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Abstract

Background: Single-cell RNA sequencing is a powerful technology to discover new cell types and study biological processes
in complex biological samples. A current challenge is to predict transcription factor (TF) regulation from single-cell RNA
data.
Results: Here, we propose a novel approach for predicting gene expression at the single-cell level using cis-regulatory
motifs, as well as epigenetic features. We designed a tree-guided multi-task learning framework that considers each cell as
a task. Through this framework we were able to explain the single-cell gene expression values using either TF binding
affinities or TF ChIP-seq data measured at specific genomic regions. TFs identified using these models could be validated by
the literature.
Conclusion: Our proposed method allows us to identify distinct TFs that show cell type–specific regulation. This approach is
not limited to TFs but can use any type of data that can potentially be used in explaining gene expression at the single-cell
level to study factors that drive differentiation or show abnormal regulation in disease. The implementation of our
workflow can be accessed under an MIT license via https://github.com/SchulzLab/Triangulate.

Background

Single-cell sequencing has become a powerful tool to study gene
expression patterns in different cellular contexts, such as cell
differentiation, complex tissues, and disease. It is an open ques-

tion how to best use single-cell RNA sequencing (scRNA-seq)
data to infer cell-specific transcriptional regulatory programs.

Many methods have been developed that use gene expres-
sion data of pooled cell samples (bulk) to infer cell-specific tran-
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scription factor (TF) regulation. These methods often use the
idea to decompose or associate variance in measured gene ex-
pression data with putative TF target gene sets to infer TF activ-
ity. To name a few examples, such approaches include network
component analysis [1] and methods for predicting gene expres-
sion values from TF motifs [2, 3], combined with epigenetic [4]
or chromatin conformation data [5, 6].

As scRNA-seq data protocols are becoming more widely
adopted, novel methods have been developed that learn TF reg-
ulation by making use of the large number of cells obtained in
current experiments (see overview [7]). For example the ACTION
method [8] is an approach that identifies marker genes for each
cell cluster from scRNA-seq data. It then uses a TF enrichment
approach, using known TF-gene interactions, to determine TFs
of regulatory importance for a set of marker genes in each cell
cluster identified. Another approach, suggested by Ding et al. [9],
uses a Kalman filter to model expression changes of single-cell
clusters in differentiation processes by explicitly modelling the
contribution of TFs in cell state transitions. scRNA-seq data were
also used to build neuronal network classifiers that predict TF-
gene target relationships by utilizing other types of information
such as chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) data [10].

SCENIC [11] is a widely used method for scRNA-seq data anal-
ysis. It uses a 3-step approach to infer regulatory networks. First,
TF associations are inferred using regression trees that learn
single-cell gene expression from the expression of TF-encoding
genes. Second, these co-expression modules are tested for TF
enrichment, such that significantly enriched TFs are used to de-
fine a TF regulon, by restricting to direct targets using motif in-
formation (window of 10 kb around the TSS or 500 bp upstream
of the TSS). Third, the positively associated regulons are then
incorporated with the single-cell data. Through this step, the
activity of each regulon in each cell is evaluated by calculating
an area under the curve (AUC) score, integrating the expression
ranks across all genes in a regulon. Finally, these scores are used
to create the desired activity matrix as output of their workflow.
The authors mention that their approach could not find signifi-
cant TF regulons where genes are negatively associated with TF
expression, and thus the ranking in step 3 is limited to finding
TF regulons among the highest expressed genes in a cell.

Later, Suo et al. [12] exploited SCENIC and modified it by
defining a Jensen–Shannon divergence–based score to assess the
cell type specificity of the regulons. By considering the regulons
having high values of such a customized score, they were able to
infer both known and novel regulatory elements in the mapped
mouse cell atlas.

One of the appealing aspects of the SCENIC approach is that it
is able to infer the TF activity per cell. However, because scRNA-
seq data are noisy, this inference is challenging and, as stated
above, negative associations cannot be made on a single-cell
level in this way.

A widely adopted approach to overcome noise in challeng-
ing machine learning applications is the use of multi-tasking.
In the context of bulk RNA-seq analysis several regression ap-
proaches that associate regulatory features with gene expres-
sion in a multi-tasking framework have been proposed [13–16].

In this work, we introduce TRIANGULATE, a tree-guided
multi-tasking approach for inferring gene regulation in single
cells. This work is conceptually similar to SCENIC [11] because
it derives a TF activity score per cell, but it is methodologically
different. Similar to SCENIC, we study the associations between
single-cell gene expression and TFs. We train statistical models,
where the expression measurements of genes across single cells

are considered as the tasks in a multi-task learning (MTL) set-up.
In contrast to SCENIC, we compute the binding affinities of many
TFs instead of relying on the TF’s gene expression and explore
the use of alternative ways for measuring TF activity, e.g., using
bulk epigenetic data or TF ChIP-seq data of related cells.

We trained our models on 3 single-cell gene expression data
sets, a data set comprising primary human hepatocytes (PHH)
and in vitro differentiated hepatocyte-like cells (HLC), a data set
of human skeletal muscle myoblasts (HSMMs), and the third a
data set of normal and tumour samples from T cells of a patient
with liver cancer. We inspected the coefficients of these mod-
els to identify interesting sets of features that best explain the
gene expression in single cells. In addition, we compared the
MTL results with standard univariate response regression mod-
els. These results indicate that the MTL models that integrate
the information among all single-cell gene expressions not only
produce more interpretable models but also often lead to higher
accuracy.

Materials and Methods
Generating TF feature matrices

In this section, we explain how the feature and response ma-
trices were generated for our statistical models. We define FS ∈
Rn×p to be the feature matrix representing the TF data measured
for n genes, arranged at the rows, and p TFs, arranged at the
columns. We generate the TF data in 3 different ways, as de-
scribed below. In addition, we use the scRNA-seq data as the
response variable for our statistical models. After applying the
filtering steps described below, we apply a log2 transform to all
feature and response matrices prior to the model-fitting phase.

Static features
TRAP [17] was run to quantify the binding affinities of 726 TFs at
the promoter area defined by a window of size 2 kb centered at
the transcription start site (TSS) using Position Weight Matrices
from the TEPIC repository [18, 19]. These affinity values form the
“static” features.

Dynamic features
Using TEPIC version 2.0 [19], the binding affinities of 726 TFs
were measured in peaks defined on the basis of the DNase I
hypersensitive sites sequencing (DNase1-seq) data within the
50-kb window around the TSSs of HepG2 cells produced by
DEEP [18], and mapped against human genome hg38. The con-
tribution of TF motifs in DNase1-seq peaks are weighted us-
ing an exponential decay function in the 50-kb window as pre-
viously introduced [18]. In contrast to the static case, in this
set-up, we additionally include 3 extra features representing
the number of DNase peaks (Peak Counts), the length of the
open region (Peak Length), and the aggregated DNase1-seq sig-
nal (Peak Signal) computed within the 50-kb window around the
TSS. A previous study showed that including these 3 features im-
proves feature selection for gene expression prediction [4]. Be-
cause this particular type of feature is derived from the peaks
in the DNase1-seq data that are able to capture the dynamics of
DNA accessibility for TF binding, we refer to this set-up as “dy-
namic” features.

ChIP-seq features
ChIP-seq data for 123 TFs of the HepG2 cell line were down-
loaded from ENCODE, considering files processed by ENCODE’s
uniform processing pipeline. ChIP-seq read counts were mea-
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sured in ChIP-seq peaks overlapping a 3-kb window defined
around the gene’s TSS (mapped against genome hg38) to be com-
bined with the HLC/PHH single-cell data for model training. We
refer to these features as “ChIP-seq” features.

Fig. 1 illustrates the genomic region where the 3 feature set-
ups (static, dynamic, and ChIP-seq) are generated.

Single-cell RNA-seq data as response for the statistical models
We generated scRNA-seq data for 657 HLCs differentiated from
induced pluripotent stem cells/PHH (HLC/PHH) as described
in the Supplementary Methods. These cells contain 2 anno-
tated cell types, PHH and HLC, with 288 and 369 cells, respec-
tively. Gene expression is quantified in transcripts per mil-
lion (TPM). The expression values of all genes (TPM normal-
ization) measured for a single cell are considered as a task for
the MTL framework. The fastq files for this scRNA-seq data
set have been submitted to the European Genome-phenome
Archive (EGA) and are accessible via EGAS00001004201 accession
code.

In addition, we obtained the HSMM data from [20]. It is worth
mentioning that we only generated the static features for these
data because there was no valid annotation of the cells that we
could rely on for the downstream analysis in our study. There-
fore, this data set was only used to demonstrate the results
based on the different choices of tree structures required for the
tree-guided MTL models.

Imputation of single-cell RNA-seq data
We used the scImpute method [21] on 2 scRNA-seq data sets. We
set the parameter k to 2 for the HLC/PHH and 1 for the HSMM
data. We use and compare the 2 variants of the gene expression
data set, imputed and unimputed.

Filtering
We applied the filtering approach suggested by Monocle’s
tutorial (Monocle2, RRID:SCR 016339) [22] on the scRNA-seq
data. At first, the detected genes were defined using the
detectGenes function by setting the min expr argument to
0.1. A gene is kept if detected in ≥10 cells (based on
the aforementioned definition of detected genes), otherwise
discarded.

We further reduced the gene set by completely removing all
the affinities computed for the genes for which the variance in
their feature space (TF affinities) was less than the third quartile
of the variances measured for each gene. More precisely, given
the FS matrix, we compute the variance over the TF affinities for
each genes, as follows:

vari = variance(FS[i, ]), i ∈ {1, · · · , n}, (1)

where FS[i, ] is a vector of size p, holding the affinity values in the
ith row. Next, we define a threshold t based on the third quartile
computed over vari’s ∀i ∈ {1, ···, n}, as a cut-off to decide whether
the genei should be kept:

genei :

{
kept if vari ≥ t
discarded else .

∀i ∈ {1, · · · , n}, (2)

In addition, we removed the TFs whose corresponding gene
expression was zero.

Similarly, we applied these filtering steps on the other 2 fea-
ture set-ups, dynamic and ChIP-seq.

Statistical learning frameworks

Here, we describe 2 distinct statistical learning frameworks,
single-task learning (STL) and MTL. The MTL approach is fur-
ther categorized into ordinary MTL (OMTL) and tree-guided MTL
(TRIANGULATE).

We partitioned the data into training (60%) and test (40%)
sets. Five-fold cross-validation was performed on the training
set to select the best hyperparameters for all models. The TF
and gene expression data are normalized to have zero mean and
unit variance. We use Pearson correlation computed between
the predicted expression and measured expression values on
the same test set to assess performance for all models.

Single-task learning method
We trained individual regression models with elastic-net reg-
ularization through a 5-fold cross-validation model selection
scheme, exploring the α parameter within the range of 0 and
1 with step size of 0.1 using the glmnet package in R [23].

Multi-task learning methods
Let X ∈ Rn×p denote the input matrix for n observations (sam-
ples) and p features. Let Y ∈ Rn×k denote the response matrix,
whose columns are vectors of observations for k tasks. We look
for an appropriate coefficient matrix B ∈ Rp×k that establishes
the linear relation between X and Y with the error term ε as de-
scribed in the following formula:

Y = XB + ε . (3)

There are various ways to obtain the optimal values for the B
coefficient matrix. In this section, we describe several MTL set-
ups used in this study to understand the performance of dif-
ferent formulations and also downstream interpretation of the
results.

Ordinary MTL
To optimize a multi-task regression model with elastic-net reg-
ularization, the following objective function is used:

B∗ = arg min
B

[
�k

i=1(yi − Xβi )T .(yi − Xβi ) + α�
p
j=1‖β j‖2

]
, (4)

where B∗ denotes the optimal coefficient matrix, α is a tuning pa-
rameter that controls the magnitude of the coefficients through
the L2 norm regularization, and yi is a vector of size n holding
the response values of the ith task. β i denotes the coefficients
corresponding to the ith task (column) of matrix B. Similarly, β j

denotes the jth row of matrix B.
Given the optimization formula, we trained an MTL model

with elastic-net regularization using the R glmnet package [23],
where the family argument was set to “mgaussian” to account
for the multi-tasking nature of the set-up. We used 5-fold cross-
validation to optimize over the α search grid defined within the
range of 0 and 1 with the resolution of 0.05. The models gener-
ated using this formulation are hereinafter referred to as OMTL.

Tree-guided group-lasso MTL
In the ordinary MTL scenario all tasks share the same relevant
features. However, it is possible that a subset of highly related
tasks may share a common set of relevant features, whereas
weakly related tasks are less likely to be affected by the same
features. An improvement was proposed by Kim and Xing [24]
to address this shortcoming of OMTL models. Through their pro-
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Figure 1: Genomic regions where the (a) static, (b) dynamic, and (c) ChIP-seq features are generated.

posed method, to which they refer as tree-guided MTL, the rela-
tionship among the tasks is represented as a tree T with V ver-
tices. Each leaf node of T is associated with a task and the in-
ternal nodes reflect the groupings of the tasks. This tree struc-
ture can be inferred directly from the data or may be available as
prior knowledge beforehand. Within this tree, each node v ∈ V
is associated with a weight wv, typically representing the depth
of the subtree rooted at node v. The optimization formula for
tree-guided MTL is

B∗ = arg min
B

[�k
i=1(yi − Xβi )T .(yi − Xβi )

+λ�
p
j=1�v∈V‖wvβ

j
Gv

‖2],
(5)

where λ is the regularization parameter and β
j
Gv

is a group of re-
gression coefficients {β j

i : i ∈ Gv}. We used the LinearMTL pack-
age implemented in R [25] to train the tree-guided MTL models.
We first partitioned 60% of the data for training and 40% for test.
Then, we normalized the data to zero mean and unit variance.
For the purpose of model selection, we performed a 5-fold cross-
validation, through which 21 distinct values of λ, defined within
the range of 0 and 1 with the resolution of 0.05, were explored.
Finally, we trained the models by setting the maximum number
of iterations to 1,000.

Construction of trees used for the tree-guided MTL models
The gene expression matrix is used to infer the tree structure of
the tree-guided MTL models. For a sanity check of the models,
we created a randomized gene expression matrix, to contrast
the models trained on the real data with the random data. We
generated several trees derived from the gene expression data
to guide the optimization of the tree-guided MTL models. Fig. 2
summarizes the description of the tree structures listed below.

� HC-tree: We used the BuildTreeHC function of the LinearMTL
package using the complete linkage and 1 − Pearsoncorrela-
tion as the dissimilarity measure to apply hierarchical clus-

tering on the real single-cell expression data. The clustering
tree is then used to guide the tree-guided MTL models.

� M-tree: Coordinates of the single cells in the reduced dimen-
sion space (a matrix of size 2 × number of cells) derived
from the Monocle model trained on the real data. Using the
BuildTreeHC function, as described in HC-tree, we generated
the tree structure from the coordinates in the reduced di-
mension space.

� S-tree: We constructed another tree that serves as a baseline
for our tree-guided MTL models. The tree structure forms a
star shape, with a root and as many child nodes as the num-
ber of cells. More precisely, let k be the number of cells. Then,
the star tree has k + 1 nodes, labelled by 0, 1, ···, k, where 0
represents the root and the remaining nodes represent the k
cells. Every non-root node has 1 and only 1 edge connecting
it to the root. Clearly, the root has immediate links to other
nodes, i.e., degree of k. This tree structure is considered base-
line because it does not suggest any particular grouping of
the cells, as they all are uniformly connected to the root.

� R-tree: To generate appropriate random data, we shuffled
the gene expression profile of each single cell. Given that
the genes are arranged in rows and cells in columns, for
each column, we shuffled the gene expression values across
the genes and then used this shuffled gene expression ma-
trix as the input to the Monocle tool. Finally, we trained the
tree-guided MTL model using the M-tree structure described
above. Replacing the gene expression matrix in Fig. 2b with
the shuffled expression matrix produces the R-tree set-up.

The implementation of our workflow can be accessed via the
GitHub repository [26].

Selection for heat map visualization

Because for the static features, several hundreds of TFs were in-
cluded in the set and visualizing this many TFs makes the in-
terpretation difficult, we decided to shrink this set by select-
ing those that pass a certain criterion. Essentially, for a given
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Figure 2: Schematic illustrations for the tree structures. (a) Performing hierarchical clustering on the gene expression matrix produces the HC-tree. (b) A pseudo-time
trajectory is obtained using the Monocle software from the gene expression matrix. The resulting trajectory shown in a reduced 2D space is used to generate the

M-tree structure. (c) Cells are connected to a root node forming a star-shaped tree, regarded as a baseline for the tree required models. dim: dimension.

TF arranged in the rows of the coefficient matrix, we compute
the sum of absolute regression coefficients for that TF across all
cells. If this value is higher than our predefined threshold of 0.5,
we keep that TF, or discard it otherwise, for visualization of TRI-
ANGULATE result heat maps.

Correlation analysis between expression and inferred
TF activity

We define the TF-expr-cor as the Spearman correlation between
the cell-specific expression of a TF and the inferred TF activity
per cell (coefficients) of the TRIANGULATE model. We used a per-
mutation approach to obtain a significance estimate for the cor-
relation values.

First, we used the R-tree model, which is based on permuted
expression values, to obtain an estimate of the regression ma-
trix B̃. Second, we compute the Spearman correlation values be-
tween the permuted expression values and the computed re-
gression coefficients in B̃ for each TF over all cells. This defines
the null distribution of the TF-expr-cor values. In other words

the TF-expr-cor values using the R-tree model define the null
model.

This we can compare to an actual model. For example, using
the HC-tree model, we computed the TF-expr-cor values. For our
analysis (e.g., Fig. 8) we removed those values that lie within the
range of TF-expr-cor values under the null model (Supplemen-
tary Fig. S1).

To illustrate the interesting TFs only, we further reduced
the TF set by keeping those where the sign of correlation
agreed with the sign of sum of coefficients across cells for a
given TF.

TFi :

{
kept if Expr(T Fi ) × � j B j

i > 0
discarded else .

∀i ∈ {1, · · · , n}, (6)

where the function Expr(TFi) denotes the log2-transformed
TPM values of TFi measured in single cells, B j

i is the coeffi-
cient corresponding to TFi in cell j, and n is the number of
TFs.
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Running SCENIC

SCENIC (SCENIC, RRID:SCR 017247) [11] was performed using the
Python implementation pySCENIC (v0.9.19) [27] based on human
TF ranking data base version 9 (motifs-v9-nr.hgnc-m0.001-o0.0
[28]) and human motif to TF annotation downloaded from [29]
(v9) as outlined in the package manual.

Results

We study the cell-specific association of regulatory elements by
coupling distinct TF feature data with measurements of gene
expression in single cells. For this purpose, we designed 3 differ-
ent feature set-ups (static, dynamic, and ChIP-seq) representing
the TF binding scores in various genomic regions (see Materi-
als and Methods and Fig. 1). To conduct a supervised regression
framework, we exploited 3 single-cell gene expression data sets
(HLC/PHH, HSMM, and T cell) as the response variable. We per-
formed several filtering steps to remove the low-quality data as
described in Materials and Methods. After discarding these low-
quality values from the HLC/PHH data, 238 cells remained with
14,142, 4,827, and 14,188 genes for static, dynamic, and ChIP-seq
features, respectively. Similarly, for HSMM, the reduced data set
contained 18,402 genes and 297 cells for the static features.

Given these data, we were able to train our models in 2 ways,
as single tasks or combined with multi-tasking. As illustrated
in Fig. 3a, in the STL case, each cell provides the response vec-
tor for an individual optimization problem solved through an
elastic-net regularization (see Materials and Methods). There-
fore, the total number of statistical models needed to be gener-
ated is equal to the number of cells in the given gene expression
data set. On the other hand, when the MTL approach is used,
the complete gene expression matrix is regarded as the response
variable, where 1 model is created in the end. In this scenario,
model coefficients are represented by a 2D matrix B, where each
entry of B reflects the inferred activity of a particular TF in a spe-
cific cell.

Tree-based models generally result in better
performance

The tree-guided MTL models expect a tree structure to guide the
model on how the tasks should be grouped when optimizing the
objective function. However, the choice of the tree for the tree-
guided MTL can be arbitrary because this tree is considered a
hyperparameter set by the user. Therefore, we explored several
trees for which we presumed they can represent the structure
existing in the single-cell gene expression data.

As a trivial and straightforward choice, we applied hierarchi-
cal clustering directly on the gene expression data. The tree ob-
tained from the hierarchical clustering was then used to train
the tree-guided MTL models, to which we refer as “HC-tree.”
The next intuitive choice was to infer the tree structure from
the pseudo-time ordering applied on the single cells because the
differentiating cells should be placed closer to each other in this
trajectory. Using the Monocle [20] tool (version 2), we were able
to construct this trajectory for the single-cell expression data.
Through traversing the trajectory obtained from Monocle, we
built a tree representing the pseudo-time ordering of the cells.
Because the transformation from the pseudo-time ordering to a
tree can be arbitrary, we applied hierarchical clustering on the
matrix holding the data for pseudo-time ordering and used the
resulting tree for our tree-guided MTL models. We refer to this
tree structure as “M-tree” (see Materials and Methods).

We further examined the performance of the tree-guided
models with 2 other types of tree structures, “random” and “star”
(see Materials and Methods). We used S-tree as a baseline for
the tree-guided models because this structure imposes a uni-
form clustering of the cells (they all are at the same level rela-
tive to each other). Also, we introduced the R-tree to compare
the performance of the models trained on the true data with
the random data. Fig. 4 compares the performance of R-tree
and S-tree with the HC-tree and M-tree models. These results
suggest that the choice of hierarchical tree, performed on ei-
ther the full gene expression data or the reduced space, is valid
and reliable because they outperformed the R-tree and S-tree
models.

Apart from the tree-guided models, we also generated the
OMTL models to examine the efficiency of the tree-guided over
OMTL models. Scatter plots provided in Supplementary Figs S2
and S3 allow us to compare the performance of the OMTL mod-
els with the tree-guided MTL models, where different trees are
used.

In addition to the OMTL models, we trained individual single-
task models, by providing the gene expression profile per cell as
the response variable of each model (see Materials and Meth-
ods). The predictions obtained from each individual model were
later used to compute the correlation values between the pre-
diction and actual measurements of gene expression.

Fig 4 illustrates the distribution of Pearson correlation coef-
ficients calculated between the predicted and measured values
of gene expression for all the tree-guided MTL (HC-tree, S-tree,
M-tree, and R-tree) as well as the OMTL and STL models, for both
data sets.

The cell-wise comparison of all statistical models is provided
as scatter plots in Supplementary Figs S2 and S3. These results
indicate that in general, it is more difficult for the model to pre-
dict the gene expression of PHH cells, irrespective of the statis-
tical model used. However, it is interesting to see that the STL
models tend to be hindered more compared to the tree-guided
MTL or the OMTL models, where they are essentially able to ben-
efit from the information sharing among the tasks.

Given that the HC-tree and M-tree result in better-performing
models in both HSMM and HLC/PHH data sets, we decided to
pick one of these methods to proceed with the rest of our anal-
ysis. However, owing to the computational burden incurred by
the additional step of running the Monocle software for infer-
ring the trajectory in the M-tree case, we favored HC-tree over
M-tree. Therefore, the following results are obtained from the
HC-tree structure, which we hereinafter call TRIANGULATE.

The impact of the number of cells on prediction results

Because the number of cells in the data set can play a crucial
role in an MTL set-up, similar to what we proposed, we decided
to challenge our TRIANGULATE by training it on fewer cells using
the static features. Therefore, we downsampled the HLC/PHH
cells using 5 different percentages of cells (50%, 40%, 30%, 20%,
and 10%). Table 1 shows the mean number of detected genes
(the number of genes having expression of ≥1 in a given single
cell) used for training the TRIANGULATE models. This table also
provides the Pearson correlation measured between predicted
and measured single-cell gene expression on test data of these
downsampled HLC/PHH cells.

Overall, we observe that TRIANGULATE shows a robust per-
formance when the number of cells is varied. However, there is
an apparent trend of performance loss as the number of cells is
decreased.

https://scicrunch.org/resolver/RRID:SCR_017247
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Figure 4: Comparison of MTL and STL models (shown on x-axis) on HLC/PHH (a) and HSMM (b) data sets. The comparison includes, hierarchical clustering (HC-
tree), Monocle (M-tree), Star tree (S-tree), and random tree topology (R-tree) for tree-based multitasking methods, an ordinary multitasking approach without a tree

regularization (OMTL), and an elastic net regularized single task learning per cell (STL). The y-axis is the Pearson correlation coefficient computed between the predicted
and measured gene expression values on the test data. A 2-sided Mann-Whitney (unpaired) test with significance cut-off of 0.05 was performed between HC-tree and
the other models. Pairs with significant differences are marked with an asterisk. See Supplementary Fig. S4 for a complete comparison of P-values on all pairs of
models.

The impact of feature types on the prediction results

We wanted to explore the associations of gene expression in sin-
gle cells with features that are independent of the cell content
or configuration. Therefore, we designed a feature set-up, which

we named “static,” to link the cis-regulatory characteristics of
∼700 TFs with the gene expression measurements of single cells
(see Materials and Methods).

Fig. 1 schematically illustrates the genomic area where the
static, dynamic, and ChIP-seq features are generated. In static
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Table 1: Number of detected genes and Pearson correlation coeffi-
cients on test data for downsampled HLC/PHH cells based on 10–50%
of the whole data

% of data
Mean ± SD

No. of detected
genes Correlation

10 4,522 ± 1,903 0.10 ± 0.04
20 4,545 ± 1,820 0.12 ± 0.05
30 5,025 ± 1,768 0.13 ± 0.06
40 4,960 ± 2,000 0.15 ± 0.07
50 4,818 ± 1,781 0.15 ± 0.07

Results obtained from the static features.
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Figure 5: Comparison of different feature sets using the HC-tree MTL structure

on the test partition of the HLC/PHH data (Pearson correlation, y-axis). ChIP-
seq, dynamic, and static feature set-ups are indicated by red, green, and blue,
respectively. The imputation status is indicated by different border colours, black

for imputed (left) and gray for not imputed (right) for each feature set.

features, for each transcription start site of a gene, the TF bind-
ing affinities are measured within the 2-kb window around the
TSS. These affinity scores are used to form the feature matrix
for the static set-up (Fig. 2a). Fig. 2b illustrates the dynamic set-
up, where peaks are obtained from DNase1-seq data and used to
identify the open chromatin regions in a 50-kb window around
the TSS. The TF binding affinities are computed in the segments
of this 50-kb window that correspond to the peaks. Finally, Fig. 2c
shows the region where the reads of ChIP-seq data of 123 TFs are
counted. The resulting measurements form the ChIP-seq fea-
tures.

Fig. 5 describes the performance of the HC-tree MTL ap-
proach on the 3 feature set-ups for the HLC/PHH data set. We
observed that TF features derived from measurements in HepG2
cells (dynamic or ChIP-seq features) showed better performance
than the static feature set-up. Presumably, this reflects a more
liver-specific association between a TF’s binding affinity and
chromatin openness around a gene in those set-ups. Overall, the
ChIP-seq features led to the most accurate models.

Imputation generally improves the accuracy

Single-cell data are hindered by the inherent technical noise of
so-called dropouts. Dropouts refer to genes that are falsely iden-

tified as zero-expressed. In simpler words, any zero that is ob-
served in the expression count matrix of single-cell data can
be viewed as either correctly or incorrectly identified as a silent
gene due to the dropout effect. There have been several methods
(e.g., [21, 30, 31]) that attempted to address this problem by im-
puting the missing expression values, but each of these methods
has its own assumptions.

The results shown in previous sections are obtained using
the original unaltered expression data. However, we were cu-
rious to find out how the results would change when we im-
pute missing values potentially introduced by the dropout ef-
fect. Therefore, we imputed missing data using the scImpute
tool ([21], see Materials and Methods) and repeated the exper-
iments described with the difference of using the imputed ex-
pression values as the response matrix.

Fig. 5 provides an overview of the performance of the HC-tree
MTL model on the 3 feature set-ups, comparing the use of origi-
nal or imputed scRNA-seq counts. These results reveal that the
imputation enhances the prediction accuracy, regardless of the
feature set-up. It is interesting to observe that for the dynamic
set-up, not only the correlation values are increased, but also
the distribution of these values is changed in favor of having a
smaller variance across the cells. The change of distribution is
notable for the other 2 set-ups as well, but that does not neces-
sarily lead to a smaller variance.

Cell type–specific TF activities inferred from the model
coefficients

Observing such difference in the prediction accuracy inspired us
to inspect the model coefficients that correspond to the activity
of TFs in cells. The heat map in Fig. 6 depicts the coefficients of
the top features (see Materials and Methods) derived from the
HC-tree model trained on the static features to predict the gene
expression in HLC/PHH cells.

In this heat map, it can be noted that, first, the cells are
clearly clustered according to the model coefficients, separating
the HLC and PHH cell types. Second, these results show certain
groups of TFs playing distinct roles in regulating gene expres-
sion in cell subpopulations. For instance, the TF YY2 holds pos-
itive coefficient values for the HLC cells, whereas its values for
the PHH cells are negative. This is interesting because YY2 may
perform a dual effect on gene expression; i.e., it can both repress
and activate transcription [32].

On the other hand, HNF1A, which is essential for the expres-
sion of various liver-specific genes, was considered less relevant
for the HLC cells by the model, as it has mostly assigned zero
to coefficients corresponding to HNF1A. However, HNF1A holds
positive coefficient values for the PHH cells. GMEB1 is another
factor that shows a variable activity between the 2 cell types.
Data from the Human Protein Atlas suggests it to be a prognos-
tic marker in liver cancer [33].

In addition, we observe that PBX3 and MAFG are TFs that
seem to be active for both cell types according to our model. It
has been shown that PBX3 plays a crucial role in the transcrip-
tional program of human liver tumour-initiating cells [34]. Liu
and co-workers [35] observed that MAFG is positively correlated
with the progression of tumour cells especially in patients with
cholangiocarcinoma and hepatocellular carcinoma.

We additionally inspected the model coefficients to check
whether the 2 cell types were still separable on the downsam-
pled data sets introduced before (Table 1). Supplementary Fig. S5
shows that TRIANGULATE was able to assign the coefficients of
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Figure 6: Coefficients of the tree-guided MTL model using the HC-tree structure. Heat map illustrating the top features (see Materials and Methods) derived from the
tree-guided MTL trained on the static features to predict the unimputed gene expression in HLC/PHH cells.

the model appropriately according to the cell types in the down-
sampled data.

Comparison of results with SCENIC

Because SCENIC [11] is also able to produce cell-specific TF ac-
tivity scores, we were interested in comparing the results of our
models with the AUC values that SCENIC computes to repre-
sent the TF activity (see Materials and Methods). Because the
AUC values are positive, SCENIC can only infer positive associa-
tions, in contrast to our method, which is able to deduce neg-
ative associations as well. As a result, comparing the activity
matrix directly (Supplementary Fig. S6) was not a meaningful
approach.

For this purpose, we defined per TF activities by adding up
their activity scores (AUC values for SCENIC and scaled coeffi-
cient values for TRIANGULATE) across cells. The top 20 active
TFs obtained from each approach were compared with a set
of known liver-specific TFs previously collected through litera-
ture search [18]. The number of overlapping TFs between the

liver-specific set and top 20 active TFs obtained from TRIAN-
GULATE is shown in Fig. 7a (similarly for SCENIC in Fig. 7b).
These results indicate that TRIANGULATE is able to identify
more liver-specific TFs than SCENIC among the top 20 active
TFs.

We further noticed that YY1, TBP, HNF4G, KLF, and CEBPA
were the 5 liver-specific TFs that only TRIANGULATE was
able to identify among its top 20 TFs while SCENIC could
not.

We were also interested in identifying the TFs that showed
a significant difference in their inferred activity between the
HLC and PHH cell types. We applied a (2-sided) Mann-Whitney
test using the significance cut-off of 0.1 on the multiple-testing–
corrected P-values (Benjamini-Hochberg method) to select the
TFs that are significantly different between the HLC and PHH
cells. In our proposed method, this test was applied on the
model coefficients and in SCENIC on the AUC values obtained
for the HLC/PHH cells. The Venn diagram shown in Supplemen-
tary Fig. S7 illustrates the number of TFs common between the
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liver-specific TF set, SCENIC, and the TRIANGULATE approach.
It can be seen that TRIANGULATE and SCENIC have 26 and 28
TFs in common with known liver-specific TFs, respectively. This
indicates that our approach is able to find liver-specific TFs and
mostly agrees with the results of SCENIC when considering dif-
ferences in regulation between the 2 cell types.

The agreement we observed between the liver-specific TFs
and top active TFs suggested by SCENIC and TRIANGULATE in-
spired us to advance our investigation by analysing the inferred
TF activities in each individual cell.

Using the pseudo-time ordering of the cells obtained from
Monocle, we displayed the cells in the 2D trajectory space and
marked each cell on the basis of their inferred activity obtained
from SCENIC or TRIANGULATE, as well as the expression of the
TF in single cells (Supplementary Fig. S8 and Fig. 7c). It should be
noted that the scores that SCENIC obtains are a function of a TF’s
gene expression, which is used in the first step of the method.
Thus, it is not surprising to see that the SCENIC AUC scores often
agree well with the trend observed in TF expression values, but
rather confirms that the approach works as intended. As shown
in Fig. 7c, YY1 appears to be expressed across the single-cell tra-
jectory. This behaviour is reflected in the inferred TF activities by
SCENIC and TRIANGULATE. However, as mentioned earlier, this
TF did not appear among the top 20 active TFs for SCENIC. This
is due to the very small AUC values that SCENIC computed for
YY1 (maximum of 0.07).

Another interesting example is TFDP1. We observed that TRI-
ANGULATE assigned negative coefficients to the PHH cells of
TFDP1 (Figs 6 and 7c). It has been shown that TFDP1, together
with E2F1, is involved in regulating hepatocellular carcinoma
cells through a knockdown experiment that confirmed a physi-
cal interaction of KPNA2 with E2F1 and TFDP1 [36].

We additionally found that ARID3A is among the TFs that had
negative activity consistently across the single cells. We found
evidence in the literature that ARID3A has been identified as a
repressor in embryonic regulation [37, 38].

From the trajectory plots provided in Fig. 7c, it can be seen
that the activities of TFDP1 and ARID3A are concentrated on
different subsets of cells. As previously mentioned SCENIC can-
not infer negative TF activity, which can explain the small AUC
scores (maximum of 0.27) assigned to the cells for these 2 TFs.

It is worth mentioning that the coefficient values we obtained
from TRIANGULATE are in general very small. This is due to the
large number of features each data point has. Because our model
exploits ∼700 TFs in its feature space, among which many are
non-zero (selected by the model), the values assigned to these
coefficients need to be small so that the linear combination of
the coefficients and feature data falls within the range of re-
sponse values. Because we want to explore the negative asso-
ciations, we show the original coefficients in Fig. 7.

To further evaluate and compare the performance of TRI-
ANGULATE with that of SCENIC, we acquired another data set
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of single-cell gene expression (Supplementary Methods). These
data consist of the CD4+ T cells from a patient with liver can-
cer (accession No. GSM2602298) [39]. A total of 176 cells are an-
notated as normal and 230 cells are annotated as tumour. We
ran SCENIC and TRIANGULATE in the aforementioned manner
to identify the top 20 active TFs. We also prepared a list of T cell–
specific TFs from the literature provided in Supplementary Table
S1. By overlapping the set of known TFs regulating T cells with
the top 20 active TFs obtained from TRIANGULATE and SCENIC,
we were able to find 15 and 8 TFs, respectively. The Venn dia-
grams shown in Supplementary Fig. S9 illustrate this overlap for
both approaches. Similar to the analysis of the HLC/PHH data
set, TRIANGULATE was able to find more cell type–specific TFs
than SCENIC.

TF expression and its inferred activity

Because we often observed agreement between the expression
and TRIANGULATE coefficients (scores), we decided to systemat-
ically assess this similarity. To inspect how much the inferred TF
activities agree with the expression of a TF’s gene in single cells,
we designed a correlation analysis to evaluate the similarity be-
tween these 2 quantities. As described in Materials and Meth-
ods, we introduce TF-expr-cor, the Spearman correlation be-
tween the coefficients obtained from the TRIANGULATE model
and the log2-transformed TPM values representing the expres-
sion of TFs. Fig. 8 illustrates the TF-expr-cor values for a subset of
TFs that had higher values than a null model (the R-tree model).
According to this analysis, ARID3A and KLF6 have the smallest
negative and largest positive TF-expr-cor values, respectively.

Contrasting the gene expression signal of ARID3A shown in
Fig. 7c with the inferred activity from TRIANGULATE delineates
the strong negative correlation between the gene expression of
ARID3A and its TRIANGULATE coefficients that we observed in
Fig. 8.

For the TFs whose correlation values were relatively high, we
also observed a less sparse signal (fewer zeroes) in their corre-
sponding gene expression data. This observation holds for both
positive and negative correlations. However, one should not ex-
pect high correlations for all TFs with high inferred activities.
Still, if both quantities correlate, this may point to regulators of
interest concerning the studied data set.

Discussion

The discrepancies observed among the gene expression profiles
in single cells, trivially, hint at the existence of specific differ-
ences in the transcriptional regulatory program. Devising com-
putational methods that are able to infer associations between
gene expression in single cells and cis-regulatory motifs, as well
as epigenetic characteristics, has attracted the attention of re-
searchers in the field (e.g., [8–11]).

In this work we analysed a regression formulation, where TF
features based on sequence motif matches, bulk ChIP-seq peaks,
or DNase1-seq peaks were used to predict gene expression in
individual cells. Previously, such regression formulations were
only performed in the context of bulk gene expression predic-
tion. Obviously, for single-cell data this is a harder problem be-
cause most of the single-cell data available are very sparse with
only a few read counts per gene, if any. These technical limita-
tions are challenging to address.

On the 2 data sets we investigated, we found that the corre-
lation on test data is not overwhelming, but it is hard to come up
with an expected correlation. Using similar features in a regres-
sion of bulk RNA-seq, coupled with epigenomic data sets, led to
correlation coefficient values of ∼0.3–0.6 [18], but with Dnase1-
seq and RNA-seq data obtained from the same cells.

We wondered whether imputation would improve the corre-
lation on the test set. For that, we generated our statistical mod-
els on the imputed gene expression data. The results displayed
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in Fig. 5 consistently show an improvement in accuracy for the
imputed models. We think that by imputing the missing values
of gene expression, a stronger connection may have been estab-
lished between the TF and gene expression data. Therefore, the
signal existing in the features (TF data) better reflects the vari-
ances in the response (gene expression).

We designed a general framework for establishing cell-
specific associations through using tree-guided MTL [24]. This
framework benefits from both the information sharing deliv-
ered by multi-tasking and also grouping the cells according to
the tree structure provided as an additional input. The choice of
the tree is a hyperparameter (user-dependent). We tried explor-
ing different tree structures, and our findings indicate that the
performance of the models is influenced by this choice. In addi-
tion, we see that depending on the data set, the best-performing
model is generated from different tree structures. Therefore, it is
difficult to suggest an all-purpose tree inference approach that
would work best for all data sets. Besides, we think that the op-
timization model could be modified such that it is not restricted
to a tree structure but an arbitrary graph for grouping the tasks
(cells).

Another area for improvement is the distribution assump-
tion. The Gaussian distribution used in the current optimization
does not best address the specifics of count data, nor the single-
cell measurement noise such as dropouts. As a future work, we
propose incorporating the negative binomial distribution to bet-
ter account for these issues.

To check whether the accuracy of our models would im-
prove when a non-linear learning set-up is applied, we designed
a vanilla artificial neural network (Supplementary Methods).
By comparing the median of the correlation between our lin-
ear models and this neural network, as shown in Supplemen-
tary Fig. S10, we did not observe any significant improvement
achieved by the neural network models. Thus, another direction
would be to adapt more sophisticated neural network architec-
tures, such as [5], to single-cell data.

An obvious advantage of the linear modelling approaches is
the straightforward interpretation of TF regression coefficients.
By inspecting the coefficients of our models, we were able to
pinpoint distinct TFs that show cell type–specific regulation in
HLC/PHH cells and showed that many liver-specific regulators
could be inferred in this way.

Conclusion

The problem of identifying cell-specific regulatory elements is a
difficult task, mainly owing to the technical noise in the single-
cell data. However, in this study, we built several statistical mod-
els that lead to stable feature selection, which provides inter-
pretable results. Also, our method can be used directly to incor-
porate various approaches for designing TF features, such as TF
binding affinities and ChIP-seq signals.

As a future work, it would be interesting to extend this study
using paired scRNA and single-cell open-chromatin data [40–42],
particularly for the design of dynamic features. Using this type of
data allows us to estimate the TF activity in accessible chromatin
regions defined on the basis of individual single cells.
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