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Abstract

Ovarian cancer’s poor progression is closely associated with overexpression of matrix

metalloproteinase 9 (MMP-9), which belongs to the class of enzymes believed to be

involved in the degradation of extracellular matrix. However, the mechanisms underlying

regulation of MMP-9 are not completely understood. STAT (signal transducer and activator

of transcription) family of transcription factors is well known to be engaged in diverse cellular

functions. Activation of STAT3 has been observed in a number of cancers, promoting tumor-

igenesis and metastasis via transcriptional activation of its target genes. In this study, we

tested our hypothesis that STAT3 regulates MMP-9 gene expression in epithelial ovarian

cancer. Using epithelial ovarian cancer cell lines as in vitro model, we show an abundance

of phosphorylated STAT3 at Tyr705 (p-STAT3) in SKOV3 cell line. We further show that

MMP-9 gene promoter was significantly enriched by p-STAT3, and IL-6 treatment led to a

significant increase of MMP-9 at mRNA and protein levels, in addition to an association of p-

STAT3 with MMP-9 gene. By using luciferase reporter assay, we determined that the

STAT3 DNA responsive element of MMP-9 was sufficient to regulate transcriptional activity

of a heterologous promoter. These results suggest that the phosphorylation of STAT3 regu-

lates MMP-9 production in ovarian cancer, which might be responsible for its invasiveness

and metastasis.

Introduction

Epithelial ovarian cancer (EOC) is one of the leading causes of cancer-related deaths in indus-

trialized countries [1]. Despite advances in early diagnosis and treatment, the 5-year survival

rate of ovarian cancer patients has not significantly improved. In the United States, a signifi-

cantly high number of patients die of ovarian cancer each year [2]. This is simply due to lack of

complete understanding of the etiological factors underlying ovarian carcinogenesis, local

invasiveness and distant metastasis. The most commonly administered chemotherapy for the

treatment of ovarian cancer is a combination of carboplatin and paclitaxel [3, 4]. Up to 80% of

the patients initially respond well to this therapy [5, 6], however, a majority of patients suffer

from recurrence and often die due to local and distant metastasis. Obviously, identification of

novel drug targets and subsequent development of novel therapeutic approaches is needed.
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In normal physiological processes, matrix metalloproteinase (MMP) family is closely asso-

ciated with the degradation of extracellular matrix. This includes tissue remodeling as well as

numerous pathological processes, which are exemplified by arthritis and malignant metastasis

[7–11]. MMPs and vascular endothelial growth factor have been reported to promote tumor

invasion and angiogenesis. MMP-9, a widely investigated MMP, is actively engaged in patho-

logical remodeling processes that are comprised of inflammation and metastasis. In addition,

MMP-9 directly breaks down extracellular matrix (ECM) proteins and increases cytokines and

chemokines for regulation of tissue remodeling. MMP-9 depletion has been proven overall

beneficial in multiple animal models of cancer diseases [10]. To this end, molecular characteri-

zation of MMP-9 regulation is critical for development of novel therapeutic approaches for

treatment of ovarian cancer.

STAT family belongs to intracellular transcription factors that mediate many physiological

and pathological processes, including cell proliferation, differentiation and apoptosis. Activa-

tion of STAT3, a prominent member of STAT family, is implicated in cell differentiation,

development, proliferation, inflammation and apoptosis [12–14]. Enhanced activity of STAT3

has been observed in a wide variety of human tumors, as a means for the cancer cells to escape

therapeutic insult, and survive. These include hematologic as well as solid malignancies [15].

Cytokines and growth factors lead to phosphorylation of STAT3 by receptor-associated Janus

kinases, leading to formation of homo- or heterodimers, and translocation of STAT3 to the

nucleus where it functions as a transcription activator [16]. In response to ligands (interferons,

epidermal growth factor and interleukins), STAT3 is activated by phosphorylation at tyrosine-

705 (Tyr705).

In the present study, we tested whether STAT3, phosphorylated at Tyr705, functions as a

transcriptional activator, for positive regulation of MMP-9 in epithelial ovarian cancer. We

show that depletion of STAT3 leads to down-regulation of MMP-9, but IL-6 treatment results

in an increased phosphorylated STAT3 at Tyr705 (p-STAT3) and MMP-9, at mRNA and pro-

tein levels. Our results support that p-STAT3 may represent a potential therapeutic target in

epithelial ovarian cancer.

Materials and methods

Epithelial ovarian cancer cell lines

The epithelial ovarian cancer cell lines SKOV3[17], RMG-1, MCAS, and RMUG-1 [18], and

HEK293T cells were obtained from ATCC (Manassas, VA), and cultured in RPMI-1640 media

containing 10% FBS at 37˚C and 5% CO2 prior to further analysis.

Antibodies and reagents

Antibodies for Western blot included anti-STAT3 (Millipore), p-STAT3 Tyr705 (Cell Signal-

ing), anti-MMP-9 (Santa Cruz Biotech, TX), and anti-GAPDH (Sigma-Aldrich, MO). Recom-

binant human interleukin-6 (IL-6) was purchased from Sigma-Aldrich.

Gene silencing

Cells were plated in 6-well culture plates in 3 ml of RMPI-1640 media containing 10% FBS,

and transfected for 48 hours, using FlexTube siRNA (Qiagen, Valencia, CA) targeting STA-

T3-Lipofectamine 2000 (3μl; Invitrogen), as per manufacturer’s instructions with a final con-

centration of siRNA at 50 mM. A non-targeting siRNA was used as a negative control.
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Reverse transcription PCR (RT-PCR)

We extracted total RNAs using Trizol (Invitrogen, CA). Total cDNA was synthesized using

oligo-dT/random primers and Superscript II Reverse Transcription kit (Invitrogen) for detec-

tion of target mRNAs. Quantitative PCR was performed on ABI StepOne qPCR System (ABI,

USA). The following primers (forward/reverse) were used: MMP-9: 5’- gggaagatgctgc
tgttca-3’/5’-tcaactcactccgggaactc-3’, STAT3: 5’-ggtgagacttgggctt
acca-3’/5’-ctttaatgggccacaacagg-3’; and GAPDH: 5’-cagtggtggacctg
acct-3’/5’-ctgtagccaaattcgttg-3’.

Immunofluorescent staining (IF)

4% paraformaldehyde (in PBS) was used to fix cells. This was followed by permeabilization in

0.5% Triton X-100 (in TBS) for 10 minutes at room temperature, washing with TBS and incu-

bation with p-STAT3 antibody at room temperature for 1 hr. Cells were washed once again

with TBS (containing 0.1% BSA) and then exposed to secondary antibodies (Alexa Fluor 488

goat anti-rabbit IgG) for 1 hr at room temperature. Finally, cells were stained with DAPI (Invi-

trogen) and visualized.

Chromatin immunoprecipitation (ChIP)

ChIP was conducted as previously reported [19]. Briefly, cells were cross-linked (using 1%

formaldehyde) and lysed (in ChIP lysis buffer: HEPES-KCl 50 mM, pH 7.5; NaCl 140mM;

EDTA 1mM; Triton X-100 1%; sodium deoxycholate 0.1% and SDS 0.1%). They were then

sonicated for the shearing of chromatin into smaller (200-500-bp) fragments. The generated

fragments were then immunoprecipitated with either control rabbit IgG antibody (Cell Signal-

ing) or ChIP-grade antibody (anti-STAT3; Millipore), and incubated with protein G agarose

beads (Roche Applied Science). This was followed by reversal of cross-linking by Proteinase K

treatment, and recovery of DNA. SYBR green dye (QIAGEN, Valencia, CA) was used to quan-

titate PCR products. Primers used for MMP-9 gene promoter were: 5’-tggggaggatatct
gacctg-3’/5’-ttgcaaactgcagagcttgt-3’.

DNA constructs

Two complementary DNA strands containing 3 copies of STAT3 putative target site at MMP-
9 gene promoter were synthesized from IDT DNA. These two strands at equal molar concen-

trations were denatured for 5 min at 95˚C and annealed at room temperature for 5 min. Then

the DNA fragments were cloned into luciferase reporter vectors (Promega, USA) immediately

upstream of TATA box of the firefly luciferase gene. Plasmid DNAs were validated by DNA

sequencing.

Dual luciferase assay

Dual luciferase assays were performed using Victor 3V (PerkinElmer, MA), following the

instructions from the vendor (Promega, WI).

Statistical analysis

The data were presented in Mean ± S.D. (N = 3). We used unpaired Student t test to compare

the test group with the control. p<0.05 was considered statistically significant.
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Results

STAT3 regulates MMP-9 in epithelial ovarian cancer cell

It has been previously reported that STAT3 was phosphorylated at Tyr705 in epithelial ovarian

cancer cells [20]. In this study, we first determined the abundance of STAT3, p-STAT3, and

MMP-9 in ovarian cancer cells. 4 ovarian cancer cell lines were cultured for the analysis. We

used Western blot and RT-PCR to assess protein and mRNA levels, respectively. As shown in

Fig 1A, while there was no obvious difference in total STAT3 protein and mRNA levels observed

among these cell lines, p-STAT3 and MMP-9 were significantly increased in SKOV3 cell line,

and there was a positive correlation observed between the abundance of p-STAT3 and MMP-9

(Fig 1A and 1B). Moreover, siRNA-mediated depletion of STAT3 caused a significant decrease

of MMP-9 in SKOV3 cell line (Fig 1C). These results suggest that STAT3 is constitutively phos-

phorylated/activated in SKOV3 cell line, MMP-9 gene is likely a target of p-STAT3, and SKOV3

cell line is a suitable model to study relation of p-STAT3 and MMP-9 gene expression.

Positive correlation of nuclear p-STAT3 and MMP-9 expression in

SKOV3 cell

STAT3 is a cytoplasmic transcription factor which is activated by phosphorylation, in response

to various stimuli. Once activated, it translocates to nucleus, leading to regulation of multiple

target genes [13]. To study the correlation between nuclear p-STAT3 and MMP-9 expression

level, we used IF staining to study cellular distribution of p-STAT3. As shown in Fig 2, p-

STAT3’s positive staining was predominantly observed in the nucleus of SKOV3 cells. How-

ever, in contrast, HEK293T cells rarely exhibited any nuclear staining of p-STAT3. In consis-

tent with this observation, the protein level of MMP-9 was remarkably increased in SKOV3

cells, but barely detected in HEK293T cells. These findings further support that constitutively

active STAT3 in SKOV3 cells might play a role in regulation of MMP-9 gene.

MMP-9 constitutes a direct target of p-STAT3 in SKOV3 cell

To experimentally validate that p-STAT3 directly targets MMP-9 gene, we first performed bio-

informatic analysis based on p-STAT3 DNA responsive elements, also known as gamma-acti-

vated sequence (GAS) (5’-TTCNNNGAA-3’) [21], and found a DNA sequence (5’-
TTCAGAAAGAAG-3’) at -406 of MMP-9 gene promoter (Fig 3A). Next, we used ChIP to ana-

lyze the interaction between p-STAT3 and MMP-9 gene with the use of PCR primers encom-

passing this putative GAS sequence. As shown in Fig 3B, MMP-9 gene promoter was

significantly enriched with STAT3 and p-STAT3, compared to that by normal rabbit IgG as

the basal control. Thus, we observed a positive regulation of MMP-9 by recruitment of p-

STAT3 in SKOV3 cells.

IL-6 stimulates MMP-9 production in SKOV3 cell

IL-6 is a factor known to be involved in the initiation and progression of ovarian cancer [22,

23]. It acts through activation of several signaling pathways, particularly, STAT3 pathway. In

order to assess the effects of IL-6 on phosphorylation of STAT3 at Tyr705, we incubated

SKOV3 cells with IL-6 for 24 hrs and then conducted Western blot, RT-PCT, and ChIP to

determine changes of STAT3, p-STAT3 abundances and their association with MMP-9 gene

promoter, respectively. As shown in Fig 4, IL-6 exposure led to accumulation of p-STAT3. In

addition, IL-6 treatment had no effects on STAT3 mRNA levels, but increased MMP-9 gene

expression. Moreover, IL-6 treatment resulted in a significant increase in interaction between

p-STAT3 and MMP-9 gene promoter.
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Fig 1. Expression of STAT3, p-STAT3, MMP-9 in ovarian cancer lines. (A) Total cell lysates were extracted and subjected to

immune-blot analysis. This gel pattern is representative of 3 independent experiments. (B) Total RNAs were extracted, and RT-PCR

performed for the determination of relative mRNA levels of MMP-9 and STAT3. * p< 0.01. (C) SKOV3 cells were transfected with

siRNAs targeting STAT3 mRNA (siSTAT3) and then Western blot was performed. This gel pattern represents from 3 independent

experiments. NS, non-specific siRNAs.

https://doi.org/10.1371/journal.pone.0183622.g001
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Taken together, we show that IL-6 exposure stimulates MMP-9 production via promoting

phosphorylation of STAT3 and its subsequent association with MMP-9 gene.

Fig 2. Intra-cellular distribution of MMP-9 and p-STAT3. Immunofluorescence staining (N = 3) was

performed in order to directly visualize the cellular distribution pattern of p-STAT3 and MMP-9 in SKOV3 cells

(A) or HEK293T cells (B). Original magnification, 200Χ.

https://doi.org/10.1371/journal.pone.0183622.g002
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GAS of MMP-9 regulate transcriptional activity of a heterologous

promoter

Three copies of GAS elements were placed upstream of a minimal promoter as previously

described, to make firefly luciferase reporter (FL) constructs. As shown in Fig 5, IL-6 was able

to stimulate FL activity by more than 3 fold. Therefore, we show that the GAS of MMP-9 is suf-

ficient to regulate transcription to a heterologous promoter.

Discussion

MMP-9 selectively degrades extracellular matrix (ECM), releasing several factors (such as,

growth factors and cytokines) that are present in the ECM. It also promotes tumor invasive-

ness and metastasis by cleaving cell surface proteins adhesion molecules [24]. To this end, tar-

geting the signaling pathway regulating MMP-9 would make an effective therapeutic approach

Fig 3. Association of p-STAT3 and MMP-9 gene promoters. (A) Schematic presentation of the putative GAS sequence at MMP-9 gene

promoter. (B) ChIP assay was carried out to determine the occupancy of p-STAT3 at MMP-9 gene promoter. Fold enrichment p-STAT3

was derived with normalization to a human α satellite. Rabbit IgG served as the non-specific control. The bars are indicative of the average

fold MMP-9 enrichment (Y-axis), and error bars represent standard deviation, as calculated from 3 independent experiments. * p < 0.01.

https://doi.org/10.1371/journal.pone.0183622.g003
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for treatment of ovarian cancer. Activation of STAT3 signaling is known to be important for

the oncogenic properties of cancer cells, including ovarian cancer cells. Effective inhibition of

Fig 4. IL-6 stimulated the expression of p-STAT3 and MMP-9 in SKOV3 cells. (A) Western blot analysis of lysates of cells

treated with or without IL-6 (N = 3). (B) RT-PCR was performed to determine mRNA level changes in response to IL-6 exposure

(N = 3); * p<0.01. (C) ChIP analyses were conducted for the determination of the occupancy of p-STAT3 at MMP-9 gene promoter

in response to IL-6 treatment (N = 3).

https://doi.org/10.1371/journal.pone.0183622.g004
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this signaling pathway, through the use of STAT3 inhibitors, has been observed to inhibit

growth and proliferation of ovarian cancer cells. Here, we demonstrate, for the very first time,

constitutive activation of STAT3 in ovarian cancer cells, and that MMP-9 gene promoter con-

tains a STAT3 DNA responsive element. We further show that MMP-9 is positively regulated

by this constitutively activated STAT3, specifically, phosphorylation of STAT3 at Tyr705.

These results clearly show that STAT3 is an attractive drug target in therapy of ovarian cancer.

IL-6 plays important roles in a variety of biologic processes in different types of cells,

including the cancer cells [25–27]. Overexpression of IL-6 has been observed in many cancers,

such as endometrial, lung, colorectal, breast and ovarian cancers [28, 29]. IL-6 exerts its role

through activation of various downstream signaling pathways, STAT3 pathway being one of

them. IL-6-STAT3 signaling axis has been shown to be relevant to pathogenesis of ovarian can-

cer, with phosphorylation/activation and subsequent nuclear translocation of STAT3 being

frequent events in ovarian cancers, resulting in poor prognosis [17]. Here we found that IL-6

further promotes production of MMP-9 by ovarian cancer cells. These results are consistent

with those recently generated from the studies of blockade of IL-6/STAT3 signaling pathway

[17].

Fig 5. The putative GAS of MMP-9 regulates transcription of a heterologous promoter. (A). Schematic presentation of luciferase

reporter constructs. pGL4.32 (Promega) harbors 3 copies of GAS and a minimal promoter (TATA), which regulate expression of firefly

luciferase gene (FL). pCMV-RL (renilla luciefease) was used as the internal control (not shown). (B). SKOV3 cells were co-transfected

with pCMV-RL (100 ng) and the construct (1 μg) for 48 hrs and subsequently exposed to IL-6 for additional 24 hrs. Dual luciferase was

performed as detailed in Material and Methods. The bars are representative of average FL fold change, with normalization to renilla

luciferase activity and error bars indicate the standard deviation calculated from three independent experiments.

https://doi.org/10.1371/journal.pone.0183622.g005
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The current study is significant, because we have, for the first time, shown the molecular

details for MMP-9 regulation by STAT3. Uno et al reported that the NF-κB-induced kinase

(NIK) induced-mediated activation of non-canonical NF-κB signaling pathway (RelB/p52)

plays a role in ovarian cancer progression through positively regulation of MMP-2 and MMP-

9, resulting in enhanced NIK expression in ovarian cancer cells [18]. In this study, we showed

that p-STAT3 directly interacts with a GAS element in MMP-9 gene promoter to drive gene

expression of MMP-9. Given a recent study showing that STAT3 can bridge RelB/p52 hetero-

dimers and chromatin remodeling complex like histone acetylases, we speculate that p-STAT3

may also play a cooperative role in positive regulation of MMP-9 by assisting in recruitment of

RelB/p52-containing transcriptional activator complex, as observed in placental cells [19, 30].

In other words, p-STAT3 could play multiple roles in regulation of MMPs in ovarian cancer

cells. These results further suggest that use of SKOV3 cells may be extended to study epigenetic

mechanisms involved in regulation of other MMPs such as MMP-2 [17]. MMP-2 breaks down

type IV collagen and non-collagenous extracellular matrix proteins, such laminin, elastin, and

fibronectin. Its increased expression is also associated with various pathological processes,

including cancer invasion and metastasis [31]. Thus, it is highly likely that MMP-2 is regulated

in a similar manner as MMP-9. As a result, a detailed molecular characterization of regulation

of MMP-2 could further highlight STAT3 as an effective drug target for ovarian cancer. More-

over, our future directions could include testing effects of STAT3 inhibitors on proliferation

and progression of ovarian cancer in vivo.

In conclusion, we report here that p-STAT3 directly interacts with MMP-9 gene promoter

to drive gene expression of MMP-9 cells. We propose that the strategy of modulating p-

STAT3 activity may provide an effective therapeutic approach for treatment of ovarian cancer.
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