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Abstract. Alzheimer disease (AD) is the most common type of dementia in individuals over 65 years of age. The neuropatho-
logical hallmarks of the condition are Tau neurofibrillary tangles and Amyloid-� senile plaques. Moreover, certain susceptible
regions of the brain experience a generalized lack of neural plasticity and marked synaptic alterations during the progression
of this as yet incurable disease. One of these regions, the hippocampus, is characterized by the continuous addition of new
neurons throughout life. This phenomenon, named adult hippocampal neurogenesis (AHN), provides a potentially endless
source of new synaptic elements that increase the complexity and plasticity of the hippocampal circuitry. Numerous lines
of evidence show that physical activity and environmental enrichment (EE) are among the most potent positive regulators
of AHN. Given that neural plasticity is markedly decreased in many neurodegenerative diseases, the therapeutic potential
of making certain lifestyle changes, such as increasing physical activity, is being recognised in several non-pharmacologic
strategies seeking to slow down or prevent the progression of these diseases. This review article summarizes current evidence
supporting the putative therapeutic potential of EE and physical exercise to increase AHN and hippocampal plasticity both
under physiological and pathological circumstances, with a special emphasis on neurodegenerative diseases and AD.
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ADULT HIPPOCAMPAL NEUROGENESIS
(AHN) AND NEURODEGENERATIVE
DISEASES: INTRODUCTORY NOTES

During adulthood, the addition of new neurons
under physiological conditions occurs naturally in
two regions of the brain, namely the lateral ventri-
cles/rostral migratory stream and the hippocampal
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dentate gyrus (DG) [1]. Recent decades have wit-
nessed the increasing relevance of the latter structure.
This relevance can be explained by the fact that it
participates in the acquisition, processing and con-
solidation of memory [2]. Moreover, there is solid
evidence that the rate of AHN is sustained in humans
during adulthood [3–5]. Furthermore, the hippocam-
pus and the main afferent of this structure, namely the
Entorhinal cortex (EC), are severely affected by neu-
rodegenerative diseases in general, and by Alzheimer
disease (AD) in particular, which are among the great-
est challenges currently facing modern medicine [6].
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Indeed, growing evidence supports the notion that
AD is a synaptopathy characterized by a generalized
lack of neural plasticity in the hippocampus and other
related structures [7, 8]. Thus, various therapeutic
strategies attempt to preserve brain plasticity in
order to prevent or slow down the progression of
this disease [9, 10]. In this regard, adult hippocam-
pal neurogenesis (AHN) contributes to the unique
complexity of the hippocampal circuitry, and the con-
tinuous addition of new neurons through this process
is believed to confer remarkable plasticity to this
structure throughout life [11–18], and to increase the
cognitive reserve during aging [19]. Moreover, given
that numerous external factors, including lifestyle,
exert a rapid and multi-directional regulation of
the rate of AHN, this process has been referred to
as a sensor of information processing requirements
[20–27].

In this regard, environmental enrichment (EE) and
physical exercise are among the most potent selec-
tive and positive regulators of AHN [25, 28–30].
They also exert numerous beneficial effects on
hippocampal-dependent memory and preserve brain
plasticity throughout life [29, 31–38]. This review
article summarizes current evidence supporting the
putative therapeutic potential of EE and physical
exercise to increase AHN and hippocampal plas-
ticity both under physiological and pathological
circumstances, with a special emphasis on neurode-
generative diseases and AD.

REASONS WHY THE ADDITION OF NEW
NEURONS TO THE HIPPOCAMPUS IS
IMPORTANT

The hippocampus is a bilateral structure located in
the temporal lobes of the brain. It has been considered
a “memory gateway” [39, 40]. It plays key roles in the
transition from short-term to long-term memory, and
it is crucial for spatial memory and navigation [2, 41,
42]. The vast diversity of neuronal cell types located
in the different hippocampal subfields, together with
the presence of complex, multi-directional, intra- and
extra-hippocampal neural circuits [43–45], confer
this structure unique information-encoding capac-
ity. Indeed, several parallel pathways orchestrate the
information flux into and from the hippocampus to
other regions of the brain. The hippocampal forma-
tion belongs to the limbic system, and it receives
afferents from various brain regions, including the
EC, the mammillary bodies (MB), the amygdala and

the hypothalamus [40]. Once the information has
been processed in the hippocampus, it is projected
back to the EC via the subiculum. The DG exerts a
sparse encoding of memories [46]. Moreover, both
pattern separation and pattern completion capacity
have been attributed to the main population of neu-
rons present in this structure, namely granule neurons
[11, 47]. Although this topic is not devoid of con-
troversy, the general consensus in the field is that
either granule neurons generated during development
or those generated as a consequence of adult neu-
rogenesis play differential—sometimes collaborative
and other times competitive—roles in information
processing [15, 48–50]. In general terms, pattern
separation, which consists of producing differenti-
ated outcomes in response to very similar inputs, is
facilitated by newborn granule neurons [11, 16, 47,
51–53]. This capacity is conferred by special electro-
physiological properties, namely increased intrinsic
excitability and a lower activation threshold [54,
55], and by a particular innervation timing [56–61]
exhibited by these neurons when they are young
and excitable [13, 54, 62]. In contrast, fully mature
and developmentally generated granule neurons are
believed to contribute to more stable memory stor-
age and to pattern completion, a phenomenon based
mostly on generalization processes [47]. Within the
hippocampal circuitry, the DG itself participates in
two major circuits. The first, named classic trisynap-
tic hippocampal circuit, includes a projection from
the granule neurons to the Cornu ammonis CA3
region [44]. This connection is involved in spatial
memory and mood regulation, and it has been exten-
sively explored [63–67]. In addition, Keiko Kohara
and Susumu Tonegawa recently described the alter-
native trisynaptic circuit, in which granule neurons
project to the CA2 hippocampal subfield [68]. Sub-
sequently, our group showed that maturing newborn
granule neurons also project to this structure fol-
lowing a temporal pattern similar to the one they
follow to establish connections with the CA3 field
[69]. Whether all newborn granule neurons connect
to the CA3 or to the CA2 fields or whether they
establish connections to both fields is still a mat-
ter of debate since technical difficulties currently
prevent scientists from answering this challenging
question. However, the field has acknowledged that
the connection between the DG and the CA2 field is
required for context discrimination and social mem-
ory [70, 71]. The participation of newborn granule
neurons in these tasks remains to be fully elucidated.
However, previous evidence supports the contribu-
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tion of this cell population to the processing of
similar contextual cues [53, 72, 73]. Interestingly,
physical exercise selectively increases the number
of axonal terminals (named mossy fiber terminals,
MFTs) of newborn granule neurons in the CA2 field
[69]. This finding may have important consequences
for the hippocampal network remodeling that occurs
in response to physical exercise and EE [74, 75]
and may be related to the selective enhancement
of pattern separation capacity exerted by exercise
[32, 76].

ENVIRONMENTAL ENRICHMENT AND
PHYSICAL EXERCISE INCREASE ADULT
HIPPOCAMPAL NEUROGENESIS
THROUGH THE ACTIVATION OF
CONFLUENT PATHWAYS

Several years ago, three seminal studies were
published by Gage´s lab. Gerd Kempermann and
Henriette van Praag showed that physical exercise
and EE increase the proliferation and survival of new-
born granule neurons [25, 30, 77]. Their findings have
since been replicated by numerous labs working in
AHN, and many valuable pieces of information have
been added to shape our current knowledge of the
regulation of this phenomenon by physical exercise
and EE [24, 28, 78–80]. In addition to increasing
proliferation and survival, subsequent technical and
methodological refinement has revealed that physi-
cal exercise and EE modify almost every single step
of AHN [81–84]. These two interventions increase
the maturation [30] and the complexity of dendritic
arbor morphology of newborn granule neurons [17,
79, 82, 85–89]. This increase in maturation is also
reflected by the modification of the electrophysiolog-
ical properties of these neurons [17, 82]. Moreover,
an observation of particular relevance for research
on neurodegenerative diseases is that physical exer-
cise and EE increase the synaptic integration of
these cells [61, 69, 90–92]. Indeed, retrograde tracing
experiments have revealed that these two interven-
tions completely rewire the afferent connections of
newborn granule neurons [91–93] in a maturational
stage-dependent way [91]. These changes are sup-
ported by observation of a marked increase in the
number and size of dendritic spines [61, 82, 94] and
postsynaptic densities [86], and by the increase in the
size of the MFTs in the CA3 and the CA2 regions [69,
95] in these cells after stimulation with either physical
exercise or EE.

Whether the neuroprotective effects exerted by
physical exercise and EE on newborn granule neu-
ron maturation in wildtype animals can be exploited
as a therapeutic strategy to counteract the hippocam-
pal alterations observed in AD models and patients
will be further discussed in subsequent sections of
this article. In this regard, several aspects of the
neuroprotective actions of physical exercise and EE
are often neglected in the literature. For instance,
gender- [96–99], inter-individual- [100, 101], hous-
ing condition- [102], age- [103–106], and regional-
[107–110] dependent differences in the effects of
EE and physical exercise have been reported. These
data should be taken into account when prescrib-
ing these interventions as co-adjuvant therapies to
patients, since they may limit the success not only
of these but also of other therapies prescribed to the
same individuals.

Regarding the molecular mechanisms mediating
the effects of physical activity or EE on AHN and
cognition, these two strategies differ in some aspects
[111–116]. In fact, EE encompasses a multi-factor
protocol that includes, but is not limited to, voluntary
physical activity. In addition to the physical activ-
ity component, EE is also characterized by increased
social interaction and continuous cognitive stimula-
tion. These additional aspects of EE may account for
some of the aforementioned differences and for the
broader actions of EE in comparison to those of physi-
cal exercise. Indeed, even very short EE interventions
can elicit metaplastic events in the hippocampus [36,
117, 118].

Regardless of the variable degree of overlap
between the mechanisms of action of EE and phys-
ical activity, it is widely accepted that these two
stimuli entirely remodel the transcriptome of the hip-
pocampal milieu [119] and thus create a novel, neuro-
protective, and enriched scenario in which newborn
granule neurons grow and mature. Physical exercise
and EE modify the secretion pattern of growth fac-
tors [120–125], neurotransmitters [122, 126, 127]
and neuromodulators [128]. Moreover, the structure
of perineuronal nets and the extracellular matrix
is remodeled [71, 129], and blood influx is finely
regulated through changes in microvasculature and
endothelial cells [130, 131]. In addition, these two
interventions exert a complex modulation of neuroin-
flammation [132–137] and oxidative stress [114, 138]
and modify the behavior of two cell populations that
tightly regulate the maturation of newborn granule
neurons, namely astrocytes and microglial cells [59,
139, 140]. Moreover, EE and physical exercise have
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an impact on diverse hippocampal neurotransmission
systems [36, 61, 91, 141, 142], including the expres-
sion and properties of glutamate receptor subunits
[143–147], synaptic adaptor proteins [148–151], and
other molecules related to plasticity [152–156].

Thus, through a shift in the environment in which
newborn neurons are born [145, 157, 158], physical
exercise and EE positively modulate the neuro-
genic permissiveness of the subgranular zone (SGZ)
and facilitate the incorporation of highly plastic,
newly generated, maturing granule neurons into the
trisynaptic circuit. Consequently, these interventions
improve hippocampal-dependent learning [159, 160]
and pattern separation ability in mice [32] and
humans alike [76, 161]. Therefore, EE and exercise
converge at a crossroad: a profound and multi-faceted
increase in hippocampal plasticity [36, 74, 75, 142].
Given that many neurodegenerative diseases are char-
acterized by a generalized lack of neural plasticity,
the therapeutic potential of making certain lifestyle
changes, such as increasing the level of physical
activity, has become the cornerstone of several non-
pharmacologic strategies aimed to slow down or
prevent the progression of these diseases.

MULTIPLE STAGES OF ADULT
HIPPOCAMPAL NEUROGENESIS ARE
AFFECTED BY NEURODEGENERATIVE
DISORDERS

Classical approaches to study neurodegenerative
diseases include the use of transgenic animal models
that mimic specific pathological aspects of neurode-
generation. In the case of AD, these animals are often
engineered to carry mutations in specific genes that
encode proteins such as Amyloid-� precursor pro-
tein (APP) [162, 163], Tau [164], or Presenilin I
and II [165]. These mutations have been described
in families that exhibit an increased risk and fre-
quency of AD cases. However, as familial cases of
the disease account for a negligible proportion of the
total number of AD cases, other animal models have
been engineered to mirror the increase in the activity
of several molecules involved in the pathogenesis of
the condition. Such is the case of glycogen synthase
kinase 3�-overexpressing mice (GSK-3�-OE mice)
[166, 167]. Other animal models mimic pathological
aspects related to inflammation and the propagation
of Amyloid-� [168] and Tau [169, 170], or exhibit
accelerated aging [171]. Although there is no cur-
rent evidence that alterations in AHN are the primary

cause of AD, most of these models show alterations in
this process [9, 172, 173]. In this regard, alterations in
the proliferation of progenitor cells, survival of newly
generated neurons or exhaustion of the radial glia-like
cell pool have been reported in a number of animal
models of AD [9, 173], and importantly in patients
with this disease [174].

In addition, several years ago our group described
that granule neurons in AD patients exhibit a
profound morphological alteration, and that this phe-
notype is identical to that described in a murine
model of the disease that overexpresses GSK-3� in
these cells, namely GSK-3�-OE mice [86]. Both in
wildtype animals and control subjects, the classical
morphology of granule neurons is featured by the
presence of a single primary apical dendrite emerg-
ing from the soma. This dendrite is increasingly
branched as the dendritic tree goes through the molec-
ular layer (ML) of the DG, thus forming a “Y” shape
[175]. However, in AD patients and in GSK-3�-OE
mice, these neurons exhibit a phenotype we named
“V-shape”, due to the presence of several primary
apical dendrites emerging from the soma and that
are poorly branched in the ML. [86, 176]. Interest-
ingly, granule neurons exhibit an extremely similar
morphological phenotype under a variety of patho-
logical situations, such as seizures [177], stress [178]
and inflammation [179, 180], and in other models
of neurodegenerative conditions, such as Parkinson´s
disease [181]. Further studies are needed to determine
whether shared mechanisms trigger the appearance of
this morphological phenotype in response to the pre-
viously mentioned insults. However, of note, all these
circumstances converge in an increase in GSK-3�
activity [182–184]. In fact, we demonstrated that the
cell-autonomous expression of GSK-3� in newborn
granule neurons is sufficient to replicate the morpho-
logical phenotype observed in the transgenic animal
model and in patients [185, 186]. Given this find-
ing, this kinase emerges as key component in the
regulation of the morphology of this cell population.

In addition to the morphological alterations
observed in the granule neurons of GSK-3�-OE mice
and AD patients, there is a profound impairment in
the connectivity of these cells [86, 187]. In this regard,
GSK-3� plays key roles in the synaptic compart-
ment [188, 189]. Although the physiological function
of this kinase and that of its main downstream tar-
get Tau are required for the proper functioning of
the glutamatergic synapse, the aberrant phosphoryla-
tion of Tau or the overexpression of GSK-3� trigger
the endocytosis of glutamate receptors and the dis-
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appearance of synapses [86, 190–192]. Whether the
aforementioned alterations can be ameliorated by
non-pharmacological interventions such as physical
exercise or EE will be further discussed in the next
sections of this review article.

EFFECTS OF PHYSICAL EXERCISE AND
ENVIRONMENTAL ENRICHMENT IN
ALZHEIMER DISEASE

Physical activity and EE trigger an AHN-
dependent increase in long-term memory [193].
Moreover, these interventions exert a variety of bene-
ficial neurological effects [38, 194, 195], including a
reduction in anxiety and depression [98, 196–198],
an improvement of pattern separation capacity in
healthy subjects [76, 161], and an amelioration
of cognitive deficits in patients with mild cogni-
tive impairment [199] and in AD patients [200].
Moreover, physical exercise and EE reduce neuroin-
flammation [132, 201] and oxidative stress [144,
202, 203]. These and other beneficial effects are
observed in a wide variety of physiological and patho-
logical conditions, such as in aging [35, 204–210],
traumatic brain injury [132, 211, 212], ischemia
[123, 213–219], brain lesions [198, 220, 221], acute
and chronic stress [222–225], maternal deprivation
[226, 227], cranial irradiation [228, 229], bacterial
infection [133, 230], inflammation [231, 232], dia-
betes and metabolic syndrome [233–235], seizures
[236–238], exposure to toxic molecules [239–243],
and chemotherapy [244]. In addition, physical exer-
cise and EE improve cognition in other neurological
conditions such as schizophrenia [245, 246], autism
[247], post-traumatic stress disorder [248], develop-
mental alterations [249, 250], Angelman [251], Rett
[252], Fragile X [253] and Down [254–257] syn-
dromes, vascular dementia [258], and Huntington´s
disease [259, 260]. Moreover, despite the unknown
nature of the etiology of AD, the general consensus
in the field points to lifestyle as an important factor
able to decrease the risk and/or halt the progression
of the disease [38, 158].

In this regard, the neurotrophic hypothesis of the
mechanisms of action of physical exercise [194,
261–264] postulates that the increase in the levels
of neurotrophins and growth factors triggered by
this stimulus are responsible for its beneficial effects
on brain and cognition [265–267]. In fact, previ-
ous reports demonstrate that the effects of physical
exercise and EE on cognition are dependent on the
circulating levels of the insulin-like growth factor I

(IGF-I) [268–270], brain-derived neurotrophic factor
(BDNF) [266, 271], and vascular-endothelial growth
factor (VEGF) [272]. Importantly, the molecular
pathways activated by these and other growth factors
converge to inhibit GSK-3� through phosphorylation
of Serine9 [273–275]. Thus, the signaling cascades
activated by growth factors could potentially ame-
liorate some of the pathological consequences of
AD, namely the over-activation of GSK-3� and the
hyperphosphorylation of Tau. Importantly, these two
phenomena are among the most potent inhibitors
of AHN [180, 274, 276–278], whereas growth fac-
tors are potent positive regulators of this process
[263, 279]. Thus, when addressing why AHN, despite
not being the primary cause of AD, is so dramat-
ically impaired in this disease, it should be taken
into account that most neurodegenerative diseases are
characterized by a marked decrease in the levels of
neurotrophins [280]. It has been proposed that, by
increasing the levels of circulating neurotrophic fac-
tors, physical exercise can serve as a neuroprotective
strategy for neurodegenerative conditions [262].

Despite the clear benefits of physical activity on
humans, testing the efficacy of physical exercise and
EE to alleviate the pathological features of AD in
animal models has rendered complex and sometimes
contradictory results [281, 282]. As pointed out by
several authors, differences in exercise protocols,
gender, housing conditions and mouse strains can
account for these discrepancies [113, 283, 284]. With
regard to memory impairments and neuropathologi-
cal features, numerous bodies of evidence point to the
neuroprotective or even therapeutic potential of these
interventions [171, 225, 285–287], whereas other
studies report no improvement in memory tasks after
the exposure of certain AD animal models to exer-
cise [281, 288]. In agreement, these interventions do
not appear to recover all the aspects of AHN affected
by the progression of AD [282, 289], although most
of the studies support the neuroprotective poten-
tial of exercise and EE to sustain increased levels
of AHN in models of this disease [103, 225, 287,
290–294]. Nevertheless, some reports also provide
evidence of a slight discrepancy between the effects
of physical exercise and EE on AHN and on cognition
[282, 293, 295].

Over the last decade we have extensively charac-
terized the dynamics of AHN in GSK-3�-OE mice
in response to physical exercise and EE. One of the
most outstanding alterations in the newborn neurons
of these mice, namely their aberrant morphology, is
completely reversed when these animals are exposed
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to voluntary running for 2 weeks or to EE for 4 weeks
respectively [86, 176, 185]. However, we found that
the impaired connectivity of these neurons was not
normalized by these non-pharmacological strategies
[86, 185]. In addition, a mouse model that lacks Tau
[296] exhibits a marked decrease in the number and
size of synaptic contacts in the most distal part of the
dendritic tree, and these alterations are not reversed
by EE [95]. Further studies are needed to address
why newborn neurons of these animal models are
not responsive to the stimulatory actions of physi-
cal exercise and EE. However, it is known that the
outer segment of the dendritic tree of granule neu-
rons receives most of the afferent information from
the EC under physiological conditions, and Zhao
and Gage elegantly demonstrated several years ago
that synaptogenesis in this domain of the dendritic
tree of newborn granule neurons is selectively reg-
ulated by environment in a very particular way. In
this regard, spatial cues related to the size of the liv-
ing environment selectively increase spinogenesis in
this region [297]. The incapacity of newborn gran-
ule neurons of certain AD animal models to show
an increase in synaptogenesis in response to physical
exercise or EE can be explained by two alternative
mechanisms. On the one hand, this incapacity may
reflect a specific synaptic role played by GSK-3� or
Tau in encoding the aforementioned type of spatial
information, which increases distal synaptogenesis
under physiological conditions. On the other hand,
the dysregulation of GSK-3� activity or the absence
of Tau may alter the plasticity of dendritic micro-
tubules, thereby impeding the correct transport of
synaptic proteins to the most distal parts of the den-
dritic tree. Further studies are needed to determine
whether this insensitivity is a particular feature of
these animal models or whether it represents a com-
mon mechanism that may limit the effectiveness of
physical activity to potentiate the synaptic integra-
tion of newborn granule neurons in AD models and
patients.

A final crucial consideration that affects not only
AD but many other neurodegenerative diseases is that
the first “invisible” silent alterations occur several
decades before the appearance of the first clinical
manifestation of the disease [298, 299]. Decipher-
ing the exact time at which preventive strategies
would have a greater impact is currently impeded by
the lack of full elucidation of the etiology of these
conditions. Nevertheless, previous evidence suggests
that the rate of AHN is sustained throughout life in
humans [3–5]. Thus, it is postulated that the contri-

bution of this phenomenon to the neurogenic reserve
[19] is maintained during adulthood. Nevertheless, in
the unlikely event that humans experience a decrease
in the rate of AHN similar to that observed in rodents,
physical exercise would be expected to lead to a
robust improvement of AHN at all ages. This notion
is supported by previous lines of evidence in mice
demonstrating that physical exercise enhances AHN
both in healthy and AD mice and that this increase
is quantitatively greater than that detected in young
mice [206, 300, 301]. Thus, strategies designed to
increase AHN in young, aged, healthy or diseased
individuals is expected to greatly contribute to boost-
ing neurogenic and cognitive reserves both during
physiological and pathological ageing.

CONCLUDING REMARKS AND
FURTHER DIRECTIONS

Despite the unknown nature of numerous neu-
rodegenerative diseases, including AD, a common
feature of their progression is a generalized lack of
neural plasticity in certain susceptible brain regions.
The hippocampus and its main afferent structure,
namely the EC, are two of the first areas affected
by AD progression. In these brain regions, neu-
rons exhibit morphological alterations, as well as
a marked decrease in their afferent and efferent
connectivity. The continuous addition of new neu-
rons to the trisynaptic circuit serves as an endless
source of novel synaptic connections that can be
finely tuned in response to changing environments
or to changing information processing requirements.
In this regard, AHN has emerged as an alternative
strategy to preserve neuroplasticity in the hippocam-
pus. The observation that clinically and economically
affordable, non-pharmacological interventions, such
as increasing the level of physical activity, enhance
the rate of AHN and improve memory has put them in
the spotlight as strategies to improve brain health and
to keep hippocampal plasticity at high levels through-
out life. Given that neurodegenerative diseases are
multi-faceted pathologies with slow progression and
they involve numerous non-cell autonomous effects,
such as inflammation and neurovascular alterations,
promising therapies often lead to nothing. Moreover,
data obtained from animal models of the disease
suggest that cell-autonomous effects derived from
the deregulation of the activity of certain toxic pro-
teins limit per se the beneficial effects of physical
exercise and EE on brain health. Further studies
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should address whether the combination of these non-
pharmacological strategies and targeted drugs against
deregulated pathological proteins can effectively pre-
vent, slow down, ameliorate the symptoms or even
vanquish these as yet incurable and devastating
diseases.
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