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A B S T R A C T   

Antimicrobial peptides (AMPs) are ubiquitously present small peptides, which play a critical function in the 
innate immune system. The defensin class of AMPs represented an evolutionarily ancient family containing 
cationic cysteine residue and frequently expressed in epithelial or neutrophils cells. It plays myriad functions in 
host innate immune responses against various infection. Defensin has a broad spectrum of antimicrobial activ-
ities, including anti-bacteria, anti-viruses (AVPs), anti-fungi, anti-cancers, and also overcoming bacterial drug 
resistance. In this review, we compiled the progress on defensin, particularly incorporating the mechanism of 
action, their application as an antiviral agent, prospects in different areas, and limitations to be solved as an 
antiviral peptide. Defensins were explored, in particular, their capacity to stimulate innate and adaptive im-
munity by trigging as anti-coronavirus (COVID-19) peptides. The present review summarised its immunomod-
ulatory and immunoenhancing properties and predominantly focused on its promising therapeutic adjuvant 
choices for combat against viral infection.   

1. Introduction 

Antimicrobial peptides (AMPs) are observed in almost all organisms. 
These are oligopeptides with short positively charged, which manifest a 
heterogeneity of structures and functions. AMPs are the integral element 
of the innate immune system and are produced against several infections 
in a wide range of organs. Most of them are generated as abundant 
polyprotein precursors, and post-processing delivers active peptides. 
These peptides were classified into several classes. Almost all the AMPs 
bestowed to hold antimicrobial activity, but only a few of them 
demonstrated antiviral features, and defensins are one of the significant 
class. Here we report on the application of human defensins in treating 
viral infections, with particular emphasis on SARS. In 2002, Severe 
Acute Respiratory Syndrome (SARS) virus originated in Guangdong, 
China, that infected 8422, leading to 916 deaths worldwide [1,2]. After 
a decade, in 2012, the MERS-CoV virus emerged as a zoonotic disease in 
the Middle East from bats to humans. MERS-CoV infects the non-ciliated 
respiratory tract epithelial cells via dipeptidyl peptidase 4 and CD26 

receptors cause 806 deaths [3]. 
While scientists were looking for the mechanism of pathogenicity of 

SARS-CoV, and MERS-CoV, another highly contagious Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus pandemic 
outbreak, occurred in late December 2019 [4]. Bioinformatics analysis 
revealed that the SARS-CoV-2 virus belongs to the Coronaviridae family, 
and it shows 50% and 79% sequence similarity to its close relative MERS 
virus and SARS virus, respectively (Fig. 1). 

The virus attacks the respiratory tract via ciliated epithelial cells 
using angiotensin-converting enzyme 2 (ACE2) & TMPRSS2 receptors 
[4]. The SARS-CoV-2 expanding pandemic has become globally chal-
lenging because of the high rate of mutations in its positive-stranded 
RNA genome and evolved spike proteins [5]. However, no specific 
drugs or treatment availability aggravated the situation [6–9]. The 
pandemic severity could be estimated because, within few months, the 
novel SARS-CoV-2 virus surpassed the SARS and MERS-related severity. 
World researchers are searching for specific therapeutic strategies to 
prevent the COVID19-pandemic outbreak. [1,8]; https://www.wor 
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ldometers.info/coronavirus/). 

1.1. Virus structure 

Homology study found that the SARS-CoV-2 and SARS-CoV virus has 
typical receptors and share 96% identity for primary protease enzyme 
(Fig. 2). SARS-CoV-2 virus (125 nm-sized) shares a 96.3% identity with 
bat-coronavirus RaTG13. The SARS-CoV-2 spike gene shows a ~75% 
sequence identity with human SARS-CoV and bat SL-CoVZXC21 [8]. The 
enveloped virus has a non-segmented phosphorylated nucleocapsid 
covered with 26–32 kb long positive-sense single-stranded RNA ge-
nomes (GeneBank ID MN908947). The genome encodes 9860 amino 
acids which include S-proteins, nucleocapsid proteins, membrane pro-
teins, proteases (Mpro) and chymotrypsin-like protease (3CLpro), 
replication (pp1a and pp1ab), helicase (Non-structural protein-13, 
Nsp13), RNA-dependent RNA polymerase (Nsp12), and translational 
enzymes [6,8]. Nsp12 (3.1 Å) polymerase enzyme binds to Nsp7 and 
Nsp8 proteins to form a ~160 kDa functional RNA-synthesis machinery 
platform [4]. The virus majorly affects the respiratory and gastrointes-
tinal tract. It causes several symptoms, including dry cough, common 
cold, pneumonia, headache, fever, sore throat, dyspnea, lungs oedema, 
renal dysfunctions, fatigue, hyperplasia, diarrhoea, haemorrhage, mul-
tiple patchy shadows, interstitial infiltrations, multiple patchy shadows 
in chest CT scan, and altered humoral & adaptive immunity. The 
numerous complications result in organ failure, leading to the patient’s 
death [2,6,10] (Fig. 3). 

SARS-CoV-2 has an incubation period between 2 and 11 days (on 
average, within five days, the symptom could develop), and infected 
people have a recovery rate of 12–32 days. Diabetic and overage, people 
have more risk of getting SARS-CoV-2 infection. The non-symptomatic 
viral RNA could for remain in the blood up to 29 days. The drugs like 
Hydroxychloroquine (HCQ) and Azithromycin antibiotic treatment 
showed lowering the viral load through cell alkalinity action. The best 
strategy to prevent infection is a complete quarantine that benefits with 
no asymptomatic transfer [2,6]. COVID19 infected patients reported 
altered humoral immunity with the cytotoxic pattern, leukocytopenia, 
and lymphopenia than the non-infected person. The reports suggest that 
host antimicrobial peptides and immune cells play an essential role in 
lowering the virus load. 

1.2. Virus host interaction 

Coronavirus S-glycoprotein (S1 & S2) binds to cellular receptors 
(ACE2), leads to penetration of cells, and resulting in the initiation of 
disassembly of viral nucleocapsid to release viral RNA genome [6,11]. 
Other viral proteins like membrane, envelope, replicates, and protease 
help packs new viral particles. Trimeric S-protein consists of 1160–1400 
amino acids, converted into S1 & S2 type-1 transmembrane glycopro-
teins by viral protease enzyme. The S-protein sequence 318–510 was 
reported as highly antigenic and modulating immune systems [3,6,12]. 
The S1-protein with 685 amino-acids sequence act as a receptor-binding 
domain (RBD) (Fig. 2). 

It assists virus interactions with host cell receptors such as ACE-2, 
carcinoembryonic antigen-related cell adhesion molecule-1 (CEA-
CAM1), dipeptidyl peptidase-4 (DPP4), aminopeptidase-N (APN), and 
carbohydrates. Another S2-protein contains 588 amino acids with two 
fusion core subunits, heptad repeats-1 (HR1) and HR2, which form a 
hydrophobic six-helix bundle core result union the host cell membrane 
[3]. 

Predominantly, the ACE2 receptor present in the respiratory and 
intestinal wall has emerged as the most potential receptors for SARD- 
CoV entry. The protease activity on ACE2 from respiratory epithelial 
cell make ADAM17 a moving target for COVID19 [13]. The molecular 
weight ranges from 105 kDa to 120 kDa by proteolytic activity of 
ADAM17. International collaboration will open new avenues for the 
understanding of its proteomics structures [14]. Transcriptomics and 
proteomics studies from different tissues within the same individuals 
have a different cellular functional environment. The viral genome CpG 
Islands are targeted by the nucleotide-binding domain of the zinc finger 
antiviral protein (ZAP). The tissues specific communication between the 
CpG nucleotides and ZAPs recruit different nucleases to degrade viral 
genomes. Therefore evolved viruses majorly modified their CpG content 
in a manner to tissues particular infections. It has been reported that 
SARS-CoV-2 genomes have a significantly less amount of CpG content, 
suggesting their evolved mechanism to skip ZAP’s actions [15]. 

1.3. Defensins 

The mammals possess an immune surveillance system that protects 

Fig. 1. The detailed classification of the coronavirus family for humans and birds.  
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them from pathogens. The defence system includes monocytes, macro-
phages, B-cells, T-cells, antigen-presenting cells such as neutrophils, 
dendritic cells, and immunostimulators cytokines & chemokines. These 
immune cells recognise pathogens by PPRs (pattern recognition re-
ceptors such as TLRs, RIG-I, lectin, and NOD) and PAMPs (pathogen- 
associated molecular patterns) [16–18]. The first line of the defence 
system protects the mammalian body from exposure to several airway 
microorganisms by producing nonspecific host defence antimicrobial 
peptides (HDPs) or antimicrobial peptides (AMPs) [19]. HDPs are pro-
duced by the invertebrate’s tracheal mucosa lining, lungs, intestine, 
skins, mammary gland, and reproductive organs. 

Mammalian AMPs are broadly classified into two principal cate-
gories, Cathelicidins (LL-37) and Defensins. The cathelicidin family 
embraces small cationic peptides, synthesised and stored in neutrophils 
and macrophages. They are part of the innate immune system and are 
generally proteolytically active proteins. Cathelicidin LL-37, an α-helical 
AMP, binds to viral glycoproteins and prevents virus cell entry [20]. 
However, defensin is a family of AMPs consisting of 6 cysteine residues 
that form 3 disulfide bonds and contain three subfamilies: α-defensins, 
β-defensins, and θ-defensins. All of these three differ from each other in 
the arrangement of disulfide bonds. These are found in tissues involved 
in the host immune response against microbial infections and are 
abundant in leukocyte granules. The α-defensins are present in several 
mammalian groups. Defensins are small cysteine-rich cationic peptides 
with a broad range of antimicrobial activity against bacteria, viruses, 
mycoplasma, tumour, and fungi. Defensin acts on the membrane or 

envelopes wall by its amphipathic nature [16–18]. 

1.4. General mechanism of actions 

Defensins are antimicrobial peptide that takes part within the innate 
immunity of hosts. Humans have constitutively and/or inducible 
expression of α- and β-defensins known for their antiviral and antibac-
terial activities. The innate immune reaction incorporates the genera-
tion of complements proteins and interferons (IFNs). AMPs are vital for 
controlling contagious diseases and actuating adaptive immunity. It also 
acts as multifunctional peptides that participate in the disposal of 
pathogenic microorganisms, including bacteria, viruses, and fungi. In 
specific, defensins, which are significant AMP families in warm-blooded 
animals, contribute to the innate antimicrobial response by disrupting 
the cell wall of pathogens. The classical mechanistic step of cationic 
AMPs, such as defensins, is the disturbance of the anionic bacterial 
membrane [21]. That way, bacterial destruction occurs by the interac-
tion between the electrostatic forces of positively charged amino acids 
within defensin(s) and the negatively charged on the cell surface [22]. 
Since the external surface of all microbes contains a negative charge 
(due to the presence of teichoic acids and/or lipopolysaccharides), 
positively charged and hydrophobic AMPs (in specific, defensins) 
nonspecifically “accumulate” on the surface of both gram-negative and 
gram-positive microorganisms. The antibacterial action of defensins is 
believed to be related to the membrane permeabilisation of microor-
ganisms [23]. Nevertheless, a few AMPs have been found to use 

Fig. 2. A. The structure composition of COVID19. B. The S glycoprotein of the newly discovered SARS-CoV2 is composed of two subunits, S1 and S2, and is 
commonly represented as a sword-like spike. The Protein Data Bank (PDB) model of this glycoprotein reveals how the subunits comprise different regions that are 
fundamental to the infection process. S1 and S2 are linked together by a polybasic amino acid bridge, which may be necessary for studying viral targeting. C. 
Mechanism of SARS-CoV-2 Viral Entry. D. This pathway overview the coronavirus replication cycle. The figure depicts viral development from initial binding and 
release of the viral genome to eventual exocytosis of the mature virion. 
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alternative components of antimicrobial activity [24–27]. It has 
appeared that HNP-1 can hinder the synthesis of the bacterial cell wall 
by interacting with the forerunner of lipid II [28]. 

In a more elaborated way, bacterial layers are wealthy in negatively 
charged phospholipids, such as phosphatidylserine (PS), phosphatidyl- 
glycerol (PG), and cardiolipin (CL), which are further stabilised by 
divalent cations such as Ca2+ and Mg2+ ions. However, Gram-negative 
bacteria have an external membrane rich in an extra lipopolysaccha-
ride, which stands as a barrier to the cytoplasmic layer. On the other 
hand, human cells are wealthy in neutrally charged phospholipids, such 
as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and 
sphingomyelin (SM). This difference in membrane composition between 
humans and microbes makes AMPs exceedingly particular against mi-
crobes [29]. 

Three electrostatic models explain the action of AMPs on bacterial 
membranes: (1) the carpet model, which proposes that peptides are 
retained parallelly in the bilayers and, after accomplishing an adequate 
coverage, generate a cleanser effect and devastate the membrane; (2) the 
barrel stave model, in which peptides would be introduced perpendic-
ularly within the bilayers, coalescing together to create a pore; and (3) 
the toroidal pore model, which suggests that peptides are presented 
perpendicularly in the lipid bilayer and produce a territorial membrane 
curvature, where a pore is shaped by both peptides and phospholipid 
head bunches [30,31]. For instance, the HNP-1 mechanism of action 
against E. coli contrasts against S. aureus (destruction of cell layer vs 
confinement of bacterial wall forerunner lipid II). HD-5 is successful in 
killing both gram-positive and -negative bacteria by increasing bacterial 
membrane penetrability. It has moreover been reported that HD-5 can 
bind to DNA and restrain cell replication. One component of the activity 
of HD-6 is the formation of nanonets and the capture of bacteria before 
they make physiological contact with epithelial cells, which anticipates 
bacterial attack [29]. Simultaneously, two mechanisms have been re-
ported for hBD-3, the devastation of bacterial membrane and interaction 
with lipid II forerunner. A decrease of hBD-1 disulfide bridges increases 

its activity against pathogens. The recently detailed mechanism of action 
proposes that it forms extracellular traps (web-like structures containing 
AMPs) with neutrophils that capture and annihilate bacteria. hBD-2 acts 
by binding to negatively charged film phospholipids, inducing efflux of 
intracellular components and leading to cell death [32]. 

Although the expression of defensin genes is tightly controlled by 
cytokines as a candidate of the host defence and is suppressed by 
different virulent components of pathogens [33], it is critical to note that 
recently defensins were reported to regulate adaptive immunity by 
activating the recruitment and enactment of immune cells through 
various pathways connected with innate immunity [34]. For example, 
HBDs are chemotactic for immature dendritic cells (DCs) and memory T 
cells to the location of pathogen invasion by association with CCR6 and 
advance the adaptive resistant reaction by enlisting resistant cells [35, 
36]. 

1.5. Defensins: The antiviral specific function and mechanism of action 

Defensins mainly act by removing the pathogens through membrane 
depolarisation, opsonisation of immune cells, cytokines stimulations, 
and inhibiting replication by inhibiting nuclear enzymes [16–18]. Six 
α-defensins (HNP1, HNP2, HNP3, HNP4, HD5, and HD6) and ~37 
β-defensins are reported in humans. In that HNP1, HNP2, HNP3, HNP4 
are produced by granulocytes, and HD5 and HD6 are reported in in-
testinal tissues. α-defensin consists of three exons encoding for UTR 
regions, signal peptide, and mature functional peptide. α-defensins 
attract the antigen-presenting cells at the site of infection by enhancing 
the expression of IL-10, ICAM-1, CD11b, CD11c, cytokines, and che-
mokines. These physiological altered cytokines and chemokines activate 
the immature or non-functional T-cells, natural killer cells, neutrophils, 
and dendritic cells, eliminating the viral pathogens by inducing humoral 
and adaptive immunity [37,38]. β-defensin consists of two exons 
encoding for the signal peptide and mature functional peptide. Both α 
and β defensins are primarily produced as pre-propeptide, later 

Fig. 3. The illustration for the mechanism of actions of defensin peptides against pathogens and related activation of cytokines and cell types.  
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enzymatically cleaved to generate mature active peptides [37,39]. High 
concentrations of beta-defensins are associated with psoriasis, autoim-
munity, and cytotoxicity [40]. It was found that using the 
bio-computational analysis of antimicrobial peptides databases has 
seven AMPs AP00180, AP00223, AP00225, AP00549, AP00729, 
AP00744, and AP00764, which bind most potentially to the MERS-CoV 
spike proteins and could appear biomarkers for the early diagnosis of its 
infections [3]. 

However, defensin’s action on the virus is not directly related to 
membrane depolarisation as in bacteria. It acts as a linkage between 
immune surveillance and viral infections. Human beta-defensin 2 
(HBD2) and HBD3 peptides are induced by inflammatory cytokines 
upon the pathogens invading (Fig. 4). HDP initially is reported as an 
antiviral peptide against the Herpes simplex virus (HSV). The constitu-
tive expression of broad-spectrum of nonspecific HDPs in the in-
vertebrates is a natural barrier for preventing bacteria, viruses, and 
other pathogens. 

Nonetheless, even though the defensins are present, we still get in-
fections; this raises the question of whether the body needs to produce 
more defensins or needs supportive adjuvants/vaccines to eliminate 
pathogens? [40]. In this regards, the recent studies on subunit vaccines 
report that defensin or peptides act as an excellent adjuvant to boost 
humoral and cellular immunity. It assists in eliminating the invading 
pathogens when supplied along with the vaccine. HBD 2-conjugated 
S-protein receptor-binding domain (S-RBD) elevated the expression of 
antiviral cytokines such as IFN-β, IFN-γ, PKR, RNase L, TNF-α, IL-1β IL-6, 
and NOD2. It also induces the activation of immune cells such as natural 
killer cells, T-cells, dendritic cells, macrophages, granulocytes, and 
higher S-protein neutralising antibodies than alone S-RBD. 

HNP1-3 defensins inactivate the different categories of viruses like 
herpes simplex virus-1 (HSV-1), HSV-2, IAV, and vesicular stomatitis 
virus in physiological conditions based on in-vitro assays [41]. The re-
sults showed that HNP1 and HD5 lead to aggregation of BK poly-
omavirus and restrain its early replication [42]. hBD-1 and hBD-3 show 

intense antimicrobial activity against respiratory infections [43,44]. 
TNF-α- and IFN-γ induced HBD2, and HBD3 antimicrobial peptides bind 
to the CCR6 receptor of APCs cells and directly link innate and adaptive 
immune systems. In atopic dermatitis (AD) and cystic fibrosis (CF) dis-
eases, HBD2 and HBD3 expressions are inhibited by IL-4 and IL-13 
induced STAT-6 mediated suppressors of cytokine signalling-1 
(SOCS-1) and SOCS-3 pathways [45]. 

Other organisms like equine beta-defensins 1 (eBD1), eBD2, and 
eBD3 are induced in the respiratory tract in response to equine herpes 
virus infections [46]. Porcine β-defensin 2 affects bacteria and pseu-
dorabies virus [47]. P9 peptide derived from mouse β-defensin-4 makes 
aggregation with viral glycoproteins, which prevent virus RNA release, 
and P9 has reported a broad range of antiviral properties against various 
respiratory viruses, including MERS-CoV, SARS-CoV, H7N9, IAV, H1N1, 
H5N1, and H3N2 [48]. The rat beta-defensin-2 and IL-22 emerged 
biomarkers for the multidrug-resistant Klebsiella pneumonia bacterial 
infection [49]. The primates (non-human) θ-defensins mimic synthetic 
retrocyclins such as hapivirins, and diprovirins peptides neutralise the 
viruses, including H3N2, HIV-1, IAV, H1N1, HSV-1, and SARS-CoV [50] 
(Fig. 4A). 

There are different modes and determinants of defensin binding to 
viruses. First, defensins interact with lipid bilayers, which is encouraged 
by the presence of adversely charged phospholipids. Four of the 
α-defensins (HNP1-3 and HD5) and HBD3 are lectins capable of binding 
to glycoproteins and glycolipids. Moreover, defensins can interact with 
protein–DNA or protein-protein interactions. Since they are cationic and 
amphipathic, defensins can bind with ligands through both charge–-
charge and hydrophobic interactions. Defensin oligomerisation, partic-
ularly for α-defensins, and conformational stability conferred by 
disulfide bonds further impact binding. Each of these interactions con-
tributes to the antiviral action of defensins, and their relative signifi-
cance depends on the specific virus/defensin combine beneath 
examination (Fig. 4B). 

Moreover, direct interactions between defensins and structural 

Fig. 4. A. Antiviral action of defensins and how it involves in the inhibition of the enveloped and non enveloped viral based infections. B. Different modes of action as 
an antimicrobial peptide in the bacterial cell. 
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components of the viruses, especially the lipid bilayer of encompassed 
viruses, may devastate or destabilise the virus and render it non- 
infectious. In contrast, numerous defensin generates multimeric struc-
tures, which have been illustrated in both crystal structures and 
arrangement. Interactions between defensin peptides to neighbouring 
viruses will cause virions to be aggregate. For instance, it has been 
demonstrated for IAV by HNP1 and HNP2 and for HAdV-5 and BKV by 
HD5 [51]. Likewise, defensin binding to viral proteins could disrupt 
receptor interactions critical for viral entry into the cell. HNP1-3, HD5, 
and HBD3, for example, bind with recombinant viral glycoprotein (gB) 
of both HSV-1 and HSV-2 to prevent adhesion. Also, HNP4 and HD6 
inhibit HSV-1 and HSV-2 infection but could not interact with viral 
glycoproteins [52]. HNP4 and HD6 bind to heparan sulfate, the receptor 
for attachment, as well as other glycosaminoglycans. HBD3 is the only 
defensin capable of interacting with both host cell receptors and viral 
glycoproteins. Additionally, HNP1-4 interacts with HIV-1’s gp41 and 
gp120 and the cell surface receptor CD4 [53,54]. 

Nevertheless, defensins have the opportunity to neutralisation the 
virus even after entry or post-entry. Infection is not completed by just 
penetrating the host cell membrane. Viral transcription, protein pro-
duction, assembly, and departure must all happen to achieve a replica-
tive cycle. These steps allow defensins to block viral infection by 
focusing on the virus, mainly targeting the cell. For instance, HNP2 and 
HD5 can interact with HSV-2 DNA and conjecture that this seems to 
contribute to inhibition by blocking gene expression, even though a 
post-transcription block by an unknown mechanism [55]. Moreover, 
numerous types of papillomaviruses are sensitive to HNP1-4 and HD5. 
The only known step that is currently hampered is the nuclear local-
isation of the HPV-16 genome, the final phase in the virus entry pathway 
[56]. Unlike the case for HAdV-C neutralisation, the HPV genome is 
exposed beneath HNP1 and HD5 neutralisation conditions, implying 
that virus uncoating occurs in the presence of the defensins [56,57]. 
Defensin’s antiviral mechanisms are targeting the host cell by blocking 
fusion by cross-linking host proteins. Instead of focusing on viral fusion 
proteins to block, the enveloped virus fused with the host cell. Whereas 
the HBD3 and an engineered human θ-defensin called retrocyclin 2 
appeared to repress IAV fusion cross-linking host glycoproteins [58]. 
Retrocyclin 2 and HBD3 binding restrain the mobility of host surface 
proteins within the early viral fusion pore region, limiting its maturation 
to complete fusion. 

Numerous viruses regulate the protein kinase C (PKC) signalling 
amid entry and infection: HIV-1 requires phosphorylated PKC for viral 
fusion, transcription, integration, and gathering [59,60]. IAV requires 
PKC for endosomal elude and nuclear entry [61,62]. HSV requires PKC 
for cell entry and nuclear departure of the viral capsid [63,64]. As 
HNP1-3 is known to hinder the action of PKC in vitro [65], modifying or 
interfering with this cellular signalling pathway may be another 
defending mediated antiviral mechanism, which clarifies the post-entry 
block to infection watched for some viruses. HNP1 treatment of cells 
earlier to or during infection with either IAV or HIV-1 diminishes the 
levels of phosphorylated PKC. 

Cell signalling pathways interceded by the chemokine receptor CCR6 
moreover play a part in defensin-mediated HIV inhibition. HBD2 is 
known to bind CCR6 and has been appeared to initiate expression of host 
restriction factor APOBEC3G (apolipoprotein B mRNA-editing chemical, 
catalytic polypeptide-like 3G) that has antiviral action against HIV [66, 
67]. Thus, defensins can both repress cellular pathways required for 
viral infection and enact intracellular antiviral mechanisms. The 
importance of defensins in viral pathogenesis in vivo has been demon-
strated earlier. For instance, administration of rhesus θ-defensin pro-
tected mice from lethal SARS coronavirus challenge without affecting 
lung viral titers, likely due to a decrease in immunopathology within the 
treated animals [68]. There is no illustration of a direct role for 
endogenous defensins in blocking virus infection in vivo; in huge part, 
the lack of a complete defensin knockout animal demonstrates model 
generation [69]. 

1.6. Defensins against SARS-CoV 

The lectin-like human α defensin 5 (HD5) and HD6 peptides protect 
intestinal infections. Lectins are proteins or glycoproteins that specif-
ically bind to carbohydrates present on the glycoproteins surface. 2019- 
nCoV S-proteins and its intestinal receptor ACE2 both are glycosylated 
proteins. HD5 binds to the ligand-binding domain (LBD) of ACE2 gly-
coproteins and masks its availability to enter the 2019-nCoV virus. This 
interruption between viral glycoproteins and cellular receptors activates 
the adaptive immune antigen-presenting phagocytes cells and interferes 
with nuclear enzymes that prevent viral cellular replication (Park et al., 
2018). Human neutrophil peptide-4, bovine beta-defensin 1, HD5, HD6, 
rat neutrophil peptide 1 (RNP-1), RNP-2, chicken avian beta-defensin 5 
(AvBD5), AvBD6, and channel catfish beta-defensin peptide have the 
antiviral activity against the Middle East Respiratory Syndrome Coro-
navirus [3]. HNP1-6, HD5-6, and HBD2-3 defensins remove the viruses 
by getting in the way of viral entry, membrane destabilisation, 
immune-modulating, downregulating receptors and ligands such as 
ACE2, CD4, CCR6 CXCR4, CXCL & CXCL5, lysosome fusion, inhibiting 
essential proteases, central dogma enzymes, and post assembly of virion 
particles [37,70]. 

Bio-computational designed Brilacidin is a synthetic non-peptide 
defensin mimic drug that destabilises the viral membrane by its 
amphipathic & hydrophobic nature, and its immunomodulatory prop-
erty influence the expression of IL-1β, IL-6, TNF-α cytokines, and cAMP& 
PDE4/PDE3 pathways which are associated with bronchodilator and 
anti-inflammatory effects of COVID-19 disease. The smaller size, more 
effective antimicrobial activity, bioavailability, low enzymatic degra-
dation and toxicity, natural and low-cost production make the Brilacidin 
a most potent drug against SARS-CoV-2 than the known antiviral drugs. 
Dalbavancin, Telavancin, Oritavanci, and Roflumilast are other Brila-
cidin like drugs used for MERS, SARS, and SARS-CoV2 viral inhibitions 
[71]. Rhesus macaque’s leukocytes express θ-defensin1 (RTD-1) and 
RTD-2 antimicrobial peptides in response to viral infections. HD5-6, 
HNP1-6, HBD2-6, and retrocyclin-2 inactivate the various enveloped 
and non-enveloped virion particles by interrupting virus pre and 
post-entry steps, chemokines, and cytokines immunomodulation, 
chemotaxis of immune cells [72]. 

1.7. Secondary infection or co-infections 

The secondary infection or co-infections of other harmful pathogens 
have reported respiratory system infecting viruses such as SARS, MERS, 
and Spanish influenza. Coronaviruses majorly affect the respiratory and 
intestinal systems and thus cause the suppression of immunity. The 
chance of secondary bacterial or fungal infections increases when the 
patient suffering from low immunity, especially individuals with hepa-
titis or diabetes, could face dangerous high complications like ketoaci-
dosis and inflammations [73–75]. 

The Spanish influenza pandemic was reported for co-infections of 
severe bacterial species. The significant co-infections of negative bacilli 
bacteria and Candida fungus in the lower respiratory tract were reported 
in the SARS virus infection [75]. As the SARS-CoV-2 pandemic spread 
across the world and caused hundreds of thousands of infections and 
death cases, it has been predicted that more substantial secondary 
infection threats are lurking behind SARS-CoV-2 infections [76]. The 
respiratory COVID-19 lung infection predisposes to bacterial and viral 
infections such as Streptococcus pneumoniae, S. aureus, Escherichia coli 
Klebsiella pneumonia, Enterococcus, and Influenza [77]. Another risk of 
hidden threat is increasing the multidrug resistance in the secondary 
infections causing bacterial species. 

In this regard, defensins are known for their broad range of antimi-
crobial activities, immune stimulations, and non-resistance to drugs. 
Porcine IL-22 (pIL-22) induces the expression of the beta-defensin 2, IL- 
18, and IFN-l against invading porcine epidemic diarrhoea virus (PEDV), 
porcine rotavirus (PoRV), and enteric coronaviruses infections [78]. 
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RBD conjugated HBD2 influences innate immunity and enhanced 
adaptive immunity by increasing the expression of proinflammatory 
cytokines such as IFNs and nod2 in the case of MERS-Cov respiratory 
viral infections [79]. RBD specific REGN3048 and REGN3051 antibodies 
inhibit the MERS-CoV infection [80]. Temporins AMPs have MERS-CoV 
binding properties [81]. Defensin 4, bactericidal-permeability 
increasing protein (Bpifa1), and cathelicidins antimicrobial peptide 
activate the phagocytic macrophages and dendritic immune cells in the 
IAV infections [82]. 

The recognition of PAMPs by TLRs guides the synthesis of cytokines, 
chemokines, and defensin AMPs by activation of MAP kinase and NFk 
cascades. In this way, the increased expression of defensin recruits the 
adaptive immune cells at the site of infections [83]. The direct associ-
ation of HNP1 and HNP5 alfa-defensins with pVI capsid protein inhibits 
the disassembly of adenovirus. HNPs affect the influenza viral replica-
tion and immune system by interfering with the host protein kinase C 
pathway and the hemagglutination-inhibiting activity of surfactant 
protein D. HNPs has also been reported for their involvement in the 
aggregation of IAVs and bacteria, which increase their uptake by im-
mune cells [84–87]. Nine human defensins have been reported to 
interfere with herpes simplex viral cellular entry [88]. HD5 defensin 
directly binds to the BK virus (BKV) and involve in the virion aggrega-
tion uptake by immune cells the immune cells’ virion aggregation up-
take [42]. Theta-defensin decreases the ICP4 expression and VP6 protein 
transport of HSV [89]. hBD2 and hBD3 affect the early transcription of 
X4 and R5 HIV viruses [90]. The lectin binding domains of HNP1 & 
HNP4 binds to the O- and N-glycosylated HIV-gp120 protein receptors 
and interferes with the nuclear protein kinase C signalling for the syn-
thesis of cytokines and chemokines [72]. Defensin adjuvant with HIV 
peptide interacts with CCR6 receptors induces the recruitment and 
proliferation of T-cells, dendritic cells, and macrophages [91]. The 
combination of inactivated fowl virus, Poly di-sodium carbox-
ylatoethylphenoxyphosphazene (PCEP), and avian beta-defensin have 
shown active and more extended antibody response in chicken [92,93]. 
Similarly, murine beta-defensin 2 with a combination of hemagglutinin 
and nucleoprotein induce active immunisation against highly patho-
genic H5N1 influenza lung infection [94]. Bacterial titer and infection 
increase in the trachea region of the mBD1- deficient mice [95]. 

1.8. Defensins based treatment options 

There is an urgent requirement to find out well-choreographed drugs 
or vaccines by bioinformatically and wet-lab experimentally [8]. 
Computational homology and molecular docking analysis found that 
orf1ab, ORF3a, ORF8, ORF10, and surface proteins bind to the 
heme-porphyrin ring and beta chain-1 haemoglobin. It could affect the 
less haemoglobin availability for oxygen transportation which results in 
inflammation in the respiratory tract. Few viral drugs such as Chloro-
quine and Favipiramir were found to prevent orf1ab, ORF3a, ORF7, 
ORF10, surface proteins, and envelope proteins binding to the heme 
group relieving from respiratory distress [96]. Most of the viruses have 
similar kinds of functional protein machinery for viral replication and 
transcription. Several reported drugs inhibit viral entry, replication, 
transcription, translation, metabolism, virion assembly, and new viron 
releasing from infected cells. The reported viral inhibitors are Remde-
sivir [97,98] lopinavir [97,99–101], ritonavir [100,101], nelfinavir 
[102,103], Chloroquine, arbidol [104,105]. Baricitinib [106], Amanta-
dine [107], Hexachlorophene, Hydroxychloroquine, Ribavirin [108], 
Zanamivir, Efavirenz [109], Oseltamivir [100], 2′-Deoxy-2′-fluor-
ocytidine [110], Peramivir [111], Darunavir [101], Umifenovir [101], 
Favipiravir [101], Dolutegravir, Acyclovir [112], Ganciclovir [112], 
Atazanavir [113], Piscidin, caerin, maculatin [114], and Rifampicin 
[115] could be effective against SARS-CoV-2 virus. British pharmaceu-
tical company GlaxoSmithKline (GSK), a British pharmaceutical com-
pany, and Coalition for Epidemic Preparedness Innovations (CEPI) 
collaboratively are working on adjuvants vaccine for SARS-CoV2 [49]. 

The available SARS-CoV-2 genomes in public databases (MN975262.1, 
MN985325.1, MN938384.1, MN997409.1, MN994467.1, MN994468.1, 
MN985325.1, MN988668.1, MN988669.1, MN988713.1, MN908947.3, 
and NC_045512.2) could be used for immunoinformatic designing of 
B-cell and T-cell multi-epitopes with adjuvants for the development of 
the viral vaccine, drugs [116–118]. 

Serine endoprotease furin disrupts S-protein and RNAi targeting 
structural genes. Notably, Remdesivir & Chloroquine inhibit the viral 
replication-transcriptional events by interfering with nucleic acid me-
tabolisms. The DRACO (dsRNA-activated caspaseoligomerize) induce 
virus-infected cell apoptosis, naphthalene inhibitors targeting Corona-
virus proteases, a monoclonal antibody against S1-RBD motif, and in-
hibitors against S2 C-terminal membrane fusion could be important 
targets for the anti-SARS-CoV viral drugs [119,120]. Human defensin 
HD5, hBD1-3, and P9-peptide (mouse β-defensin 4) have immunomod-
ulatory and immunoenhancing properties make them attractive broad 
range antiviral therapeutic adjuvant choice for the development of a 
viral vaccine against enveloped and non-enveloped viruses such as 
human immunodeficiency virus (HIV), dengue virus (DENV), influenza 
A virus (IAV), respiratory syncytial virus (RSV), MERS-CoV, SARS-CoV, 
and 2019-CoV-2 [3,37]. 

1.9. Advantages of defensin-mediated viral defence over other antiviral 
drugs and vaccines 

Over the past years, only limited new antibacterial and antiviral 
drugs have arrived in the pharmaceutical industry [121]. Despite 
worldwide inventiveness for developing a superfluity of synthetic and 
semi-synthetic drugs, drug resistance is still endured as one of the pre-
mier health problems and constitutes challenges for prosperous combat 
against most of the pathogenic infections. Consequently, there is a 
growing requirement for identifying and characterising new potential 
drugs and therapeutic targets from natural mechanisms. Contrarily 
gradual increment in antimicrobial resistance leads to diminished 
treatment effectiveness and increment within the duration of treatment, 
an increment in mortality, and budgetary costs on treatment [122,123]. 
For illustration, 19,000 individuals pass on every year from diseases 
caused by methicillin-resistant strains of Staphylococcus aureus (MRSA) 
within the United States [124], whereas the yearly monetary costs on 
the treatment of this infection contain $3 billion. Agreeing to the most 
recent report from the Centers for Disease Control and Avoidance (USA), 
the money-related burden related to increasing microbial resistance 
comprises almost $55 Billion and 8 Million extra bed days [125]. It is 
evaluated that by 2050, more than 10 million individuals will pass on 
annually from diseases caused by safe strains, and by that time, the 
worldwide economy will lose about US $100 trillion due to this issue 
[126]. 

The development of resistance occurs due to different causes and 
molecular processes. The widespread antimicrobial resistance is two 
factors—mutations and horizontal gene exchange [127]. This is also a 
characteristic of the frequent natural evolutionary process of adaptation 
of microorganism contact with substances with antimicrobial properties 
[128]. Since the human body is in continuous contact with a vast 
number of pathogenic and non-pathogenic microorganisms, natural 
systems have carried on with evolution over thousands of years to 
thwart numerous pathogenic microbes. Within the preparation of 
advancement, defence mechanisms have formed that permit, to begin 
with, to identify the pathogen and, if required, work out adequately to 
control microorganism advance entrance and spread. These errands are 
fulfilled through innate immunity, which can immediately recognise 
and destroy infectious operators of different nature [129]. However, the 
main imperative component of innate immunity is antimicrobial pep-
tides (AMPs). For instance, Defensins are innate defence molecules of 
the ancient root that can be followed back to living beings from 
approximately 500 million a long time ago [130–132]. 

AMPs have a broad range of antimicrobial action against different 
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infectious operators: bacteria, viruses, parasites, and protozoa. Among 
the six kingdoms (archaea, microbes, protists, fungi, animals, and 
plants), more than 3000 AMPs have been recognised until now [133]. 
Among AMPs of incredible intrigued are human defensins: human 
beta-defensin-1 (hBD-1), human neutrophil peptide-1 (HNP-1), and 
human beta-defensin-3 (hBD-3), since they have a wide range of anti-
microbial action [134,135]. 

1.10. Limitation 

Many specified mechanisms make defensins a great candidate for 
future medications, but certain drawbacks delay their development as 
genuine pharmaceuticals. These problems include the rapid turnover 
within the human body, high cost of generation, osmotic sensitivity, and 
nonspecific haemolytic activity on human cells; the last affects directly 
clinical trials, which need vast amounts of material. These physico-
chemical properties have delayed the introduction of defensins and 
other AMPs as medicine. Before utilised in clinical applications, trans-
portation, steadiness within the human body, targeted delivery, 
controlled release, and immunogenicity of these peptides must be 
improved. To overcome these challenges, much effort has been put into 
progressing the deep plasma proteomics, peptides’ half-life using 
different approaches, such as by design of peptidomimetics, counting 
cyclisation, lipidation, an amalgamation of hybrid peptides, or utilise of 
nanocarriers [29,136–138]. 

Although, insertion of native AMPs into clinical use as a mono-
therapy for bacterial diseases features several constraints: for instance, 
synthesis expense, cytotoxicity for macroorganism, immunogenicity, 
hemolytic activity, and pharmacokinetic specifics [139,140]. Other 
methods should be used to understand these issues: such as modifying 
provincial AMPs or designing primitive antimicrobial peptides [139] 
and utilising local AMPs at minimum dosages in combination with 
conventional antimicrobial synthetic drugs [135,141]. 

2. Conclusion 

Defensins act as short cationic broad range immunostimulators to 
activate innate and adaptive immunity in response to infectious dis-
eases. In respiratory viral infections, defensin abolishes viruses by 
inhibiting their entry, interfering with replications, and producing in-
terleukins, cytokines, and chemokines. Also, stimulate to down-regulate 
the receptors essential for viral survival leading to the death of virus 
particles. Respiratory viral infection invites secondary bacterial in-
fections, and the involvement of both viral and bacterial attacks makes 
the body’s immune system weak. In that context, defensins might act as 
a helpful adjuvant when conjugated with viral proteins such as HBD2-S- 
RBD immunogens raised the expression of antiviral cytokines and im-
mune cells than alone S-RBD. HD5-LBD of ACE2 glycoproteins could be 
adjuvant to raise an antibody against the 2019-nCoV virus. Several 
human defensins were reported for their antiviral activity against 
enveloped and non-enveloped viruses. These characteristics make them 
a promising adjuvant for the development of viral vaccines against 
COVID-19. 
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