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Abstract

Adverse Drug Reaction (ADR) is one of the most important issues in the assessment of drug safety. In fact, many
adverse drug reactions are not discovered during limited pre-marketing clinical trials; instead, they are only
observed after long term post-marketing surveillance of drug usage. In light of this, the detection of adverse drug
reactions, as early as possible, is an important topic of research for the pharmaceutical industry. Recently, large
numbers of adverse events and the development of data mining technology have motivated the development of
statistical and data mining methods for the detection of ADRs. These stand-alone methods, with no integration into
knowledge discovery systems, are tedious and inconvenient for users and the processes for exploration are time-
consuming. This paper proposes an interactive system platform for the detection of ADRs. By integrating an ADR
data warehouse and innovative data mining techniques, the proposed system not only supports OLAP style
multidimensional analysis of ADRs, but also allows the interactive discovery of associations between drugs and
symptoms, called a drug-ADR association rule, which can be further developed using other factors of interest to the
user, such as demographic information. The experiments indicate that interesting and valuable drug-ADR
association rules can be efficiently mined.

Keywords: Adverse drug reaction, Associative classification, Contingency cube, Data mining, Data warehouse,
Pharmacovigilance

Introduction
The WHO definition of an adverse drug reaction (ADR)
or adverse drug event (ADE) is an uncomfortable, nox-
ious, unexpected, or potentially harmful reaction result-
ing from the use of a prescribed medication (WHO
1972). Notably, it refers to a reaction arising from nor-
mal doses of drugs for disease prevention, diagnosis,
treatment, or for the modification of physiological func-
tions, but it excludes drug withdrawal symptoms, includ-
ing drug abuse, poisoning or drug overdose. Adverse
drug reactions waste many social resources and cause
different degrees of psychological or physiological suffer-
ing to patients and their relatives. They also limit the ef-
ficacy of treatment and waste medical resources, thereby
increasing medical costs and decreasing the quality of
medical care. Many adverse drug reactions are not dis-
covered through limited pre-marketing clinical trials;

instead, they are only seen in long term, post-marketing
surveillance of drug usage. In light of this, most devel-
oped countries have established spontaneous reporting
systems (SRSs) that collect data for suspected adverse
drug events for further analysis, e.g., the Adverse Event
Reporting System (AERS) of the US Food and Drug
Administration (FDA), the Canadian Vigilance Adverse
Reaction reporting system (MedEffect Canada), the
Australian Adverse Drug Reaction Reporting System.
The detection of adverse drug reactions, as early as pos-
sible, from these SRSs forms an important research field
for the pharmaceutical industry (WHO 2002).
Many studies have detected possible adverse drug

reactions or have analyzed the factors relevant to adverse
drug reactions. These studies can generally be divided
into two categories. The first category uses statistical or
data-mining methods to identify the signals of adverse
drug reactions (Beta et al. 1998; Dumouchel 1999; Evans
et al. 2001; Huang et al. 2007; Jin et al. 2007; Orre et al.
2000; Szarfman et al. 2002). These stand-alone methods,
without any integration with knowledge discovery
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systems, are tedious and inconvenient for users to use to
identify possible adverse drug reactions. The other cat-
egory uses adverse drug reactions exploration systems
(Fram et al. 2003). Although these systems can be used
to identify possible adverse drug reactions, it takes a
long time to obtain the results of each exploration run,
so any examination from different viewpoints is very
time-consuming.
This study develops a platform to analyze adverse drug

reactions, which combines data warehousing and data
mining technologies, through which users can observe
and analyze drug-ADR signals from different viewpoints.
Specifically, a contingency-cube-based method and an
associative-classification-based method are proposed to
facilitate the interactive detection of suspected drug-
ADR and multidrug-ADR signals, respectively. The ex-
perimental results show that the cube-based approach
significantly outperforms an associative-classification-
based approach and the interactive exploitation of sus-
pected association of drugs and symptoms from a data
warehouse is more efficient.
The remainder of this paper is organized as follows. In

Section 2, related work and terminology is described. An
overview of the proposed iADRs system platform is pre-
sented in Section 3. The proposed contingency-cube-
based method and an associative-classification-based
method are described in Sections 4 and 5, respectively.
Section 6 presents the experiments and describes the
current interface and functionalities of the proposed
iADRs system. Conclusions and recommendations for
future study are presented in Section 7.

Related work
Recently, the accumulation of large volumes of data
related to adverse events and the development of data
mining technology have spawned the use of statistical or
data mining methods for the detection of ADRs. These
methods can be divided into two categories: the mea-
sures of disproportionality and the Bayesian methods.
The measures of disproportionality are commonly

used techniques for the identification of ADRs. Although
different measures for calculating disproportionality are
not concordant, they all use a 2×2 contingency table as
shown in Table 1. The most common measures include
the Proportional Reporting Ratio (PRR) used by the UK
Yellow Card database (Evans et al. 2001), the Reporting

Odds Ratio (ROR) used by the Netherlands Pharmacov-
igilance Foundation (Egberts et al. 2002) and the
MHRA, an integrated measure used by the UK Medi-
cines and Healthcare products Regulatory Agency
(MHRA) (Evans et al. 2001). The MHRA combines the
PRR, the numbers reported and a chi-squared test. The
definitions of these measures are shown in Table 2.
The best-known Bayesian-based method is the Bayes-

ian Confidence Propagation Neural Network (BCPNN)
used by the World Health Organization (WHO) (Beta
et al. 1998; Orre et al. 2000). This approach uses Bayes-
ian statistics in a neural network architecture and calcu-
lates an information component (IC) for each drug–
ADR combination. The IC value measures the strength
of the association between two variables, a drug x and
an ADR y, which is defined by the following formula:

IC≡ log2
p x; yð Þ
p xð Þp yð Þ ¼ log2

a aþ b þ cþ dð Þ
a þ bð Þ aþ cð Þ

where p(x) is the probability of drug x in all reports, p(y)
is the probability of ADR y in all reports, and p(x, y) is
the probability of drug x and ADR y together in all
reports. If the IC value of a drug-ADR pair is higher
than a given threshold, the drug is regarded to have a
significant association with the ADR.
The US Food and Drug Administration (FDA) uses an

algorithm called Empirical Bayes Gamma-Poisson
Shrinker (EBGPS) to detect those ADRs that have the
frequency of reporting higher than the expected value
(Dumouchel 1999). This algorithm also uses a Bayesian
statistical formula to calculate the observed reporting
value and the expected reporting value for each drug-
ADR pair. The observed ratio of reporting value to
expected reporting value represents the strength of the
signal of the drug-ADR pair. A drug-ADR pair with an
observed ratio higher than the threshold is more signifi-
cant and worthy of further investigation.
An algorithm that adopts the temporal association rule

technology, called MUTARC, was proposed by Jin et al.
(Jin et al. 2007; Jin et al. 2010). Using a database pro-
vided by the Queensland Department of Health, called
the Queensland Linked Data Set, an Unexpected Tem-
poral Association Rule (UTAR) was defined to identify
ADRs. In other words, if an unexpected event happens

Table 1 The 2×2 contingency table used for the
identification of ADRs

Suspected ADR All other ADRs Total

Suspected drug a b a + b

All other drugs c d c + d

Total a + c b + d a + b + c + d

Table 2 The measures of proportionality used for the
identification of ADRs

Measure Formula Definition

PRR a= aþbð Þ
c= cþbð Þ PRR − 1.96δ > 1

ROR a=c
b=d ROR − 1.96δ > 1

MHRA PRR, a, χ2 PRR ≥ 2, a ≥ 3, χ2 ≥ 4

*δ: standard error, χ2: Yates’ chi-squared test statistic (Yates 1934).
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within a certain period after treatment, then this event
may be an ADR. So, the algorithm must prune the
expected events, the patient’s illnesses, before a process
of exploration, and use support and leverage to filter and
order the association rules. The support for an associ-
ation rule refers to the percentage of the total reports
for which the pattern is true. The leverage of an associ-
ation rule refers to the measure of dependency between
the antecedent (factor) X and the consequences (symp-
tom) Y of a rule. An association rule with leverage
greater than zero signifies that X has a positive associ-
ation with Y, a leverage of less than zero signifies that X
is negatively associated with Y and that a leverage equal
to zero signifies that X is independent of Y (Piatetsky-
Shapiro 1991). The formula for leverage is defined as fol-
lows:

Leverage X→Yð Þ ¼ sup X \ Yð Þ � sup Xð Þ sup Yð Þ
¼ ad � bc

a þ bþ c þ dð Þ2

Huang et al. (2007) proposed a statistical method that
uses the chi-square test and conditional probability. The
study sought to determine any drug-drug interaction for
the ADRs. Firstly, a chi-square test is used to calculate
the dependency of all drug and symptom pairs. The chi-
square test, however, can only show the relative strength
of association, but cannot distinguish whether the ADR
is caused by drug-drug interaction or a single drug. The
use of a conditional probability resolves this problem.
Another study by Fram et al. (2003) proposed an ADR

exploration system. The EBGPS was used to construct a
platform that is used to identify the factors of ADRs.

This platform allows users to individually determine the
factors of ADRs that are of interest.

The proposed system framework
Design strategy
This proposed system establishes an interactive platform
for the end user to allow the analysis and detection of
suspicious ADR signals. It is well known that ADR signal
detection is time consuming - at least of the same com-
plexity as typical data mining tasks, such as association
rule mining and classification analysis. In order to re-
duce the computation time, a general concept com-
monly used in the context of query processing —pre-
computation – is used. This executes the partial or total
computation involved in the process of answering the
query, in advance.

System overview
As shown in Figure 1, the proposed system, iADRs, re-
lies on a data warehouse repository, to support OLAP
analysis, and a mining engine. The data source used is
the Adverse Event Reporting System (AERS) database of
the US Food and Drug Administration (FDA) (2012); the
addition of other public data sources such as MedEffect
Canada is ongoing. AERS is used to support post-
marketing safety surveillance for all approved drugs and
therapeutic biochemical products, in order to effectively
prevent the occurrence of ADRs. This database, contain-
ing more than 3 million clinical reports, was created in
1968 and is released by FDA each quarter. The front-
end of the proposed iADRs system contains two main
analysis tools for the detection and analysis of ADRs, the
OLAP engine and drug-ADR association mining. The
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Figure 1 System architecture of the proposed iADRs.
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OLAP engine allows users to perform multi-dimensional
explorations of multidimensional data in a data ware-
house (Chaudhuri & Dayal 1997). The association mining
engine is used to discover high risk pattern-symptom as-
sociation rules using the proposed mining algorithms, a
contingency cube-based approach for drug reactions and
an associative-classification based approach for drug-
drug reactions. More complex drug reactions analysis
algorithms will be developed in the near future. This sys-
tem is portable and convenient, because it conforms to a
Web platform. Users do not have to install any additional
software.

ADR warehouse schema
Data generated in the clinical medical field are very dif-
ferent to data generated in practice. The data model of a
clinical data warehouse is much more complicated than
that for business applications (Pedersen & Jensen 1998).
For example, the relationship between the fact table and
the dimension tables in a multi-dimensional model is
one-to-many, while the relationship is many-to-many in
clinical data warehouses, i.e., a patient’s anamnesis not
only has more than one drug record, but also has more
than one symptom record. Since the relationship be-
tween drug and symptom is many-to-many, it cannot be
effectively modeled using traditional multi-dimensional
models, such as star schema. Following the approach
recommended by Kimball et al. (1998), a medial dimen-
sion table, namely a bridge table, is used to describe the
many-to-many relationship. The schema of the ADR

data warehouse, consisting of one fact table, five dimen-
sion tables and two bridge tables, is shown in Figure 2.
The fact table, ADR_Fact, comprises five foreign keys;

Demo_key, Drug_Group_key, Reac_Group_key, Event_-
Time_key and Outcome_key, which connect with the
Demographic dimension table’s Drug_Group bridge
table, Reac_Group bridge table, Event_Time dimension
table and Outcome dimension table, respectively. The
numerical measure of ADR_fact is count (number of
records), which can be omitted, because the number of
each record is only one.
The five dimension tables of the ADR data warehouse

are Demographic, Event_Time, Outcome, Drug and Re-
action, each of which is described as follows.

(1) Demographic: Patient demographic and
administrative information; a single record for each
event report.

(2) Event_Time: The date of occurrence of adverse drug
reactions. The attributes in this table are related by
a total order and form a concept hierarchy, such as
“Day < Month < Quarter < Year”.

(3) Outcome: The information about the outcome, after
therapy.

(4) Drug: The information about the patient’s
medication record.

(5) Reaction: The information about the patient’s
symptoms, before therapy. Attribute PT (Preferred
Term) refers to adverse reactions, coded using the
MedDRA (Medical Dictionary for Regulatory
Activities).

Drug Dimension

Drug_key
Drug_name
Route

Demographic Dimension

Demo_key
Age
Gender
Weight
Country

Outcome Dimension

Outcome_key
Outcome

Reaction Dimension

Reac_key
PT

Drug_Group

Drug_Group_key
Drug_key

Event_Time Dimension

Event_Time_key
Year
Quarter
Month
Day

Reac_Group

Reac_Group_key
Reac_key

ADR_Fact

Demo_key
Drug_Group_key
Reac_Group_key
Event_Time_key
Outcome_key

Figure 2 The star schema of an ADR warehouse.
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The two bridge tables, Drug_Group and Reac_Group,
represent the drug records and symptom records of the
anamneses, respectively. Drug_Group_key and Reac_-
Group_key are the identifiers of the drug group and the
symptoms group, indicating a patient who has taken
many drugs and who has suffered many symptoms.

Cube-based method for the detection of ADR signals
Since a spontaneous reporting database usually contains
a very large amount of data, the detection and analysis
of ADRs is a challenging task. Inspired by the success of
OLAP operations, which responds to user queries imme-
diately, and the techniques for data cube processing that
are well supported by contemporary data warehousing
systems, this study uses the OLAP cube technique for its
ADRs mining methods. In light of all of the contempor-
ary measures of disproportionality derived from the con-
tingency table (see Tables 1 and 2), the concept of
contingency cubes is proposed to refer to the set of pre-
stored data cubes for the detection of ADR.

Contingency cube
As presented in Section 3.1, the measured values of pro-
portionality for ADR signaling rules can be calculated
using the 2×2 contingency table. Further, when a drug-
ADR rule is constrained, its measure can be calculated
using the corresponding constrained (predicate) contin-
gency table. For example, consider the following drug-
ADR rule:

Age ¼ 20∼60;Gender ¼ Maleð Þ
ACCUTANE→HAMARTOMA

The corresponding contingency table is shown in
Table 3.
A contingency cube defined on the ADR star is an n-

dimensional cube C[A1, A2, . . ., An], where A1, A2, . . .,
An denote dimensions (attributes) and An−1 = Drug, An

= PT. Except for An−1 and An, the value set associated
with each dimension, Ai, is domain(Ai) [ {*}, where do-
main(Ai) denotes the set of distinct values of Ai in the
ADR star and “*” denotes “any” or “don’t care”. Note
that the value sets associated with drug and PT do not
include “*”, because the defined contingency table is al-
ways associated with a specific drug and symptom. Each
cell C[a1, a2, . . ., an] in the cube store conceptualizes the

corresponding contingency table of Drug = an−1 and
PT = an with constraint A1 = a1, A2 = a2, . . ., An−2 = an−2.
Example 1 Figure 3 depicts a 4-D contingency cube, C

[Age, Gender, Drug, PT]. The expanded cell, C[Age = *,
Gender = Male, Drug = d4, PT = s4], illustrates the con-
tent in the form of a contingency table. In this case, Age
can be neglected as a constraint.
Intuitively, the values of each cell can be obtained by

aggregating the occurrences in the data warehouse.
However, the reality is more complicated (Beyer &
Ramakrishnan 1999). Firstly, the computation of the
values, b, c, d, in the contingency table involves negative
items, which are not immediately accessible. Secondly,
the relationship between Drug and PT attributes is
many-to-many; a simple calculation results in duplicated
aggregation, making the result misleading.
The solution to the first problem is to avoid counting

using negative items. Instead, the occurrence is always
computed using positive items. Given a contingency
table composed of the predicate, P1 = v1, P2 = v2, . . ., Pk
= vk, Drug = d and PT = s, Table 4 details the formulae
for computing all value cells, a, b, c and d, where, for
simplicity, count(v1, v2, . . ., vk, d, s) denotes the occur-
rences of the itemset {P1 = v1, P2 = v2, . . ., Pk = vk, Drug
= d, PT = s}. Note that each of the counts used in Table 4
indeed corresponds to a cell in the OLAP data cube, so
the content of the contingency cube can be generated
from the OLAP cube, without accessing the original data
warehouse. Indeed, the corresponding OLAP cube sup-
porting the aforementioned contingency table is D[P1,
P2, . . ., Pk, Drug, PT]. In this way, the OLAP cube serves
two different purposes, OLAP and pattern mining, sav-
ing the cost of storing the contingency cube, without
sacrificing the computational efficiency.

Cube-based method for ADR detection
The proposed algorithm, namely CBM_SS (Cube-Based
Mining for signal detection of Single drug and Single
symptom), employs a contingency cube to generate the
signals of ADRs caused by drug, with/without other
demographic attributes, in four phases: (1) the contin-
gency cube extraction phase; (2) the candidate rule gen-
eration phase; (3) the measure calculation phase and (4)
the signal ranking and output phase. The following
describes and illustrates each of the four phases for the
example shown in Table 5.

Contingency cube extraction phase According to the
demographic attributes selected by users, the proposed
approach selects suitable data from the stored reposi-
tory of the contingency cube and loads them into the
memory.
Suppose that the content of ADR warehouse is com-

posed of six reports, as shown in Table V, where

Table 3 The 2×2 contingency table to identify
ACCUTANE-HAMARTOMA constrained by Age = 20~60,
Gender = Male

Age = 20~60, Gender = Male HAMARTOMA All other ADRs

ACCUTANE a b

All other drugs c d
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Demo_key denotes the report ID. For convenience, all
tables have been de-normalized into a single table. Fur-
ther, assume that the user has specified a query, Q, which
includes the selected demographic attribute, Age, and the
measure, PRR, with count ≥ 3. In other words, the ante-
cedent of the generated signals must contain age and
drug information and the consequence is a symptom. In
this case, the data in the OLAP cube D[Age, Drug, PT]
are selected, as shown in Figure 4.

Rule-generation phase The main purpose of this phase
is to generate all of the rules from the contingency
cubes. The proposed approach generates rules from each
member cell in the contingency cube. That is, each cell
(actually a table) in the contingency cube, with dimen-
sions of Drug, PT and the user specified demographic,
attributes generates a corresponding rule for this pur-
pose. When the contingency cube is implemented as the
OLAP cube, the corresponding OLAP cube cells
required to make each contingency table are obtained,
according to Table 4. In this example, the OLAP cells
used to compute the contingency cell that is composed
of Age = a1, Drug = d1, and PT = s1 are D[a1, d1, s1],
D[a1, d1, *], D[a1, *, s1] and D[a1, *, *], as depicted in
Figure 5. Since a threshold count ≥ 3 is specified, it is
only necessary to consider those contingency cube

cells with value a ≥ 3. The following two rules are
generated:

R1 : Age ¼ a2; Drug ¼ d1→PT ¼ s1
R2 : Age ¼ a2; Drug ¼ d3→PT ¼ s1

Measure calculation phase In this phase, the proposed
approach examines signals whose measure exceeds the
measurement threshold. For each generated rule, four
values in the 2×2 contingency table, including a, b, c and
d, are calculated. Then, according to the selected measure-
ment, the measure value of each rule is calculated and
then checked to determine whether it exceeds the thresh-
old. For the rule, R1: Age = a2, Drug = d1 → PT = s1, the
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Figure 3 An example a 4-D contingency cube, C[Age, Gender, Drug, PT].

Table 4 The formulae for the computation of each cell in
a 2×2 contingency table

Cell The formula

a count(p1, p2, . . . pn, d, s)

b count(p1, p2, . . . pn, d) – a

c count(p1, p2, . . . pn, s) – a

d count(p1, p2, . . . pn) – a – b – c

Table 5 An example of a de-normalized ADR warehouse
composed of six reports

Demo_key Year Age Gender Weight Country Drug PT

1 y3 a2 g1 w2 c3 d1 s1

1 y3 a2 g1 w2 c3 d2 s1

1 y3 a2 g1 w2 c3 d3 s1

2 y1 a1 g2 w2 c1 d2 s2

2 y1 a1 g2 w2 c1 d3 s2

3 y2 a2 g2 w2 c2 d1 s1

3 y2 a2 g2 w2 c2 d3 s1

3 y2 a2 g2 w2 c2 d1 s2

3 y2 a2 g2 w2 c2 d3 s2

4 y1 a2 g1 w1 c3 d1 s1

4 y1 a2 g1 w1 c3 d3 s1

5 y1 a1 g2 w1 c2 d2 s1

6 y3 a2 g1 w2 c1 d2 s3
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corresponding values for a, b, c and d, are calculated as
follows:

a ¼ count a2; d1; s1½ � ¼ 3
b ¼ count a2; d1; �½ � � a ¼ 3 � 3 ¼ 0
c ¼ count a2; �; s1½ � � a ¼ 3 � 3 ¼ 0
d ¼ count a2; �; �½ � � a� b � c ¼ 4 � 3 ¼ 1

Hence, PRR = 3. Similarly, the same values for R2,
a = 3, b = 0, c = 0, d = 1 and PRR = 3 can be obtained.

Signal ranking and output phase The proposed ap-
proach sorts all signals by their measure values and out-
puts all or top-k signals for users, in this phase. The
parameter, k, is specified by users. In this case, both
rules generated in phase 3 are output signals.

Associative classification based method for the detection
of ADR signals
Although the cube-based method greatly reduces the
computation for the detection of single drug and single

symptom ADR patterns, it is awkward for use with
symptoms caused by drug-drug interaction. This is be-
cause all of the dimensions of the data cube are atomic.
To compute the occurrences of signals involving mul-
tiple drugs, cube cell join and compare operations must
be performed; these are very time consuming. In this re-
gard, another algorithm was developed, called ACM-MS
(Associative Classification based Mining for signal detec-
tion of Multiple drugs and Single symptom).
The ACM-MS algorithm is a modified CMAR algo-

rithm (Li et al. 2001), a recently developed associative
classification algorithm. The data structure CR-tree used
in CMAR is used to store compact transactions
extracted from the ADR warehouse and then to generate
all of the multiple-drug-single-symptom rules that satisfy
the user specified measure.
Figure 6 shows the workflow of the ACM-MS. There

are two stages: an off-line process and an on-line
process, which are further divided into four phases: (1)
Data transformation phase; (2) CR-tree construction
phase; (3) Rule generation phase and (4) Signal gener-
ation and sorting phase. The following details the pro-
cessing in each phase, with some illustrated examples.

Data transformation phase
In data warehouses, data is usually stored in a relational
format. Most association mining algorithms, however,
require that the input data take the form of a horizontal
transaction type. The relational data must be trans-
formed into a transactional data format, before mining.
This ACM-MS uses a CR-tree structure, a variant of

the prefix tree that facilitates transaction compaction
and in-memory computation. However, its performance
is greatly affected by the ordering of the items. Indeed,
previous research has shown the ordering of items by
decreasing rate of occurrence yields the best perform-
ance. In this regard, each of the transformed transactions
is ordered accordingly. Those infrequent items that
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Figure 4 An example a 3-D OLAP cube D(Age, Drug, PT)
constructed from Table 5.

R2: Age = a2, Drug = d3 PT = s1
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Figure 5 An illustration of the correspondence between the contingency cell and the OLAP cube.
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occur less than 3 times are eliminated. The rationale is
that this frequency threshold is adopted by most of the
ADR signal measures and that all of the items compris-
ing the ADR signal should be frequent and should obey
the a priori principle (Agrawal & Srikant 1994).
In the example in Table 5, the set of frequent items

(occurring within at least three different reports), except
symptoms, is {a2: 4, w2: 4, d2: 4, d3: 4, y1: 3, g1: 3, g2: 3,
d1: 3} and the set of frequent symptoms is {s1: 4}. Later
it will become clear that the differentiation between
symptom items and non-symptom items benefits the
construction of the CR-tree. Following transaction scan-
ning, pruning infrequent items and transaction resorting,
the resulting reduced transaction dataset is shown in
Table 6. Finally, the reduced transactions are stored for
online processing.

CR-tree construction phase
The on-line process starts in this phase, which is acti-
vated when the user chooses to execute multidrug-ADR
detection, using the system. The purpose of this phase is
to construct the CR-tree from the reduced transaction
dataset, using the user-specified query constraints. Dur-
ing the construction, any item or symptom unrelated to

the user specified attributes or constraints is pruned and
any transaction that does not contain any related items
is eliminated. The process for construction of a CR-tree
follows that used in the CMAR algorithm, but all items
not in the domain of the attributes or satisfying the con-
straints specified in the query are pruned. If a transac-
tion is empty or contains no related item, after item
pruning, this transaction is eliminated. For example,
consider the query, Q, used in the illustration for the al-
gorithm, CBM-SS. Since only the attribute age is speci-
fied, the resulting transactions are shown in Table 7.
Figure 7 shows the constructed CR-tree, wherein all
symptom items are stored in the leaf nodes.

Pattern generation phase
In this phase, the CR-tree is traversed to determine all of
the candidate rules. This process is similar to that used
in the FP-growth algorithm (Han et al. 2000). That is, it
constructs the conditional pattern base of each frequent
item and then it builds its conditional CR-tree on the
conditional pattern base. When the process for generat-
ing rules involving frequent items is complete, the item
is eliminated from the header node and those nodes that
indicate symptoms are merged into their parent nodes.
Finally, a recursive mining procedure is performed on

Phase3   Pattern generation

Phase 4 Signal generation and sorting

Phase 2   CR-treeConstructionUser query

Off-line
process

On-line
process

Phase1  Data transformation

ADR 
Data warehouse

Figure 6 The process workflow for the ACM-MS.

Table 6 The reduced transaction dataset corresponding
to the example in Table 5

TID Transaction Class (PT) label

1 a2, w2, d2, d3, g1, d1 s1

3 a2, w2, d3, g2, d1 s1

4 a2, d3, y1, g1, d1 s1

5 d2, y1, g2 s1

Table 7 The pruned transaction dataset corresponding to
the example in Table 6

TID Transaction Class label

1 a2, d2, d3, d1 s1

3 a2, d3, d1 s1

4 a2, d3, d1 s1
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that conditional CR-tree, in order to generate all pat-
terns, except those that do not contain any related
items.
Consider the example in Figure 7. The process for

frequent pattern generation is shown in Figure 8. The
frequent patterns are shown in Table 8. All of the fre-
quent patterns are checked if they contain items that
satisfy the user-specified attributes, which in this

example is Age. The resulting set of satisfactory pat-
terns is shown in Table 9.

Signal generation and sorting phase
The purpose of this phase is to generate signals of inter-
est. Each pattern generated in the previous phase that
satisfies the user-specified conditions corresponds to a
candidate rule with a symptom in the consequence, with

Figure 7 The initial CR-tree for Table 7.

Figure 8 All of the conditional CR-trees generated from Figure 6.
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the other items being the antecedent. The four cell
values, a, b, c and d, required to calculate the rule’s
measure, are immediately available from the counts of
other sub-patterns of the candidate rule. The algorithm
then determines all of the rules whose measures exceed
or are equal to the threshold. These signals are sorted in
accordance with their measures and the number of items
in the antecedent. Finally, all qualified or the top-k sig-
nals are output. If the user is not satisfied with the
results, the query can be re-specified, which sets the
ACM-MS back to phase 3, to execute the modified
query analysis.
In this example, only one mutidrug-ADR signal is out-

put, as shown in Table 10, where SE represents standard
error.

System functionalities and experiments
All of the experiments were performed on a personal
computer with an Intel Core2 Duo 2.33Ghz CPU, 3GB
main memory and a 320 GB hard disk, running Win-
dows XP. The DBMS used was Microsoft SQL SERVER
2005. All system interfaces were implemented using
Microsoft ASP.NET 2.0.

System interface and functionalities
The system provides two types of ADR signal detection;
drug-ADR and multidrug-ADR, via the two menus, Sin-
gle Drug and Drug Interaction, respectively. Each menu
further supports two modes of query interface; simple
and advanced. As shown in Figure 9(a), the simple mode
analysis interface provides general signal detection (nei-
ther specific drug nor symptom can be designated) from

target data, with the dimensions of the years of the data
reported (in continuous range) and any combinations of
demographic attributes (Age, Gender, Weight and Coun-
try). As indicated in the survey conducted by Deshpande
et al. (2010), there is considerable variation in the defin-
ition of a significant alert for ADR signals for different
signal detection methods and no specific metric is better
than all of the others; each has its strengths and limita-
tions (Bate & Evans 2009; Roux et al. 2005). As such, it
is necessary to consider more than one metric/threshold
combination within a given study. The proposed system
supports three measures commonly used in the pharma-
covigilance community, i.e., ROR, PRR and IC, and two
choices of output display; all signals or only the top k
signals.
However, the advanced interface mode (Figure 9(b))

allows the detection of ADR signals associated with a
specific drug and/or symptom, with the option of a spe-
cified constraint using any combination of the demo-
graphic attributes and the time of the reported data.
Figure 10 shows an example query specification, in
terms of drug/symptom, time, demographic attributes
and measure, respectively. Note that in this mode, the
history of the target data can be specified for several dis-
continuous time intervals.
In Figure 11, the output signals after query execution

are listed in the form of a rule table, for drug, symptom,
time, the demographic attributes specified in the query,
count, and the user’s preferred measure. There are three
clickable visualization icons for each rule, one in the front
of the rule and the other two beside the corresponding
drug and symptom, respectively. The first icon allows
visualization of the trend analysis of the corresponding
ADR signal over the observed duration, displayed in either
one of the three measures. The icon beside the drug
allows the user to inspect and compare the associated
symptoms, with the y-axis fixed to IC while the x-axis
can represent either ROR or PRR. The last icon beside
the symptom allows a similar visualization with the focus
on the associated drugs. Figure 12 shows a snapshot of
these three visualization displays.

Experiments

Performance study Experiments were conducted to
study the performance of the two proposed algorithms,
CBM-SS and ACM-MS, for various sizes of data set. The
efficiency was evaluated using the data reported by the
FDA in 2007, which concerns 14,437 drugs, 10,436
symptoms and 230 demographic values. This dataset
was further decomposed into five subsets, each contain-
ing a different number of transactions, namely T10K,
T50K, T100K, T150K and T200K.

Table 9 The resulting frequent patterns from Table 8 that
contain the attribute, Age

Frequent patterns Count

Age = a2, Drug = d1, Symptom = s1 3

Age = a2, Drug1 = d1, Drug2 = d3, Symptom = s1 3

Age = a2, Drug = d3, Symptom = s1 3

Age = a2, Symptom = s1 3

Table 8 The frequent patterns generated from the CR-
tree in Figure 7

Frequent patterns Count

Drug = d1, Symptom = s1 3

Drug1 = d1, Drug2 = d3, Symptom = s1 3

Age = a2, Drug = d1, Symptom = s1 3

Age = a2, Drug1 = d1, Drug2 = d3, Symptom = s1 3

Drug = d3, Symptom = s1 3

Age = a2, Drug = d3, Symptom = s1 3

Age = a2, Symptom = s1 3
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No specific drug and symptom were designated for
this experiment, in order to see how the algorithms per-
form in response to such a general query. Two query
conditions were considered: No demographic attributes
are selected and the other extreme case, for all demo-
graphic attributes, is considered in the query. As the
results in Figure 13 demonstrate, both algorithms per-
form satisfactorily, even for this rigid query setting, and
show almost linear scalability. CBM_SS is significantly
faster than ACM_MS, consuming only a few seconds in
all cases.

Experimental results for signal detection The effect-
iveness of the proposed algorithms was studied by com-
paring the resulting ADR signals with those reported in
medical documents (DrugDigest 2012; PubMed 2012).
The last quarter of 2007 AERS dataset was used for
these experiments.
Firstly, the drug-ADR signals generated by CBM-SS

are considered. Two different drugs, CAPTOPRIL and
RANITIDINE, were examined to determine the discov-
ery results. For the drug, CAPTOPRIL, no demographic
attribute is considered, while for RANITIDINE all
demographic attributes are included.
Two hundred and sixty-three signals contain distinct

symptoms related to CAPTOPRIL. Table 11 lists the top
10 signals, ranked by their ROR measure. According to
the description in Drug Digest (2012), “CAPTOPRIL is an
ACE inhibitor. This medicine is used to treat high blood
pressure and heart failure. It is used to treat heart damage

after a heart attack. It can also slow the progression of kid-
ney disease in diabetic patients.” Another document
reported that the symptoms, BASAL GANGLION DE-
GENERATION and LARGE INTESTINAL OBSTRUC-
TION, can be treated by CAPTOPRIL in association with
other drugs. Thus, it is very likely that BASAL GAN-
GLION DEGENERATION (No. 1), LARGE INTESTINAL
OBSTRUCTION (No. 3) and HYPERTROPHIC CAR-
DIOMYOPATHY (No. 7) are noises. In addition, no rele-
vant documents report INJECTION SITE PHLEBITIS
(No. 4) and JAW FRACTURE (No. 8) as being related
to CAPTOPRIL. These two signals require further pro-
fessional analysis and literature validation. The other
remaining signals are the adverse drug reactions of
CAPTOPRIL.
Seventy-eight signals are related to RANITIDINE.

Table 12 lists the top 10 signals, ranked by their IC
value. A document from the Drug Digest reported that,
“RANITIDINE is a type of antihistamine that blocks the
release of stomach acid. It is used to treat stomach or in-
testinal ulcers. It can relieve ulcer pain and discomfort,
and the heartburn from acid reflux.” From this descrip-
tion, it can be seen that RANITIDINE is often used in
the treatment of stomach or intestinal ulcers. Of the top
10 suspected signals, it is seen that NEUTROPENIC
COLITIS (No. 2) resembles a noise, since it is related
to intestinal ulcers. The other nine signals are recorded
in the literature as the adverse drug reactions for
RANITIDINE. In addition, MENINGITIS BACTERIAL
is an ADR that is easily caused in young people by
RANITIDINE.

(a)                              (b) 

Figure 9 System snapshots of two modes of the query interface - simple mode and advanced mode.

Table 10 The measured values of the signals

Rule a b c d PRR PRR −1.96SE>1

Age = a2, Drug1 = d1, Drug2 = d3 → Symptom = s1 3 0 0 1 3 Yes
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Figure 11 A snapshot of the signal output display.

Figure 10 An illustration of an advanced query specification, in terms of drug/symptom, demographic attributes, time and measure.
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Figure 13 Performance evaluation of CBM_SS and ACM_MS on the 2007 AERS dataset: (a) with no demographic attributes; (b) with all
demographic attributes.

Figure 12 Snapshots of the visualization functions supported by iADR: (a) an analysis of signal change over time; (b) a comparison of
symptoms associated with a specific drug and (c) a comparison of drugs associated with a specific symptom.
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Next the multidrug-ADR signals generated by ACM-
MS are considered. The drug pair, AREDIA and
ZOMETA, was used for this examination. Nine ADR
signals are generated, and these are ranked by their PRR
value, as shown in Table 13. No relevant documents re-
port TROPONIN I INCREASED (No. 2) and ILEUS
(No. 4) as being related to AREDIA and ZOMETA.
These two signals require further professional analysis
and literature validation. Other ADRs are either the
symptoms of treatment or the adverse drug reactions
reported in the literature.

Conclusions
This paper develops a system platform for the analysis
and detection of adverse drug reactions. Users can inter-
act with this platform to examine various forms of ADR
signals from different viewpoints, by selecting and re-
adjusting parameters and measures of interest. Two
efficient algorithms, CBM-SS and ACM-MS, were re-
spectively used to facilitate the discovery of drug-ADR
and multidrug-ADR patterns. A preliminary experiment
using selected AERS data demonstrates the efficacy and
efficiency of the proposed algorithms.

One of the main problems encountered in pharmacov-
igilance using computer systems is a lack of standard
measures for signal detection. Signal detection extracts
noteworthy, suspicious ADRs in advance. However, fil-
tering of the noises relies on the thresholds and deter-
mination of suitable thresholds for the different methods
that allows the discovery of valuable information is not a
robust procedure. Thus, data mining methods cannot re-
place traditional methods of signal detection, but only
serve as an auxiliary tool. Assessment of the reliability of
the detected signals requires further professional analysis
and literature validation.
This paper presents a preliminary development of

ADR detection and analysis and there is much scope for
future research, such as:

1. The provision of other forms of ADR signals:
Currently, this iADRs system only discovers drug-
ADR and multidrug-ADR signals. The mining
algorithms will be improved to accommodate other
forms of signals, including drug-multiADR and
multidrug-multiADR signals, and even to consider
other information, such as drug dose and onset
latency, in order distinguish between types of ADR,

Table 11 TOP-10 suspected ADR signals associated with CAPTOPRIL

No. Symptom ROR value Count

1 BASAL GANGLION DEGENERATION 1336.8434 6

2 OESOPHAGEAL INFECTION 398.9214 3

3 LARGE INTESTINAL OBSTRUCTION 222.4044 5

4 INJECTION SITE PHLEBITIS 181.325 3

5 NODAL ARRHYTHMIA 97.8079 6

6 VIRAL UPPER RESPIRATORY TRACT INFECTION 79.78 3

7 HYPERTROPHIC CARDIOMYOPATHY 78.3525 4

8 JAW FRACTURE 62.3452 12

9 PALMAR ERYTHEMA 62.327 3

10 PANCREATIC NEOPLASM 62.327 3

Table 12 TOP-10 suspected ADR signals with demographic attributes associated with RANITIDINE

No. Age Gender Weight Symptom IC value Count

1 14~20 M 54.0~ FLUID IMBALANCE 13.2358 3

2 4~7 F 10.0~15.0 NEUTROPENIC COLITIS 12.0983 5

3 7~14 M 30.0~40.0 MALIGNANT HYPERTENSION 11.3988 3

4 ~1 F ~2.5 CATHETER SEPSIS 11.1289 3

5 14~20 M 54.0~ MENINGITIS BACTERIAL 11.0783 3

6 20~60 M 54.0~ PO2 DECREASED 10.5905 6

7 7~14 M 30.0~40.0 CAPILLARY EAK SYNDROME 10.497 3

8 60~ F 54.0~ LARYNGEAL OEDEMA 9.8955 3

9 7~14 M 30.0~40.0 REVERSIBLE POSTERIOR LEUKOENCEPHALOPATHY SYNDROME 9.1076 3

10 20~60 F 54.0~ PUPIL FIXED 9.095 3
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i.e., those caused by drug toxicity or by a patient’s
hypersenstivity (drug allergy) (Wongpoowarak &
Wongpoowarak 2002).

2. The inclusion of more functions: It is planned that
more visualization tools will be added, as well as
signal tracking and monitoring mechanisms, so that
users can track the change in some specific ADR
signal, as reports accumulate over time, or can set an
automatic alert when a monitored drug generates
noticeable ADR signals.

3. Integration with drug target ontology: Most drugs
act by binding to a specific protein, namely the drug
target, in order to change its biochemical or
biophysical activities (Lin et al. 2009). The
incorporation of drug target knowledge with the
detection of adverse drug reactions may provide
clues for an explanation. The next step is the
integration of drug target ontology into this system,
in order to allow an in-depth investigation of adverse
drug reactions.
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