpheus

(https://software.broadinstitute.org/morpheus).
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2.5. Gene ontology and functional analysis

Functional analysis of canonical pathways of differen-

tially expressed genes was performed with Metascape

(http://metascape.org, [21]). For gene ontology (GO)

enrichment analysis, we first identified all statistically

enriched terms, accumulative hypergeometric P values,

and enrichment factors were calculated and used for fil-

tering. Remaining significant terms were then hierarchi-

cally clustered into a tree based on Kappa-statistical

similarities among their gene memberships. We then

selected a subset of representative terms from this clus-

ter and convert them into a network layout. Terms

with a similarity score > 0.3 are linked by an edge (the

thickness of the edge represents the similarity score).

The network is visualized with CYTOSCAPE (version

3.1.2) (https://cytoscape.org/). Then, 0.3 kappa score

was applied as the threshold to cast the tree into term

clusters. The Molecular Complex Detection (MCODE)

algorithm was then used on the relevant network to

identify neighborhoods of densely connected proteins.

GO enrichment analysis was applied to each MCODE

network to assign biological relevance to the network

component. Gene-transcription factors interaction

analysis was performed on gene list enrichments to

identify upstream transcription factors in the Tran-

scriptional Regulatory Relationships Unraveled by

Sentence-based Text-mining database (TRRUST).

3. Results

3.1. Patient characteristics

In total, 17 patients who developed diarrhea and endo-

scopic findings of GI irAE were evaluated (Table 1).

After a diagnosis of ICI-induced colitis, cancer

immunotherapy was stopped in all patients. In 15 of

the 17 patients, medical treatments, including gluco-

corticoid and anti-TNF agents, induced clinical remis-

sion (in remission group). In contrast, three patients

were refractory to corticosteroid and TNF blockade,

of whom Patient #14 had perforation, Patient #3

underwent ileostomy due to resistance to glucocorti-

coid, anti-TNF agents, cyclosporin treatment, and

cytoapheresis, and Patient #8 developed long-lasting

colitis (> 1 year) with steroid dependency: the inability

of a patient to taper and discontinue corticosteroid

without flaring (long-lasting colitis group). In Patient

#2, the outcome of ICI-induced colitis could not be

evaluated due to rapidly progressive cancer.

Response to ICI therapy was evaluated in 17

patients. Best responses of PR, SD, and PD were

observed in 4, 7, and 6, patients, respectively. The fea-

sibility of resuming ICI in patients who discontinue

treatment due to irAEs has been debated [22]. In our

study, cancer immunotherapy was restarted after the

induction of remission in 4 patients and colitis

recurred in all the patients within 6 months (1–
5 months) after the restart of ICI.

3.2. Gut transcriptomes associated with

favorable response to cancer immunotherapy

Our first goal was to develop a model that utilized

transcriptomic data to predict favorable responses to

ICI. For this purpose, we used machine learning

methods to aid us in identifying informative genes

that could differentiate responders (Resp) and from

nonresponders (NonResp). After initial filtering and

feature extraction, 62 genes were selected as candi-

date classification features (two-tailed t-test,

a = 0.05) and yielded distinct clustering between

responder and the nonresponder groups (Fig. 1A).

From this set, we used a machine learning algo-

rithm to ranked genes based on their correlation to

ICI response and were able to reduce the set of

data to the 24 top ranked genes (Fig. 1B). Of note,

expression profiling with the 62-gene signature was

not associated with other clinical features such as

gender, colitis activity, colitis outcome, primary can-

cer, and ICI used (Fig. S2). Lastly, we used a mul-

tivariate visualization approach to observe the

relationships of the genes that are more important

for classification (Fig. 1C).

We next aimed to characterize the functional differ-

ences between Resp and NonResp. For this, we

selected the top 188 differentially expressed genes and

inferred their biological function-based on gene set

enrichments (Fig. 2A). Many of the enriched terms

associated with differentially expressed genes were

associated with various immune functions including

T-cell activation, Th1 and Th2 cell differentiation,

and regulation of cytokine production (Fig. 2B). Sta-

tistically significant associations of GO terms and

canonical pathways associated with ICI response are

shown in Fig. 2C. We also used ChiP-X enrichment

analysis (ChEA3) to identify putative transcription

factors regulating the 188 genes. The top 18 transcrip-

tion factors based on cumulative weighted mean tran-

scription factor ranks of integrated libraries are

shown in Fig. 2D.
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3.3. Survey of gut microbial composition and its

association to clinical features in gastrointestinal

immune-related adverse event (GI irAE)

We next surveyed the gut microbiomes from the corre-

sponding rectal inflamed mucosa samples collected as

biopsies. We a used a constrained analysis approach to

assess the influence of GI irAE and response to ICI on

microbial variation and identified response to ICI ther-

apy as the factor most likely to be associated with bac-

terial composition (Fig. 3A and Fig. S3A). Further

analysis of the top 100 most abundant taxa revealed

three distinct clusters of correlated taxa (Fig. 3B).

Principal coordinate analysis of taxa using Pearson

correlation as a distance metric associated cluster C to

moderate colitis and induction of remission (Fig. 3C

and Fig. S3B). Interestingly, many of the taxa enriched

in cluster C, belong to the family Enterobacteriaceae,

and included OTUs classified as Shigella flexneri,

Citrobacter, Klebsiella pneumoniae, Enterobacter cloa-

cae, and other unclassified Enterobacteriaceae

(Fig. S3B,C). We used linear discriminant analysis

effect size (LEfSe) to identify relevant taxa that were

associated with or could serve as potential biomarkers

for response to ICI therapy (Fig. 3D) and induction of

remission of GI irAE (Fig. 3E).

We also examined fecal bacterial composition to deter-

mine whether relationships between responses to ICI

therapy and GI irAE exist. Overall fecal bacteria showed

compositional differences between outcomes of GI irAE

and tended to be correlated with the severity of GI irAE

and ICI outcome (Fig. S4A). While we did note some

Table 1. Patient characteristics.

Age Sex

Primary

cancer ICI

Time to

onset

(month)

Colitis

activity

Treatment

for colitis

Outcomes

of colitis

Restart

of ICI

Time to

relapse of

colitis

Response

of ICI

Other

irAE

#1 64 f Lung Pem 7 Mild PSL In

remission

No N.A. PD Pituitary,

Liver

#2 61 f Ovary Nivo 4 Moderate PSL N.E. Yes 1 month PD Skin

#3 63 m Lung Pem 3 Severe PSL, IFX,

CyA

Ileostomy No N.A. SD None

#4 43 m Kidney Nivo 3 Moderate PSL In

remission

Yes 5 months SD None

#6 64 m Lung Pem 2 Mild PSL In

remission

No N.A. PD None

#7 79 m Lung Pem 3 Severe PSL In

remission

No N.A. SD None

#8 70 m Lung Nivo 3 Mild PSL Refractory Yes 5 months SD None

#9 71 m Lung Pem 6 Moderate PSL In

remission

No N.A. PR Lung

#10 62 f Lung Nivo 3 Mild Others In

remission

No N.A. PD None

#11 70 m Lung Nivo 3 Moderate PSL In

remission

No N.A. PR Lung

#12 45 f Stomach Nivo 1 Mild Others In

remission

No N.A. PD None

#13 52 m Unknown Nivo 4 Mild PSL In

remission

No N.A. PR Brain

#14 72 m Stomach Nivo 10 Moderate PSL, IFX Perforation No N.A. SD None

#15 70 m Lung Nivo 3 Mild PSL In

remission

No N.A. PR None

#16 70 m Kidney Nivo+Ip 1 Moderate 5-ASA In

remission

No N.A. SD None

#17 69 m Lung PDL1 6 Mild PSL In

remission

No N.A. PD None

#18 74 m Kidney Pem 6 Moderate Others In

remission

Yes 2 months SD None

5-ASA, 5-amin-2-hydroxybenzoic acid; CyA, cyclosporine; f, female; IFX, infliximab; Ip, ipilimumab; m, male; mo, month; mo, month; N.A.,

not applied; Nivo, nivolumab; PD, progressive disease; PDL1, anti-PDL1 antibody; Pem, pembrolizumab; Pituitary, pituitary gland; PR, partial

response; PSL, prednisolone; SD, stable disease.
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clustering of correlated taxa, there was no clear correla-

tion to ICI therapy and GI irAE severity and outcomes

(Fig. S4B). Collectively, our findings indicate that

mucosal microbial composition is closely related to out-

comes from ICI therapy and link moderate colitis to

favorable outcomes for ICI andGI irAE treatments.

All genes

Gene filtering

Data processing 
and gene selection

14 289 genes

Biomarker selection

DEG T-Test 

5000 genes

Top 62 genes

A B

C

Resp

NonRespt-SNE-x

t-S
N

E
-y

Resp

NonResp

Resp
NonResp

–30 –20 –10 0 10 20 30 40

–40

-20

0

20

40

–60

RespNonResp

Fig. 1. Prediction model that differentiates responders (Resp) and nonresponders (NonResp) to cancer immunotherapy. Gene expression

data from next-generation sequencing of colon from 14 patients were used for prediction modeling. (A) Summary of feature extraction for

prediction modeling and t-SNE visualization with color grouping for patients based on the expression patterns of top 62 differentially

expressed genes. (B) Clustering analysis of 24 genes selected for prediction modeling. Unsupervised hierarchical clustering using Euclidean

distance and average linkage. (C) Multivariate visualization using FreeViz indicates the 24 most informative genes associated with favorable

therapeutic response. DEG, differentially expressed gene; Gp, group; NonResp, nonresponders; Resp, responders.
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3.4. Integrative analysis of the microbiome and

transcriptome in gastrointestinal immune-related

adverse event (GI irAE)

Thus far, our findings indicate that mucosal microbes

are closely linked to host immune responses and GI

irAEs and may thus be more likely to interact with the

host and influence immune response. To further

explore this notion, we used machine learning

approaches to explore the transcriptomic and metage-

nomic landscape of clinical features of GI irAEs. Our

approach consisted of a supervised approach to extract

the top 2000 relevant features (genes and OTUs) from

a pool of the top informative genes and OTUs

(Fig. 4A and Table S1). Unsupervised clustering of

this data set, using Pearson’s distance, revealed seven

correlated clusters (Fig. 4B). We used greedy clustering

to identify seven clusters of highly interconnected

mucosal genes and OTUs that formed two correlated

metaclusters (Fig. 4C,D). Unsupervised clustering

showed that Metacluster A (containing clusters 1 and

3) was associated with responders to ICI, whereas

Metacluster B (consisting of clusters 2 and 4–7) was

correlated with nonresponders (Fig. 4E).

We next performed functional enrichment analysis

to gain insights into molecular regulatory mechanisms

related to favorable response to ICI. Enriched terms

with the best P-values were selected and rendered into

networks where terms with a similarity > 0.3 are con-

nected by edges. Enrichments of these network clusters

were correlated to the respective metaclusters

(Fig. 5A). Among the terms enriched in responders

were ribonucleoprotein complex biogenesis, cytokine-

mediated signaling pathway, tRNA metabolic process,

and ribonucleoprotein complex assembly (Fig. 5B).

We next examined microbial composition in the meta-

clusters after unifying taxa. Of these, 17.9% (27/151)

were unique to Metacluster A and 62.9% (95/151)

were unique to Metacluster B (Fig. 5C).

Finally, biomarker selections were performed using

the mean difference to identify features that would be

most like to be associated with cluster stratification

(Table S2). Unsupervised clustering of selected features

(genes and OTUs) was performed to explore specific

associations with cluster membership and clinical fea-

tures. Clear clustering was observed between ICI

responders and nonresponders (Fig. 5D). Interestingly,

high expression of cluster three was associated with

patients that achieved PR and had remission of colitis

(Fig. 5D). This cluster was predominantly composed

of various taxa belonging the Enterobacteriaceae fam-

ily (46 of 51, 90.2%).

4. Discussion

Immune checkpoint blockade targeting CTLA-4 and

PD-1 has become a new standard of care, referred to

as cancer immunotherapy. In contrast to the direct

cytotoxic action of traditional antineoplastic agents,

ICIs enhance antitumor T-cell activity, which leads to

a systemic loss of tolerance, resulting in the occurrence

of irAEs. Our study shows that mucosal microbial

composition is associated with ICI response and GI

irAEs. Findings from our integrative analysis also pro-

vide further evidence linking microbial composition to

host immune responses and contribute insights into

possible molecular events induced by ICI and explore

potential treatment strategies to manage GI irAEs.

Given the functional interactions between the gut

and systemic immune responses, we hypothesized that

Fig. 2. Comparison of gene expression signatures of the rectal mucosa of GI irAE patients between responders and nonresponders to

cancer immunotherapy. Gene expression data from next generation sequencing of colon from 14 patients were used for prediction

modeling. (A) Summary of feature extraction for prediction modeling, t-SNE visualization based on the 188 genes, and unsupervised

hierarchical clustering using Euclidean distance and average linkage. (B) Networks of enriched terms among the top 188 differentially

expressed genes (DEGs) between responders (Resp) and nonresponders (NonResp). Similar nodes are connected by edges, and clusters

are coded by color. (C, D) Heat map of enriched terms across input genes (C) and transcription factors (D) in responders. Colors indicate P

values. DEG, differentially expressed gene; Gp, group; NonResp, nonresponders; Resp, responders.

Fig. 3. Interrogating the gut microbiome of immunotherapy-induced colitis. Operational taxonomic unit (OTUs) were clustered from 16S

sRNA in colonic tissues from 14 patients. (A) Supervised redundancy analysis (RDA) at the species level. (B) Correlation heat map showing

the ensemble similarity distance based the top 100 most abundant species. (C) Correlation networks of taxa according to their association

to severity and outcome of colitis and response to immunotherapy. (D) Bar plot of the top 27 OTUs with an absolute LDA ≥ 2 associated

with response to cancer immunotherapy identified using the linear discriminant analysis effect size method (LEfSe). (E) Bar plot of the top

16 OTUs with an absolute LDA ≥ 2 associated with the outcome of irAE (in remission vs. long-lasting colitis groups) identified using the

linear discriminant analysis effect size method (LEfSe). LDA, linear discriminant analysis; PC1, first principal component, RDA1, redundancy

analysis 1.
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gene expression profiling analysis of intestinal mucosal

samples obtained from cancer patients could be used

to predict the antitumor response to ICIs. We have

identified a candidate gene set associated with favor-

able therapeutic response to ICI. Identification of a

panel of genes that is predictive of the therapeutic

P=0.150
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response would aid in developing new strategies to

improve ICI efficacy and clinical outcomes, and how-

ever, further validation studies are required. We also

hypothesized that an association between GI irAE and

ICI efficacy exists. Notably, nine of the 11 responders

experienced moderate-to-severe colitis, whereas five of

six nonresponders experienced mild colitis activity.

However, there was no difference in outcomes of coli-

tis treatments between responders and nonresponders.

Our observations were consistent with other reports

showing positive correlations between ICI responses

and the development of GI irAEs [23]. Interestingly,

our functional enrichment analysis showed that vari-

ous genes were associated with immune response pro-

cesses, including T-cell migration, and T-cell

activation, were enriched in the intestinal mucosa of

patients with unfavorable therapeutic response to ICI.

While these results seem to be paradoxical, they indi-

cate that extent of immune responses in the intestinal

mucosa is not parallel to that in the tumor microenvi-

ronment and could be influenced by other factors.

The gut microenvironment greatly influences the

function of the host systemic immune system of the

host [24]. Recent studies have described the effects of

gut microbiota on the efficacy and toxicity of ICIs

[11,12]. At inflamed regions, high proportions of Fae-

calibacterium prausnitzii or Akkermansia muciniphila

are associated with an enhanced antitumor response to

ICIs [13]. Given that these bacteria augment intestinal

inflammation, the previous study suggests that

enhanced immune reactions in the gut are associated

with increased efficacy to ICI. However, it is not clear

as to whether dysbiosis precedes or follows intestinal

inflammation. Bacterial composition at inflamed

regions might represent dysbiosis resulting from

inflammation. Notably, our metagenomic profiling

revealed an association between moderate colitis and

favorable outcomes to ICI and colitis therapy in

mucosal but not fecal samples. Fecal microbial compo-

sition tended to be more closely correlated with colitis

rather than ICI response. In colonic mucosal samples,

an unexpected link was found between Enterobacteri-

aceae, ICI response and remission of colitis. Enter-

obacteriaceae represent a large family of

Proteobacteria and is composed of Gram-negative bac-

teria that includes beneficial commensal and patho-

genic organisms. While Proteobacteria have been

shown to be increased in Crohn’s disease patients,

these are not increased in patients with ulcerative coli-

tis [25]. Animal studies have shown that Enterobacteri-

aceae bloom in experimental models of inflammatory

bowel disease [25,26]. Therefore, it may be plausible

that increased levels of Enterobacteriaceae could be a

consequence of GI irAE. However, the fact that these

are not abundant in nonresponders indicates a broader

interaction between certain taxa in the host gut micro-

biome and antitumor immunity.

The immune system is modulated by the dynamic

interactions occurring between the intestinal micro-

biome and the host. The importance of interactions

between them in the pathogenesis of cancer has

become increasingly clear [24]. To better understand

the role of the interactions in GI irAE, we used a com-

prehensive integrative approach to analyze 16S rRNA

Fig. 4. Integrative analysis of the microbiome and transcriptome in gastrointestinal immune-related adverse events. (A) Overview of feature

selection after filtering for variance and multidimensional scaling (MDS) plot showing sample similarity based on selected features.

Connected nodes show the greatest degree of similarity. (B) Correlation matrix heat map showing the Euclidean distance between the 2000

selected features. (C) t-SNE plot showing similarly expressed clusters generated with the Louvain clustering algorithm. (D) Clustered

Pearson correlation heat map and isometric map (Isomap) illustrate metaclusters agglomeration. (E) Unsupervised hierarchical clustering

using Euclidean distance and average linkage, and bar plot of cluster index scores. Colored bars correspond to cluster and beige bars

indicate the -log P value, the red dotted line represents the P = 0.05 reference, and the gray dotted line represents the reference for

NonResp. 5-ASA, 5-amin-2-hydroxybenzoic acid; CyA, ciclosporin; F, female; ICB, immune checkpoint blockade; ICI, immune checkpoint

inhibitor; IFX, infliximab; Ipi, ipilimumab; M, male; Nivo, nivolumab; NonResp, nonresponders; PD, progress disease; Pembro,

pembrolizumab; PR, partial response; PSL, prednisolone; Resp, responders; SD, stable disease; t-SNE, t-distributed stochastic neighbor

embedding; Unk, cancer of unknown origin.

Fig. 5. Molecular regulatory mechanisms related to favorable response to immune checkpoint inhibition. (A) Network map of enriched

ontology clusters and metacluster association. Similar nodes are connected by edges and clusters are coded by color. (B) Heat map of top

enriched terms across input genes for metacluster A (MCA) and metacluster B (MCB), colors indicate P values. (C) Venn diagram and table

showing species-level membership of taxa according to metacluster. (D) Unsupervised hierarchical clustering using Euclidean distance and

average linkage for individual features and their relationship clinical features. 5-ASA, 5-amin-2-hydroxybenzoic acid; CyA, ciclosporin; F,

female; ICB, immune checkpoint blockade; IFX, infliximab; Ipi, ipilimumab; M, male; Nivo, nivolumab; NonResp, nonresponders; PD,

progress disease; Pembro, pembrolizumab; PR, partial response; PSL, prednisolone; Resp, responders; SD, stable disease.
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gene amplicon sequencing with whole transcriptome

analysis. By doing so, we have identified modules and

networks of similarly expressed genes and intestinal

microbes. Based on the integrative analysis of informa-

tive genes and OTUs, 7 distinct clusters and 2 meta-

clusters were identified. Favorable response to cancer

immunotherapy was found to be associated with the

increase in cell cycle, DNA repair, and regulation of

chromosome organization and the decrease in innate

immune response, cytokine production, myeloid leuko-

cyte activation, interleukin-12 (IL-12)/signal transducer

and activator of transcription 4 (STAT4) pathway,

and NFAT pathway in rectal mucosa. These results

suggest that a regenerative process in response to

immune reactions, rather than immune activity itself,

might be reflected in GI irAE of ICI responders. Con-

sistent with our previous result, Enterobacteriaceae

were prominent in responders. While this study pro-

vides link between certain taxa in the Enterobacteri-

aceae family and favorable responses to ICI, we

cannot establish a causal relationship and will require

further study. We also do not know to what degree

the associations from our mucosa analyses are exclu-

sive to active colitis.

5. Conclusion

This research highlights that both transcriptome and

microbiome are key factors in shaping the cancer

immunotherapy-induced colitis, which further

enhances our understanding of the host–microbiome

interactome involved in irAE pathogenesis. Notably,

data from this study shows are that the severity of col-

itis was associated with a greater objective response in

the irAE group suggesting that the moderate-to-severe

GI toxicities are likely to be associated with ICI

responses. Our integrative approach could be used to

build a model to predict therapeutic response to cancer

immunotherapy and our findings may be used develop

novel diagnostic and therapeutic modalities that could

enhance cancer immunotherapy and the management

of GI irAEs.
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Fig. S1. Summary workflow for transcriptome and

microbiome analysis.

Fig. S2. Clustering analysis of 188 genes selected for

prediction modeling. Heatmaps show unsupervised

hierarchical clustering using Euclidean distance and

average linkage for gender, colitis activity, colitis out-

come primary cancer, and immune checkpoint inhibi-

tor (ICI).

Fig. S3. The gut microbiome of immunotherapy-in-

duced colitis. (A) Species level redundancy analysis

(RDA) according to the severity of colitis. (B) Correla-

tion networks from Figure 3C showing representative

species in nodes according to cluster membership. (C)

Heat tree analysis showing the pairwise comparison of

taxa in non-responder and responder, and long-lasting

colitis and in remission. Labels represent statistically

significant taxa (Wilcoxon P value < 0.05) at the spe-

cies level.

Fig. S4. Overview of the fecal microbiome of

immunotherapy-induced colitis. (A) Supervised redun-

dancy analysis (RDA) at the species level. (B) Correla-

tion networks showing associations between the top

100 taxa and clinical features. Resp; responders, Non-

Resp; non-responders, IR; in remission, LLC; long-

lasting colitis.

Table S1. Data matrix of the top 2,000 differentially

expressed features between responders and non-respon-

ders.

Table S2. Data matrix of candidate biomarker features

associated with cluster stratification.
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