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Abstract

In human cells, DNA double-strand breaks are repaired primarily by the non-homologous end joining (NHEJ) pathway. Given
their critical nature, we expected NHEJ proteins to be evolutionarily conserved, with relatively little sequence change over
time. Here, we report that while critical domains of these proteins are conserved as expected, the sequence of NHEJ
proteins has also been shaped by recurrent positive selection, leading to rapid sequence evolution in other protein
domains. In order to characterize the molecular evolution of the human NHEJ pathway, we generated large simian primate
sequence datasets for NHEJ genes. Codon-based models of gene evolution yielded statistical support for the recurrent
positive selection of five NHEJ genes during primate evolution: XRCC4, NBS1, Artemis, POLl, and CtIP. Analysis of human
polymorphism data using the composite of multiple signals (CMS) test revealed that XRCC4 has also been subjected to
positive selection in modern humans. Crystal structures are available for XRCC4, Nbs1, and Poll; and residues under positive
selection fall exclusively on the surfaces of these proteins. Despite the positive selection of such residues, biochemical
experiments with variants of one positively selected site in Nbs1 confirm that functions necessary for DNA repair and
checkpoint signaling have been conserved. However, many viruses interact with the proteins of the NHEJ pathway as part of
their infectious lifecycle. We propose that an ongoing evolutionary arms race between viruses and NHEJ genes may be
driving the surprisingly rapid evolution of these critical genes.
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Introduction

DNA double-strand breaks are a particularly toxic form of DNA

lesion. Such breaks are repaired through several pathways, the

most well-studied being homologous recombination and non-

homologous end joining (NHEJ; reviewed in [1]). NHEJ is also

required for V(D)J recombination, which generates immunoglob-

ulin and T cell receptor diversity. Accordingly, mutations in NHEJ

genes have been linked to both cancer and immune deficiencies.

Given the central importance of these processes, NHEJ genes are

expected to have a low tolerance for mutations. Such a hypothesis

would be supported if sequences of NHEJ genes are stable and

relatively unchanging over evolutionary time.

In contrast to this expectation, a genome-wide analysis

uncovered NHEJ as one of the two functional pathways most

enriched for positive selection during Saccharomyces evolution [2].

Positive selection occurs when natural selection operates on an

advantageous mutation, driving an increase in its prevalence over

time, and sometimes leading to fixation of this mutation in the

species in which it arose. Because advantageous mutations

commonly involve a change in protein sequence, recurrent rounds

of positive selection can lead to relatively rapid protein sequence

evolution over time. Positive selection has been found to

predominantly affect genes in three functional classes: reproduc-

tion, immunity, and environmental perception (smell, taste, etc),

presumably because these processes are under strong selection for

constant adaptive change [3–10]. The intriguing observation of

positive selection in the NHEJ genes of Saccharomyces remains

unexplained, but could potentially be attributed to the fact that

NHEJ is not the major pathway for the repair of double-strand

breaks in yeast [11]. Relaxation of evolutionary constraints on

NHEJ genes in yeast species, due to their reliance predominantly

on the homologous recombination pathway, could have made

NHEJ genes vulnerable to competing evolutionary forces. In this

study, we have analyzed the molecular evolution of NHEJ genes in

primates, including humans, where NHEJ is the major pathway

for DNA double-strand break repair.

NHEJ is activated upon detection of DNA double-strand

breaks. After detection, NHEJ proteins enzymatically process

broken DNA ends to allow for efficient end joining. Repair is then

completed through the action of repair-specific DNA polymerases

and the NHEJ ligation complex, which fill in and seal the break

[1]. To analyze the selective pressures that have shaped the genes

of the human NHEJ pathway, we generated sequence datasets of
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primate orthologs from twenty simian primate species. We find

support for positive selection in five NHEJ genes: NBS1, CtIP,

Artemis, XRCC4 and POLl. Analysis of human polymorphism data

indicates that positive selection has also operated on XRCC4 in

modern humans. Crystal structures are available for the Nbs1,

XRCC4, and Poll proteins, and in all cases we find that amino

acid sites targeted by positive selection fall on protein surfaces. It is

well-established that rapidly evolving amino acid residues tend to

be found on the surfaces of proteins [12–14]. In previous studies

where the significance of these residues has been structurally or

functionally investigated, it has been shown that they modulate

protein-protein, protein-ligand, or protein-DNA interactions [15–

24]. However, we demonstrate biochemically that positive

selection in Nbs1 at one of the three residues identified has not

affected its physical interactions with other DNA repair compo-

nents. In the discussion, we propose that the positive selection of

NHEJ genes may be explained by the diverse viruses and genetic

parasites that interact with these proteins to promote their own

lifecycle.

Results

Sliding window analysis of selective pressures shaping
NHEJ genes

We utilized primate sequence datasets to study the evolutionary

history of human NHEJ genes. With human population genetic

data, evolutionary pressures can usually only be summarized for

chromosomal regions larger than a single gene. However, with

inter-species divergence data, resolution of evolutionary signatures

can be increased to the level of a single gene, and it is sometimes

possible to see the serial fixation of mutations in particular gene

regions or even codons. The limitation in these studies is the

number of available primate sequences. We first performed a

preliminary survey of the selective pressures that have shaped all of

the major genes of the NHEJ pathway (Figure 1A), so that we

could generate appropriate primate datasets for candidate genes

containing signatures suggestive of positive selection.

Five nearly complete primate genome projects are publicly

available: human, chimpanzee, orangutan, rhesus macaque, and

marmoset. Ten possible pairwise gene comparisons can be made

between these five species, but three pairwise comparisons

(human-orangutan, human-rhesus, and rhesus-marmoset) were

chosen that maximize divergence and minimize phylogenetic re-

sampling (Figure 1B). For each NHEJ gene, these three pairwise

gene alignments were constructed and analyzed with a custom

algorithm that calculates dN/dS in sliding windows along the

length of each gene [25]. The dN/dS ratio captures the ratio of

non-synonymous (dN; changing the encoded amino acid) to

synonymous (dS; silent) DNA mutations that have accumulated

since two genes last shared a common ancestor [26]. For most

protein-encoding genes, the observed number of non-synonymous

mutations is far less than the number of synonymous mutations

observed (dN/dS,1) [5]. This is because mutations which cause

an alteration in amino acid sequence are more likely to be

detrimental to proper protein folding and function, and are

therefore typically selected against (purifying selection). As

expected in a typical gene, dN is less than dS (dN/dS,1) for all

windows along the length of the NHEJ gene KU70 (Figure 1C).

Under positive selection, non-synonymous mutations are swept

through populations more quickly than neutral or nearly-neutral

synonymous mutations due to a selectable advantage that they

convey. After many such rounds, such a regime gives rise to the

dN.dS signature that is indicative of positive selection (dN/

dS.1). Sliding window analysis of dN/dS is useful when making

pairwise gene comparisons, as positive selection may be limited to

specific regions that are buried within a gene that is otherwise

conserved. In the case of XRCC4, sliding window analyses of

human-rhesus and rhesus-marmoset pairwise alignments highlight

the 39 end of the gene as having signatures of dN/dS.1 (p,0.001

and p,0.005, respectively; Figure 1C). In this region, human and

rhesus XRCC4 sequences differ by nine non-synonymous DNA

mutations and zero synonymous mutations. In the human–

orangutan comparison, a different region in the 59 end of the

gene shows a significant inflation of dN/dS above 1 (p,0.05). The

different location of this signal may indicate a unique selective

force that is operating specifically in the great apes.

Sliding window analyses have an inherent multiple testing

problem that is difficult to correct because of the non-

independence of tests (windows overlap) [27]. Nevertheless, we

have successfully utilized sliding window analysis as a pre-

screening tool in several previous studies [2,28]. As an ad hoc

method for eliminating some false positive signatures, we sought

genes with regions of dN/dS significantly.1 in at least two out of

three different pairwise primate comparisons made. All pairwise

comparisons for each NHEJ gene are shown in Figure S1, and the

maximum dN/dS value found in each comparison is summarized

in Figure 1D. We find that five out of thirteen NHEJ genes bear

significant regions of dN/dS.1 in at least two out of the three

primate comparisons made (highlighted in gray in Figure 1D).

Thus, we have identified preliminary signals of positive selection in

five candidate NHEJ genes: NBS1, Artemis, CtIP, POLl, and

XRCC4.

Analysis of extended primate datasets for candidate
genes

In order to verify positive selection with greater statistical rigor,

larger sequence datasets are required. We sequenced all five

candidate genes from 15 additional hominoid, old world monkey,

and new world monkey species. Despite the fact that no significant

windows of dN/dS.1 were observed in any of the pairwise

comparisons of XLF (Figure 1D), we also included this gene

because positive selection was previously reported in an analysis of

mammalian XLF sequences [29]. In total, 90 primate genes were

Author Summary

Because all cells experience DNA damage, they must also
have mechanisms for repairing DNA. When the proteins
that repair DNA malfunction, mutation and disease often
result. Based on their fundamental importance, DNA repair
proteins would be expected to be well preserved over
evolutionary time in order to ensure optimal DNA repair
function. However, a previous genome-wide study of
molecular evolution in Saccharomyces yeast identified the
non-homologous end joining (NHEJ) DNA repair pathway
as one of the two most rapidly evolving pathways in the
yeast genome. In order to analyze the evolution of this
pathway in humans, we have generated large evolutionary
sequence sets of NHEJ genes from our primate relatives.
Similar to the scenario in yeast, several genes in this
pathway are evolving rapidly in primate genomes and in
modern human populations. Thus, complex and seemingly
opposite selective forces are shaping the evolution of
these important DNA repair genes. The finding that NHEJ
genes are rapidly evolving in species groups as diverse as
yeasts and primates indicates a systematic perturbation of
the NHEJ pathway, one that is potentially important to
human health.

Adaptive Evolution of NHEJ Genes
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sequenced (6 genes, each from 15 species). We also re-sequenced

all genes that were incomplete in the available primate genome

projects (chimpanzee, orangutan, rhesus macaque, or marmoset).

Details of primate cell lines, cell culture, mRNA extraction, cDNA

library construction, and divergent-species PCR are given in the

materials and methods section and in Tables S1, S2, S3. The

resulting dataset for each gene is comprised of orthologs from 20

primate species that represent approximately 35 million years of

primate evolution [30].

The multiple sequence alignment generated for each gene was

analyzed for positive selection with the ‘‘codeml’’ program in

PAML [31]. The codeml program provides a maximum likelihood

framework for estimating dN/dS rates over the entire history of

primate evolution by integrating over all ancestral gene sequences

in the context of a phylogeny [32,33]. This program offers several

models for gene evolution, some where no codons are allowed to

evolve with dN/dS.1 (NSsites models M1a, M7 and M8a), and

others where positive selection of some codons is allowed (NSsites

models M2a and M8). A likelihood ratio test allows comparison of

positive selection models to null models. Results of all model

comparisons for each gene are provided in Tables S4, S5, S6, S7,

S8, S9, and the results of the M8a vs. M8 comparisons, using the

f61 model of codon usage, are summarized in Table 1. The null

model (M8a) is rejected (p,0.05) in favor of the model of positive

selection (M8) in four of these six genes: CtIP, Artemis, XRCC4, and

POLl. For NBS1, the null model was very nearly rejected

(p = 0.056). This analysis did not support a model of positive

selection in primate XLF (p = 0.59). As mentioned above, sliding

window analysis did not detect domains of positive selection in

XLF. In conclusion, we find strong support for positive selection in

four genes of the primate NHEJ pathway, a surprising finding

given the critical role that these proteins play in DNA repair.

Analysis of the 20-species NBS1 dataset yielded marginal

support for positive selection (p = 0.056; Table 1). However, we

noticed that several amino acid positions in the NBS1 protein

alignment had changed multiple times exclusively in hominoid

species (humans, great apes, and gibbons). Based on this, we

considered that positive selection of NBS1 may be specific to

hominoids. Indeed, analysis of NBS1 from only the hominoid

species resulted in improved statistical support for positive

selection (p = 0.048; Table 1), despite the fact that the analysis of

only eight sequences should greatly reduce statistical power. To

formally test the hypothesis of hominoid-specific positive selection,

we analyzed our datasets with ‘‘branch-site’’ models of evolution

[34]. This test allowed us to determine whether there are codon

positions evolving under positive selection specifically in the

hominoid clade. NBS1 was the only one of the six NHEJ genes for

which this hypothesis was supported (p,0.005; Table S10), and

support is robust under all models of codon usage (Table S11).

Because three total tests were performed on the NBS1 dataset, a

Bonferroni-corrected p-value can be calculated for the rejection of

the null hypothesis in the branch-sites test (p,0.015). Thus,

Figure 1. Sliding window analysis identifies five candidate NHEJ genes evolving under positive selection. A) A schematic of the
mammalian non-homologous end joining pathway is shown, illustrating the roles of all proteins included in this study. B) A cladogram shows the
relationship of the primate species used in the sliding window analysis. Branch colors correspond to the sliding window comparisons graphed in
panel C. C) Sliding window analysis of dN/dS along the length of KU70 and XRCC4. In each case, three pairwise sequence alignments were analyzed
(human - orangutan comparison in pink, human - rhesus comparison in green, and rhesus - marmoset comparison in orange). D) The table
summarizes the maximum dN/dS peak height found along the length of each pairwise sliding window comparison made. Asterisks indicate
statistically significant peaks (p,0.05). In gray highlight are the five genes with significant peaks in at least two out of three comparisons.
doi:10.1371/journal.pgen.1001169.g001

Adaptive Evolution of NHEJ Genes
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hominoid-specific positive selection is supported in NBS1.

Interestingly, the yeast ortholog of NBS1 (XRS2) was also identified

as being under positive selection during Saccharomyces evolution [2].

Specific codon sites that have been the target of recurrent

positive selection could be identified in the dataset for each NHEJ

gene (Table 1). Posterior probabilities of codons included in the

dN/dS.1 site class are commonly considered highly significant at

cutoffs as low as P = 0.90, and potentially even lower [35]. The

positions of these amino acid sites are summarized in Figure 2.

Crystal structures have been solved for Poll, XRCC4, and Nbs1,

allowing us to further analyze the patterns of positive selection in

these three proteins.

Positive selection of POLl
Poll is one of two DNA polymerases involved in the filling of

gaps formed during NHEJ [36]. Approximately 5% of the codons

in this gene were identified as evolving under positive selection,

with an average dN/dS value of 3.2 (Table 1). Eight specific

codons could be assigned to this class with high posterior

probability (P.0.90), and these sites are scattered across the

Table 1. PAML analysis of primate NHEJ genes.

Genea 2Dlb p-valueb dN/dSc % sitesc Codons with dN/dS.1d

NBS1 3.7 p = 0.056 5.3 1.1% G9

NBS1 hominoids only 3.9 p = 0.048 7.6 2.3% G9 , E185 , I531**

CtIP 8.4 p,0.004 2.1 14.8% C155, I187*, M235, T333*, I336, K355**, S365*,
C368, I399, L416*, N420*, G425**, M481, V486*,
K515*, G541**, T544, C554, S574*, S605*, D619,
L724, R730

Artemis 5.5 p,0.02 2.1 11% I83*, N250**, T365*, F411*, M418**, E439*, V463*,
G484*, S503*, T511, A576**, K610*, S626*

XRCC4 8.5 p,0.004 15 0.6% L243**

XRCC4 head domain (aa 1–115) 0.06 p = 0.81 not sig. not sig. -

XRCC4 CC domain (aa 116–203) ,0.01 p.0.99 not sig. not sig. -

XRCC4 C-term domain (aa 204–336) 21 p,0.001 8.7 8.1% R205**, Q211*, A216*, C218**, L243**, Q292

POLl 12 p,0.001 3.2 5.4% Q102*, S167*, A208*, P231*, E330, S381*, R441*,
R484**

XLF 0.29 p = 0.59 not sig. not sig. -

aEach analysis was performed on a dataset consisting of 20 primate sequences (for species list see Table S1), with the exception of the Artemis (due to deletions/missing
sequence in two species) and NBS1 ‘‘hominoids only’’ analyses. See Table S6 (Artemis) and Table S4 (NBS1) for lists of primates used in these analyses.

bTwice the difference in the natural logs of the likelihoods (2Dl) of the two models (M8a-M8) being compared. The p-value indicates the confidence with which the null
model (M8a) can be rejected in favor of the model of positive selection (M8).

cdN/dS value of the class of codons evolving under positive selection in M8, and the percent of codons falling in that class.
dCodons assigned to the class evolving under positive selection in M8 with a posterior probability .0.90 by naive empirical bayes (NEB) analysis (* p.0.95, ** p.0.99).

Coordinates correspond to the human protein.
doi:10.1371/journal.pgen.1001169.t001

Figure 2. Five proteins in the NHEJ pathway show signatures of positive selection. Domain diagrams are shown for the five NHEJ proteins
evolving under recurrent positive selection during primate speciation. The locations of specific amino acid positions under positive selection have
been marked on these diagrams (red tick mark indicates posterior probability of .0.95, black tick mark indicates posterior probability of .0.90).
Amino acid positions specifically discussed in the text are indicated.
doi:10.1371/journal.pgen.1001169.g002

Adaptive Evolution of NHEJ Genes
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linear protein sequence (Figure 2). The crystal structure of the

39 kDa Poll catalytic domain has been solved in complex with

substrate DNA, and this catalytic core is comprised of the fingers,

palm, thumb, and 8 kDa subdomains (Figure 3) [37]. Four of the

eight amino acid sites identified as being positively selected are

part of this catalytic core domain. All four (E330, S381, R441, and

R484) map to the outer surface of the three-dimensional structure

(red balls in Figure 3), with none of the sites being found within the

enzyme active site. Thus, residues under recurrent positive

selection fall on the protein surface, and mutations at these sites

are not predicted to directly affect catalytic activity.

Positive selection of XRCC4 during primate evolution
The NHEJ-specific ligase complex is composed of DNA ligase

IV (Lig4) along with the regulatory molecules XLF and XRCC4

[1]. The dN/dS.1 site class in XRCC4 is assigned a value of dN/

dS = 15, nearly double the value seen for any other NHEJ gene

(Table 1). Given the extreme value, only one codon, L243, can be

supported as a member of this class with high posterior probability

(P.0.99). To uncover more codons that may be evolving under

positive selection, a secondary analysis was performed on the three

XRCC4 structural domains: the N-terminal head domain, which

is involved in DNA binding, the coiled-coil stalk domain, which

includes the ligase binding domain, and the unstructured C-

terminal domain (residues 204–336). Positive selection is supported

only in the C-terminal domain (p,0.001; Table 1). Because four

tests were performed on the XRCC4 dataset, the Bonferroni-

corrected p-value for the observation of positive selection in the C-

terminal domain is p,0.004. In this domain, six codon sites,

including L243 identified previously, were identified as evolving

under positive selection (P.0.90), with support for five of these

being P.0.95. These codons were now collectively assigned a dN/

dS value of 8.7. All of these codons were also identified, albeit with

lower confidence, in the full-length XRCC4 analysis (Table S7).

The partial crystal structure of the XRCC4 dimer in complex

with its binding partner, Lig4, has been solved [38]. All six of the

identified codons map just downstream of the Lig4-binding

domain (red dots in Figure 4A), in a region of the protein where

the structure is predicted to transition from an alpha-helix to an

unstructured domain. This unstructured domain is not included in

the crystal structure, but has been represented in schematic form

for illustration. Strikingly, of the five sites supported at the 95%

confidence level, the first four (R205, Q211, A216, and C218) lie

within a 14 amino acid stretch of the protein (4% of the length of

the protein), and the fifth site (L243) lies just 25 residues

downstream of this cluster. We assessed the significance of this

clustering on the linear protein sequence by determining how

many times a random sampling of five sites fell in a cluster equal to

or smaller than the 39 amino acid region that contains the sites

under positive selection. Comparing this observed distance to a

null distribution (100,000 permutations) lends statistical support to

the hypothesis that these positively selected sites are clustered

(p = 0.0005). The functional significance of this ‘‘patch’’ of positive

selection is unknown. A protein alignment of primate XRCC4 in

this region is shown in Figure 4B. To the left, a cladogram shows

the relationship of the twenty primate species used in this study.

Amino acid positions evolving under positive selection are shown

in the alignment in gray. This unstructured C-terminal domain

has been shown to be dispensable for repair and V(D)J

recombination [39,40]. However, this domain also contains a

number of regulatory sites including a SUMOylation site and

several DNA-PKcs phosphorylation sites [41,42], as well as a

known cancer-linked mutation [43] (Figure 4B).

Positive selection of XRCC4 in modern humans
We investigated whether the NHEJ genes that have been

subject to ancient recurrent positive selection in simian primates

are also under recent local adaptation in humans. We examined

the five genes POLl, XRCC4, Artemis, NBS1, and CtIP for signals of

selection in the HapMap Phase II [44] data using a recently

published method, the Composite of Multiple Signals (CMS) [45].

By combining multiple tests, CMS increases resolution for

localizing signals of selection by up to 100-fold, and has a lower

false-positive rate than the component individual tests. We

examined SNPs within and surrounding each gene of interest,

with a window size of 100kb upstream and 100kb downstream of

each gene (see Materials and Methods). In the European

population, the CMS signal for XRCC4 is significant at a threshold

that yields a 0.1% false positive rate in simulations, and is one of

the top 60 strongest signals in the genome (Table S12). Applying

CMS to fine-map the region, we localized the signal to 83kb

entirely within the gene, suggesting that XRCC4 is a target of

recent local adaptation (Figure 5). In the other four genes, we did

not observe any signals significant at the same level as XRCC4, but

we do observe suggestive signals by the individual tests (in the top

1–5% tail genome-wide) in POLl and XRCC4 in the West African

population, and Artemis in the European population (Table S12).

As CMS is optimized to detect recent local adaptation in a single

population, these signals by individual tests may reflect selective

events outside of this model (e.g., selection on standing variation,

or selection of the same allele in multiple populations). Indeed, a

single allele of POLl has previously been reported to be under

positive selection in both Asian and Sub-Sahara African

populations [46]. Thus we find that several of the genes that have

been evolving under positive selection during primate evolution

also show evidence suggestive of recent positive selection in human

populations, with an especially strong signature identified in

XRCC4.

Figure 3. Residues under positive selection in Poll fall on the
protein surface. The co-crystal of the human Poll 39 kDa catalytic
domain in complex with a DNA substrate is shown (PDB 2BCQ) [37].
Four of the eight amino acid positions found to be under positive
selection (330, 381, 441, and 484; red globes) could be mapped onto
the structure. All four fall onto the outer surface of the protein and are
not predicted to interfere with the polymerase active site.
doi:10.1371/journal.pgen.1001169.g003

Adaptive Evolution of NHEJ Genes
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Figure 4. XRCC4, a component of the NHEJ ligase complex, shows a clustered signature of positive selection. A) A co-crystal of the
human XRCC4 homodimer (grey) in complex with a fragment of its binding partner Lig4 (blue) has been solved (PDB 1IK9) [38]. The ligase-binding
domain of XRCC4 is shown in yellow. The C-terminal domain of the 336 amino acid protein is unstructured and had to be truncated for crystallization.
This portion has been artificially indicated by the wavy black line. In the crystal structure, the two monomeric chains are different lengths. Chain A
(dark gray) is comprised of residues 1–211, while chain B (light gray) is comprised of residues 1–201. Two of the amino acids positions found to be
under positive selection (205 and 211; red globes) could be mapped only to the longer of the two monomers (chain A). Sites 216, 218, 243, and 292
could not be mapped to either monomer. Their approximate location is marked with a pink asterisks on the linear schematic of the C-terminal
domain. B) A linear domain diagram of XRCC4 is shown, with the approximate location of the amino acid sites under positive selection marked with
asterisks. An amino acid alignment in this region for the 20 primate species used in this study is shown, with residues found to be under positive
selection highlighted in gray. Residue 211, which was identified as being subject to positive selection, lies at the third position within the
SUMOylation consensus site (IKQE; denoted in red), with the neighboring lysine being SUMOylated [41]. Another amino acid position that has
evolved under positive selection, residue 243, is located just four positions upstream of a A247S human disease mutation which has been linked to
oral cancer susceptibility [43], and three positions downstream of the human Q240P polymorphism (these two sites are underlined in the human
amino acid sequence). Secondary structure predictions and confidence values (0, low; 9,high) were obtained with the PSIPRED server [93]. ‘‘H’’ and
the barrel shape denote the very end of the long alpha helix that is observed in the crystal structure. Downstream of this, ‘‘C’’ indicates the
unstructured region.
doi:10.1371/journal.pgen.1001169.g004

Adaptive Evolution of NHEJ Genes

PLoS Genetics | www.plosgenetics.org 6 October 2010 | Volume 6 | Issue 10 | e1001169



Essential repair-related interactions are conserved
despite positive selection of Nbs1

Nbs1 is part of the MRN complex, containing Mre11, Rad50,

and Nbs1. This complex is involved in DNA break detection, end

processing, and cellular signaling [47]. Mutations in NBS1 lead to

the autosomal recessive disease, Nijmegen breakage syndrome,

which is characterized by chromosomal instability. Three amino

acid positions were identified as evolving under positive selection

(Table 1). G9, Q185, and I531 are identified with P.0.90, with

support for I531 being P.0.99. A partial Nbs1 structure is

available [48], and two of the amino acid sites targeted by positive

selection (residues 9 and 185) fall on the protein surface

(Figure 6A). The third site, residue 531, is not included in this

partial structure.

The positive selection of NHEJ genes suggests that certain

mutations are providing a fitness advantage in an unknown

context. While the essential DNA repair functions of these genes

would be expected to remain conserved, there is a formal

possibility that adaptive evolution of NHEJ genes could come at

the cost of DNA repair. We wished to consider this hypothesis

because a human SNP at a site of positive selection in NBS1

(Q185E; SNP ID rs1805794) has been linked to increased risk of

renal, skin, and lung cancer in multiple association studies [49–

52]. This SNP is found at high frequencies in human populations

(Figure 6B). While Q185E has been linked to cancer, association

studies are limited in that they may identify either a causal SNP, or

a SNP that is linked to a causal SNP. We wished to test whether

amino acid substitution in this codon changes the performance of

Nbs1 in DNA repair, as the association with cancer might suggest.

We constructed NBS1 alleles encoding either an E or a Q at

position 185, and expressed these proteins in insect cells using a

baculovirus system. We then tested the effects of this mutation on

several of the known activities of Nbs1. The Nbs1 N-terminus,

including the BRCT domain in which this SNP is located, is

known to bind to the checkpoint protein Mdc1 [53–56]. We

produced and purified MRN complexes containing both versions

of Nbs1 and find that both interact equally well with purified

Mdc1 in an in vitro binding assay (Figure 6C). Thus the Nbs1 E/Q

polymorphism is not expected to affect the association of MRN

with Mdc1 at sites of DNA damage in vivo. The MRN complex is

also required for the activation of the checkpoint protein ATM

[57,58]. We find that MRN complexes containing both versions of

Nbs1 are equally efficient in stimulating ATM-dependent

phosphorylation of one of the downstream targets of ATM, p53

(Figure 6D). Nbs1 is also known to bind XRCC4/Lig4 [59] and

we find that both versions of Nbs1 interact equally well with this

complex in vitro (data not shown). Therefore, we conclude that

positive selection of this codon, regardless of what is driving it, has

not affected the repair-related physical interactions of Nbs1.

However, it should be noted that laboratory-based assays may not

be sensitive enough to detect subtle defects that could cause a

minor fitness effect in nature.

Discussion

The NHEJ pathway is over 3 billion years old, and is found in

bacteria, archaea, and eukaryotes. Despite the ancient conserva-

tion of the pathway, we have identified five NHEJ genes that have

evolved under positive selection during the evolution of simian

primates: NBS1, CtIP, Artemis, XRCC4, and POLl. An analysis of

polymorphism data supports positive selection of XRCC4 in

modern humans as well. Interestingly, the yeast ortholog of

NBS1 (XRS2) was also identified as one of the two Saccharomyces

NHEJ genes with the most extreme signatures of positive selection

[2]. One hypothesis is that these signatures of positive selection are

reflective of natural selection for more efficient DNA repair. As

certain NHEJ components evolve, compensatory mutations may

arise in other NHEJ components to re-optimize protein-protein

interactions between the various components. We feel that this

model is unlikely. In the absence of an antagonizing force, there is

no reason that recurrent adaptive change should be required of

any member of this pathway, which would then need to be

followed by compensatory change. Four observations from our

study additionally argue against this model. First, our biochemical

experiments with Nbs1 suggest that positive selection of at least

one of the three sites identified has not altered interactions with

other repair proteins. Second, although there are several core

complexes involved in NHEJ (the MRN complex and the Lig4/

XRCC4/XLF complex), only one component of each of these was

identified as evolving under positive selection. Third, the clustered

sites of positive selection in XRCC4 fall within the C-terminal

protein domain that is not essential for DNA repair. Fourth, the

positive selection of the NHEJ pathway is not a primate specific

phenomenon, but is also found in Saccharomyces yeast [2], arguing

against a model where some novel role for DNA repair during

primate evolution has driven this selection.

The finding of multiple primate NHEJ components evolving

under positive selection, supported by parallel findings in

Saccharomyces yeast, indicates a systematic perturbation of the

NHEJ pathway. With positive selection observed in two highly

divergent eukaryotic clades, a model for the cause of this rapid

evolution must span such diverse species groups. We propose that

NHEJ genes may be antagonized by genetic parasites, which in

primates are comprised of viruses and retrotransposons.

Proteins of the NHEJ repair pathway have been shown to act as

antiviral factors in the lifecycle of human adenovirus, a linear

double-stranded DNA virus. Adenoviruses are a major cause of

upper respiratory and other infections in humans. During

infection, components of the NHEJ pathway join together viral

genome ends, causing ‘‘dead-end’’ viral genome concatenation

[60]. To counteract this antiviral tactic, adenovirus proteins

(encoded by the E4 genes) sequester and target for degradation a

number of components of the NHEJ pathway, including

components of the Mre11/Rad50/Nbs1 and Lig4/XRCC4/

XLF complexes [60–63]. CtIP has also been implicated in the

adenovirus lifecycle through its interaction with the adenovirus

early region 1A (AdE1A) protein [64]. If primate NHEJ genes are

continually selected to encode variants that can evade interaction

with these adenoviral antagonists, while the viral antagonists

Figure 5. XRCC4 is under positive selection in modern humans.
CMS analysis of XRCC4 in the CEU population. The CEU population
represents humans with ancestry from northern and western Europe.
Bars on the x-axis indicate genes (red bar indicates XRCC4; grey bar
indicates VCAN), and black dots show CMS values.
doi:10.1371/journal.pgen.1001169.g005
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continually counter-evolve, this could drive positive selection of

primate NHEJ genes. Adenovirus has been found in stool samples

from great apes and macaques [65], indicating a possible long-

standing co-evolution between this virus and primates.

Retroviruses like HIV may also provide the selective pressure

that shapes the recurrent positive selection of NHEJ genes. There

is abundant genetic evidence suggesting a role for NHEJ in the

retroviral lifecycle [66–70]. Upon cellular entry, the retroviral

RNA genome is reverse transcribed into double-stranded DNA.

The ultimate destination for this retroviral cDNA is integration

into the genome of the host, but it must first survive passage

through the nucleus without being detected as broken DNA by the

cell. NHEJ proteins have been found to physically associate with

retroviral proteins, cDNA, and pre-integration complexes in vivo

and in two-hybrid interactions [67,71–74]. There are several

models which have been proposed to explain this. In one model,

NHEJ proteins are recruited by the viral complex to protect free

viral cDNA ends from degradation or from triggering apoptosis. In

another model, the viral complex recruits host NHEJ proteins to

promote the repair of breaks created at sites of retroviral cDNA

integration into the host genome. In a third model, NHEJ proteins

act as antivirals, joining the two long-terminal repeat (LTR) ends

of the viral cDNA into dead-end ‘‘2-LTR circles.’’ These 2-LTR

circles are ubiquitously observed in the nuclei of infected cells [67].

Regardless of the model, allelic variants of NHEJ genes that result

in lower infection rates would be selectively advantageous to the

host. Should such alleles go to high frequency or fixation,

retroviruses would be expected to counter-evolve, and the back-

and-forth interplay would drive recurrent positive selection of

NHEJ genes. Retroviruses and primates have co-evolved for tens

of millions of years, as illustrated by the fact that all sequenced

primate genomes contain the remnants of hundreds of thousands

of integrated retroviruses [75].

It is unknown whether the positive selection observed in NHEJ

genes represents a response to a single selective force, or whether

multiple forces are shaping their evolution. At least eight

additional viral families have been shown to evade or exploit the

host DNA damage response [76]. Several NHEJ proteins include

one or more ‘‘BRCT’’ domains, which have been linked to viral

infection in multiple instances. The Epstein-Barr viral protein Zta

has been shown to interact with the BRCT domains of 53BP1, a

component of the DNA damage response, to prevent apoptosis

that is activated in response to viral replication [77]. HIV-1 Tat

has also been shown to interact with the BRCT domain of the

human replication protein FCP1 [78]. In both Poll and Nbs1, we

find an amino acid position at the C-terminal end of the BRCT

domain to be evolving under positive selection (Q185 in Nbs1 and

Q102 in Poll). The single site found to be under positive selection

in Saccharomyces Xrs2 also falls near the end of the BRCT domain

(site 298) [2]. BRCT domains could be a critical link in the

interaction between viruses and the NHEJ pathway. Antagonism

of host NHEJ proteins by genetic parasites may be a universal

feature of cellular life, as yeast Ty retrotransposons also interact

genetically and physically with NHEJ machinery [79,80]. LINE-1

retrotransposons are major drivers of primate genome evolution,

and LINE-1 retrotransposition rates are reduced in the absence of

Figure 6. Interactions with other repair proteins have been conserved in Nbs1 despite its positive selection. A) Positively selected
residues 9 and 185 (red balls) are mapped onto the partial Nbs1 structure (PDB 3HUE) [48]. B) SNP frequencies of Q185E are reported for the ten
human populations included in the HapMap project (http://hapmap.ncbi.nlm.nih.gov/). Three-letter labels are standard codes (ASW - African ancestry
in Southwest USA; CEU - Utah residents with Northern and Western European ancestry; CHB- Han Chinese in Beijing, China; CHD - Chinese in
Metropolitan Denver, Colorado; GIH - Gujarati Indians in Houston, Texas; JPT - Japanese in Tokyo, Japan; LWK - Luhya in Webuye, Kenya; MEX -
Mexican ancestry in Los Angeles, California; MKK - Maasai in Kinyawa, Kenya; TSI - Toscans in Italy). C) Binding assays were performed between
recombinant biotinylated MRN complexes containing Nbs1 E185 or Q185, and an N-terminal Flag-tagged fragment of Mdc1 containing amino acids 1
to 740, as indicated. The biotinylated MRN complexes (20nM) were incubated with 45 nM Mdc1 and then isolated with streptavidin-coated magnetic
beads. Bound protein was visualized by western blotting with anti-Flag (Mdc1) and anti-Nbs1 antibodies. D) MRN complexes containing Nbs1 E185 or
Q185 were tested in ATM kinase assays with linear DNA as indicated. Phosphorylation of the substrate, GST-p53 (aa 1–100), was assessed by western
blotting using a phospho-specific antibody directed against p53-phospho-ser15 as previously described [57].
doi:10.1371/journal.pgen.1001169.g006
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NHEJ genes [81]. The Corndog and Omega bacteriophages of

mycobacteria have even incorporated the first gene in the bacterial

NHEJ pathway, Ku, into their own genome [82]. This viral Ku

now evolves under the selective pressures of the virus in order to

recruit the bacterial NHEJ ligase, LigD, to circularize phage DNA.

In summary, we have documented abundant signatures of

positive selection in genes of the NHEJ pathway, which is the

major pathway for repairing double-strand chromosomal breaks in

mammalian cells. We propose the hypothesis that these signatures

result from the long-term co-evolution between NHEJ genes and

genetic parasites. While it is well known that genetic parasites

shape genome architecture through insertion and subsequent

inter-element recombination, the present study may indicate that

selective pressures imposed by genetic parasites can drive the

evolution of protein sequence in critical human proteins.

Materials and Methods

Primate NHEJ gene sequences
Chimpanzee, orangutan, rhesus macaque, and marmoset gene

sequences were obtained from the UCSC genome database

(http://genome.ucsc.edu/) using the BLAT alignment tool [83].

NBS1, CtIP, Artemis, XRCC4, POLl, and XLF were sequenced from

15 additional primate species, and poor-quality regions of

chimpanzee, orangutan, rhesus and marmoset genes were also

re-sequenced. Primary and immortalized primate cell lines

(sources and individual primate identifiers are listed in Table S1)

were grown in standard media supplemented with 15% fetal

bovine serum at 37uC and in 5% CO2. Total RNA was harvested

from cell lines using the AllPrep DNA/RNA kit (Qiagen). PCR

was performed from total RNA and/or cDNA with OneStep RT-

PCR kit (Qiagen) or PCR SuperMix High Fidelity (Invitrogen),

respectively. Details of the PCR and sequencing strategy, along

with primer sequences, can be found in Tables S2 and S3. Primate

NHEJ gene sequences have been deposited in GenBank (accession

numbers HM486750–HM486849).

Sliding window analysis
Alignments between orthologous gene pairs were performed

using ClustalX2.0 [84]. Sliding-window dN/dS calculations for

each alignment were performed with the SLIDERKK program

[25]. Human-orangutan, human-rhesus and rhesus-marmoset

alignments were analyzed with standard window sizes of 450bp,

306bp and 153bp, respectively, to reflect the increasing level of

divergence in these species pairs (window size must be a multiple

of nine in this program) [2,28]. In order to generate confidence

values for windows with dN/dS.1, the K-estimator program [85]

was utilized to generate a null distribution through Monte Carlo

simulation of randomly derived dN/dS values in the gene region

of interest.

PAML analysis
Multiple alignments were created with ClustalX2.0 [84].

Maximum likelihood analysis was performed with codeml in the

PAML 4.1 software package [31]. To detect selection, multiple

alignments were fitted to the NSsites models M1a (neutral model,

codon values of dN/dS are fit into two site classes, one with value

between 0 and 1, and one fixed at dN/dS = 1), M2a (positive

selection model, similar to M1a but with an extra class of dN/

dS.1 allowed), M7 (neutral model, codon values of dN/dS fit to a

beta distribution, dN/dS.1 disallowed), M8a (neutral model,

similar to M7 except with a fixed codon class of at dN/dS = 1) and

M8 (positive selection model, similar to M7 but with an extra class

of dN/dS.1 allowed). Simulations were run with multiple seed

values for dN/dS (v) and assuming either the f61 or f3x4 model of

codon frequencies. Likelihood ratio tests were performed to assess

whether permitting codons to evolve under positive selection gives

a significantly better fit to the data (model comparisons M1a vs.

M2a, M7 vs. M8, M8a vs. M8). In situations where the null model

could be rejected (p,0.05), posterior probabilities were assigned to

individual codons belonging to the class of codons with dN/dS.1.

Residues under positive selection were mapped onto existing

crystal structures using MacPyMol (v.0.99; http://pymol.source-

forge.net/).

The branch-site test allows identification of positive selection

that might be limited to a subset of codons along only a subset of

the branches being analyzed [34]. To implement this test, multiple

alignments were fitted to the branch-sites Model A (positive

selection model, codon values of dN/dS along background

branches are fit into two site classes, one (v0) between 0 and 1

and one (v1) equal to 1, on the foreground branches a third site

class is allowed (v2) with dN/dS.1), and Model A with fixed

v2 = 1 (null model, similar to Model A except the foreground v2

value is fixed at 1). Hominoids were defined as the ‘‘foreground’’

clade, with all other branches in the tree being defined as

background branches. The likelihood of Model A is compared to

the likelihood of the null model with a likelihood ratio test.

Simulations were run with multiple seed values for dN/dS and

assuming either the f61 or f3x4 models of codon frequencies. The

‘‘Fequal’’ codon model was also tested in the branch-site analysis

of NBS1.

Clustering analysis
To test the significance of clustering of the codons under

positive selection in XRCC4, the statistical program R was utilized

to perform a permutation test. The observed span of the positively

selected codons on the primary sequence was compared with a

null distribution created by calculating the span resulting from

randomly generated sets of equivalent numbers of codons. We

generated 100,000 random distances.

Population genetic tests
To examine evidence for recent positive selection in humans, we

implemented a previously published method that combines

multiple tests for selection, the Composite of Multiple Signals

(CMS) [45]. We have adapted the method to detect genomic

regions under selection by examining the fraction of high scores in

100kb sliding windows. To determine the significance threshold,

we used the cosi coalescent simulator to simulate 1,000 1MB

autosomal regions, evolving neutrally under a previously validated

demographic model [86]. We set thresholds that yielded a 0.1%

false positive rate in simulations. Two long-haplotype tests, XP-

EHH and iHS, were used to examine evidence for selection in or

around the genes of interest. iHS was calculated as described in

[10] for all SNPs with a minor allele frequency greater than 5%.

iHS was analyzed independently in the European (CEU), East

Asian (JPT and CHB), and West African (Yoruban; YRI)

populations. XP-EHH was calculated as in [9] for the each of

the three populations. For each SNP, we found the maximum

score of the comparisons with the two other populations. In each

100kb window along the gene regions, the fraction of SNPs with

|iHS|.2 or the maximum XP-EHH score was used as the test

statistic. To calculate empirical P-values for each window w, we

calculated the test statistics for each 100kb window across the

genome and found the fraction of genomic windows with values of

the test statistic greater than that found for window w. The

ancestral state for each SNP was determined by comparison to the

chimpanzee genome. We calculated Fst for each SNP in the
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regions using the Weir-Cockerham estimator [87]. Three pairwise

comparisons were made between the African (Yoruban), Europe-

an, and East Asian populations. For each population, we

compared the allele frequency in that population to the average

frequency in the other two populations. For each 100kb window

across the region, the maximum Fst was used as the test statistic.

To generate the null distribution, we performed the same

procedure on each 100kb window in the genome and derived

an empirical p-value based on this distribution.

Plasmid constructs and expression
A biotinylated human MRN (E185) complex was expressed in a

baculovirus system from the transfer vectors pTP11 (Rad50),

pTP814 (Mre11), pTP1014 (Nbs1), and pTP1016 (BirA) as

described earlier [88]. To make biotinylated human MRN

(Q185) complex, the E to Q point mutation at Nbs1 position

185 was introduced into pTP994, whose bacmid form is pTP1014,

by primer-based mutagenesis (QuikChange Kit, Invitrogen). Flag-

tagged Mdc1 (amino acids 1–740) was expressed using bacmid

construct pTP1188, which was made from the corresponding

transfer vector pTP1187. Expression constructs for Flag-tagged

and HA-tagged ATM were gifts from M. Kastan and R.

Abraham. The E. coli expression construct for GST-p53 was

described earlier [89].

Protein purification
Purification procedures for the biotinylated MRN complex were

the same as for the non-biotinylated MRN complex as described

earlier [90]. Dimeric ATM was made by transient transfection of

expression constructs into 293T cells using calcium phosphate and

purified as described earlier [91]. Mdc1 (aa 1–740) was expressed

in Sf21 insect cells using the Bac-to-Bac system (Invitrogen) and

was purified identically to 53BP1 as described earlier [88]. The

GST-p53 was purified identically to the GST–Brca1 fragments as

described earlier [92] and was further purified by separation on a

Superdex 200 gel filtration column (GE) in buffer A (100 mM

NaCl, 25 mM Tris pH8, 10% glycerol, and 1 mM DTT). Protein

concentrations were determined by quantification of protein

preparations with standards on colloidal Coomassie-stained

SDS–PAGE gels using the Odyssey system (LiCor).

In vitro binding assay
20 nM biotinylated MRN complex was incubated with 45 nM

Mdc1 (aa 1–740) in buffer A for 1 hour at 30uC in a final volume

of 100 ml, then incubated with streptavidin-coated magnetic beads

(Dynal) and 0.2% CHAPS (Sigma) while rotating at 4uC for

15 min. Beads with associated proteins were washed three times

with buffer A containing 0.2% CHAPS, and bound proteins were

eluted by boiling the beads in SDS loading buffer. Proteins were

analyzed by SDS–PAGE and western blotting using antibodies

directed against the Flag epitope (Sigma, F3165) and Nbs1

(Genetex, MSNBS10PX1).

Kinase assay
ATM kinase assays were performed with 0.2 nM dimeric

ATM, 50 nM GST–p53 substrate, and varying amounts of

MRN complex (concentrations of MRN = 1.25, 2.5, 5, and

10 nM). Kinase assays were performed in kinase buffer (50 mM

HEPES, pH 7.5, 50 mM potassium chloride, 5 mM magnesium

chloride, 10% glycerol, 1 mM ATP, 1 mM DTT, and 10 ng

DNA) for 90 min at 30uC in a volume of 40 microliters as

described earlier [91]. Phosphorylated p53 (ser15) was detected

as described earlier [91] using phospho-specific antibody from

Calbiochem (PC461).

Supporting Information

Figure S1 Sliding window analyses of all genes in the NHEJ

pathway. The sliding window analysis of dN/dS along the length

of each NHEJ gene is shown. In each case, three pairwise

alignments were analyzed (human and orangutan comparison in

pink, human and rhesus comparison in green, rhesus and

marmoset comparison in orange). The maximum dN/dS value

in each comparison was analyzed for statistical significance (dN/

dS.1); an asterisk indicates statistically significant peaks (p,0.05).

Found at: doi:10.1371/journal.pgen.1001169.s001 (0.08 MB PDF)

Table S1 Primate samples used in study.

Found at: doi:10.1371/journal.pgen.1001169.s002 (0.03 MB PDF)

Table S2 Details of PCR and sequencing strategies.

Found at: doi:10.1371/journal.pgen.1001169.s003 (0.06 MB PDF)

Table S3 Primers used for amplification and sequencing of

NHEJ genes.

Found at: doi:10.1371/journal.pgen.1001169.s004 (0.03 MB PDF)

Table S4 PAML analysis of primate NBS1 sequences.

Found at: doi:10.1371/journal.pgen.1001169.s005 (0.03 MB PDF)

Table S5 PAML analysis of primate CtIP sequences.

Found at: doi:10.1371/journal.pgen.1001169.s006 (0.03 MB PDF)

Table S6 PAML analysis of primate Artemis sequences.

Found at: doi:10.1371/journal.pgen.1001169.s007 (0.03 MB PDF)

Table S7 PAML analysis of primate XRCC4 sequences.

Found at: doi:10.1371/journal.pgen.1001169.s008 (0.03 MB PDF)

Table S8 PAML analysis of primate Poll sequences.

Found at: doi:10.1371/journal.pgen.1001169.s009 (0.03 MB PDF)

Table S9 PAML analysis of primate XLF sequences.

Found at: doi:10.1371/journal.pgen.1001169.s010 (0.03 MB PDF)

Table S10 Branch-site test for positive selection in the hominoid

clade for primate NHEJ genes.

Found at: doi:10.1371/journal.pgen.1001169.s011 (0.60 MB EPS)

Table S11 Variable codon models in NBS1 branch-site test for

positive selection.

Found at: doi:10.1371/journal.pgen.1001169.s012 (0.50 MB EPS)

Table S12 Summary of human population genetic tests

performed on HapMap data.

Found at: doi:10.1371/journal.pgen.1001169.s013 (0.04 MB PDF)
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