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The recent findings on NK activation indicate that these cells
are important antitumor effectors. NK cells participate in the
graft-vs.-leukemia effect to control the relapse in leukemic
patients transplanted with allogeneic hematopoietic stem
cells. In various tumors, correlation between NK cell infiltrates
and prognosis were reported. However, tumor-infiltrating NK
cells are yet poorly characterized. We here summarize our
results and the recent studies of the literature on tumor-
infiltrating NK cells, and discuss the impact of these novel
insights into NK cell responses against tumors for the design of
NK cell-based therapies.

Antitumor Effects of NK Cells

NK cells were first identified as a distinct sub-population of
lymphocytes endowed with the spontaneous capacity to in vitro
kill tumor cells.1,2 Since then, the increased knowledge of NK cell
biology has provided strong arguments for their role in immune
response against infections and tumors.

Natural Killer cell activation depends on the intricate balance
between activating and inhibitory signals derived from receptors.
Most inhibitory receptors (KIR, NKG2A, LIR) are specific for
different HLA-I molecules. In normal conditions, the low engage-
ment of activating receptors counterbalanced by high inhibitory
signals triggered by HLA-I molecules on normal cells avoids self
reactivity of NK cells (Fig. 1). In the context of tumor, NK cell
activation relies on the expression of NK ligands by target cells.
To be “seen” by NK cells, cancer cells have to express ligands for

activating receptors, while the low expression of HLA-I molecules
attenuates the triggering of inhibitory receptors. Cancer cells can
also secrete immuno-modulating molecules inducing immune
cell anergy. Thus, tumor-related parameters strongly control NK
cell activation and any factor that modifies the expression of NK
ligands on tumor cells may thus affect the activation of NK cells.

Numerous data demonstrate the implication of NK cells in
tumor control and support a potential benefit of their usage
in cancer immunotherapy. Clinical evidence for the benefit of
in vivo NK cell targeting of human tumors has come from
allogenic hematopoietic stem cell transplantation (HSCT) to treat
the relapse in patients with acute myeloid leukemia (AML).
Infusions of donor alloreactive NK cells (presenting at least one
KIR/HLA mismatch with the recipient) participate in graft-
vs.-leukemia (GvL) effect and correlate with relapse-free sur-
vival.3-5 An 11 y-follow up of 3625 residents of a Japanese
population showed a negative correlation between NK cell
cytotoxic activity from blood and cancer incidence.6 Other
arguments for the role of NK cells in tumor control rely on the
presence of NK cell infiltrates in diverse solid tumors.

Different strategies aimed at increasing NK cell lytic activity
against tumor cells and/or to enhance their homing at the tumor
site have been evaluated: cytokine-mediated activation of endo-
genous NK cells (IL2, IFNa), NK infusions, anti-KIR mAb,
ADCC-promoting therapeutic Abs, Bispecific Ab (CD16/CD30)
or combined therapies.7,8 Preclinical and clinical studies empha-
size that NK-mediated immunotherapy would be efficient in
treating minimal residual disease. On the other hand, accumulat-
ing evidences indicate that, even when conventional therapies
apparently result in complete remission, micrometastases of
residual tumor cells can lead to tumor relapse. Thus, it is con-
ceivable to associate conventional cancer therapies, reducing
tumor size, with immunotherapy treatments for the complete and
durable eradication of tumors.9,10
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However, different mechanisms concerning the anti-tumor
function of NK cells remain partially understood: the in vivo NK
cell activation during tumor progression, the influence of tumor
microenvironment on NK cells, and how the treatments interfere
with NK cell effector functions in cancer patients.

This review summarizes our results on NK cells in metastatic
renal cell carcinoma (RCC) and melanoma, and recent studies in
other solid tumors. In particular, we discuss the role of some
important tumor parameters that interfere with NK cell activation
and subsequent recognition of cancer cells. We especially analyze

Figure 1. Regulation of NK cell activation. (A) Main NK receptors (lower line) and respective ligands on target cells (upper line) implicated in NK cell
triggering and inhibition. (B) Functions of NK cells (cytotoxicity and cytokine secretion) depend on a balance between opposing signals derived from
activating and inhibitory receptors. The presence and density of ligands dictate whether the target cell will be susceptible (immune surveillance) or not
(self tolerance) to NK cell lysis.
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the mechanisms involved in tumor immunogenicity and how
tumor stage and patient therapies modulate the functional status
of NK cells. Finally, we discuss the impact of these novel insights
on the design of anti-tumor NK cell-based therapies.

Oncogenic Events are Recognized by NK Cells

Malignant tumors are proliferating cells that have accumulated
mutations in genes regulating important biological pathways as,

for example, proliferation, apoptosis, angiogenesis and migration.
Oncogenic mutations often lead to the aberrant activation of
signaling pathways and to important modifications in protein
expression by cancer cells. Compared with normal cells, cancer
cells can overexpress stress-induced molecules, bear constitutive
activation of growth factors, downregulate MHC-I molecules, or
express specific tumor-associated antigens. Immune cells detect
tumors through receptors that recognize the altered expression of
these molecules. Thus, an oncogenic event can influence tumor

Figure 2. Tumors parameters implicated in the activation of NK cells. In RCC, VHL mutations induce constitutive activation and accumulation of Hypoxia-
inducible factor (HIF). Certain VHLmutations correlate with low HLA-I molecules expression via a partially HIF-dependent pathway. The low expression of
HLA-I molecules by VHL-mutated RCC cells reduces the engagement of NKG2A inhibitory receptor, shifting the balance toward NK cell activation.
Membrane HLA-G molecules upregulate inhibitory receptors (NKG2A,and ILT2) on NK cells. Membrane-bound IL15 (Mb-IL15) is involved in NK cell
activation and survival. In CML, the oncogeneic protein bcr/abl induces the expression of ICAM-1 and NKG2D ligands on myeloid cells favoring NK/target
conjugates and lysis. Altered IFNc signaling in bcr/abl target maintains a low HLA-I molecules expression. Bcr/abl dendritic cells activate NK cells via
NKG2D receptor. Imatinib mesylate interferes with NK/leukemic targets.24 DC: Dendritic cell; IM: Imatinib Mesylate; IRF: Interferon regulatory factor; STAT-
1: Signal Transducer and Activator of Transcription factor-1.
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immunogenicity when it directly or indirectly modulates the
expression of those molecules recognized by immune cells and
involved in their activation.

In RCC, we have shown that loss-of-function mutations of
Von Hippel Lindau (VHL) gene may be targeted by NK cells
(Fig. 2). This oncogenic event is important for the development
of these tumors and 80% of RCC bear mutations in VHL gene
leading to HIF (Hypoxia-inducible factor)-1 accumulation and
increased activation of downstream signaling pathways.11,12

Previous studies including ours showed that NK cells lyse RCC
cell lines and that LFA-1/ICAM-1 and HLA-I/NKR interactions
are important in RCC recognition by NK cells.13-15 We have
shown that certain loss-of-function VHL mutations correlate with
a reduced expression of classical HLA-I molecules via a partially
HIF-1a-dependent mechanism and with higher RCC lysis by NK
cells.16 These results corroborate previous findings reporting that
VHL controls the constitutive expression of STAT-1 and LMP2,
involved in MHC-I dependent antigen presentation, probably
via the downregulation of STRA-13.17 HLA-E molecules, ligands
of the inhibitory receptor NKG2A, are also decreased in VHL-
mutated cells. HLA-E promoter also contains STAT-1 binding
site.18 HLA-I molecules are often downregulated in tumors and
their modulation is considered a common mechanism of tumor
escape from T cell immune response.19 Conversely, low HLA-I
expression may shift the balance toward activation in NK cells.
In non-tumor pathology and upon hypoxia-dependent HIF
accumulation, the expression of MICA/B molecules, stress-
induced ligands of the activating receptor NKG2D, was found
augmented and correlated with increased NK cytotoxicity.20,21 In
our studies, the expression of NKG2D ligands was not controlled
by VHL mutation.

Data on VHL-dependent RCC susceptibility to NK cell lysis
are reminiscent of previous studies of the lab on Chronic Myeloid
Leukemia (CML), as summarized in Figure 2. We showed that
the high expression of bcr/abl oncoprotein in leukemic cells
increased NK cell-mediated lysis through the NF-kB activation
dependent induction of ICAM-1 expression on tumor cells.22 In
addition, we reported an altered IFNc pathway consequent to
bcr/abl expression; HLA-I molecules were not induced by IFNc
treatment, thus preserving leukemic cell susceptibility to NK cell
lysis.23,24 Finally, we showed that the overexpression of bcr/abl
oncogenic protein in DCs promotes DC-mediated NK cell
activation via the upregulation of NKG2D ligands.25

Triggering of NK cell activation by oncogenic-induced changes
in the expression of NK ligands on tumor cells may be a common
phenomenon. In melanoma, BRAF is frequently mutated in
tumor tissue and new therapies targeting the activation of its
signaling pathway have been recently developed for the treatment
of patients. Moreover, other genes implicated in the familial
occurrence of melanoma (i.e., germline mutations of CDKN2A)
were identified.26 It will be interesting to study whether mutations
in BRAF, or in other genes involved in melanoma development
and progression, determine changes in melanoma immunogeni-
city (expression of NK ligands), thus modulating NK activation.

Whether NK cells are able to indirectly target oncogenic
defects, or to recognize the constitutive overactivation of

membrane receptors in tumors, are important issues and may
contribute to develop complementary targeted therapies based on
these cytotoxic cells.

NK Cell Alterations in Cancer Patients: What are the
Direct and/or Indirect Effects of Tumor Cells?

The interactions between NK and tumor cells could be influenced
by the site of their encounter. Well characterized in blood, NK
cells are also present in various tissues and different sites of NK
development and maturation have been discovered. On the other
hand, cancer cells develop from and disseminate to distinct
sites depending on tumor type and on the course of the disease.
Thus, when studying tumor-infiltrating NK cells, it is impor-
tant to consider the tissue resident NK cells and the site of
metastases.

(1) Circulating NK cells. The first ex vivo evaluation of anti-
tumor NK function was done on circulating NK cells from
leukemia patients. Due to the easier access, NK cells from blood
are also the best characterized in patients with solid tumors.
However, in these patients, blood is probably not the most
relevant compartment for the investigation of NK cells.

Numerous studies have reported functional defects of blood
NK cells from most cancer patients and the severity of these
deficiencies varies among different types of tumor. Profound
alterations of NK differentiation and function were found in
CML, AML and myelodysplastic patients,27-29 whereas in patients
with solid tumors defects on blood NK cells are generally mild
and often associated with advanced tumor stage.

In patients with invasive cervical carcinoma and premalignant
lesions, the expression of NKp30 and NKp46 was found down-
regulated on blood NK cells and correlated with a reduced
cytolytic activity and with the clinical stage of patients. In inva-
sive cervical carcinoma, the expression of NKG2D was also
decreased.30 We recently showed that circulating NK cells from
stage IV melanoma patients present a unique NKp46low/
NKG2Alow expression profile that correlates with high lytic
efficiency toward melanoma cell lines.31 Our preliminary results
indicate that NK cells from stage III melanoma patients are less
affected, suggesting that NK alterations may change during
disease progression (unpublished data). Other groups also
reported a reduced expression of NKG2D and NCR receptors
in NK cells from melanoma patients.32,33 Moreover, altered
activating NK receptors and dysfunctions of circulating NK cells
were recently reported from a large series of patients with breast
cancer; the severity of the defects was clearly increased with the
progression of the disease.34

(2) Tumor-infiltrating NK cells. Numerous reports show that
NK cells infiltrate tumors of different origins. However, the
detection of NK cells has been done using different antibodies.
In some cases, double staining with CD3 and CD56 or CD57
specific antibodies have been performed, whereas more recent
studies used the direct staining with anti-NKp46 antibody.
Several groups (including ours), reported that NK cells infiltrate
clear-cell RCC.15,35,36 NK cells were described in melanoma,37

non small cell lung cancer,38,39 gastrointestinal stromal tumors
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(GIST)40 and colon-rectal carcinoma (CRC), even if in lower
proportion than T cells.41

In several tumors, NK cell infiltration has been associated with
clinical outcome. A positive correlation was reported in RCC
between the numbers of tumor-infiltrating NK cells (NK-TILs),
the expression of CD16 receptor and NK cytotoxic activity.35 In
a study including 150 patients, the count of intra-tumor NK
cells (anti-CD57 staining) in resected lung adenocarcinomas was
associated with the control of tumor progression, representing a
likely prognostic marker in patients with lung adenocarcinoma.42

Correlation between intra-tumor NK cell counts and tumor
control was also reported in patients with squamous cell lung
cancer.43 The prognostic value of CD57+ NK-TILs was observed
in gastric carcinoma44 and colorectal carcinoma.45 In prostate
cancer, elevated counts of CD56+ NK cells were associated with a
lower risk of progression.46 Moreover, a recent study showed a
positive association between numbers of NK-TILs (anti-CD56
staining) and regression of melanocytic lesions.47

Compared with blood NK cells, only a limited amount of
information is available on tissue infiltrating NK cells. NK-TILs
usually present more severe phenotypic and functional alterations
compared with circulating or non-cancerous tissue-infiltrating
NK counterparts. There is a marked decreased expression of
NKp30 receptor in GIST.40 Furthermore, NK cells show tissue
specific patterns of expression. In few studies, NK-TILs and non-
cancerous tissue specific NK cells were analyzed in parallel. In
non small cell lung cancer (NSCLC), Carrega and colleagues
showed that although peritumoral NK cells were similar in
phenotype and function to blood NK cells, intratumoral NK
cells were CD56brightCD16low, expressed NKp44 and HLA-DR,
lacked perforin, expressed high levels of inhibitory receptors
and were impaired in cytotoxic function but secrete cytokines
(IFNc, TNFa).38 A recent study further showed profound
reduction in the expression of a cluster of NK receptors
(NKp30, NKp80, DNAM-1, CD16 and ILT-2) and functional
anergy in intratumoral NK cells compared with blood and lung-
derived NK cells.39 Moreover, a distinct NK cell distribution was
shown between malignant (MLTA) and non malignant lung
tissues (NMLTA). NK cells were abundant in non malignant
lung tissues and displayed high cytotoxic activity compared with
NK cells in MLTA.48 A similar alteration in NK cell distribution
was also recently found between normal liver tissue and liver
metastasis of CRC.41 In breast cancers, the number of NK cells in
malignant tissue is reduced and includes a higher percentage of
CD56bright compared with healthy mammary tissue. These NK-
TILs display reduced activities compared with paired circulating
NK cells.34

In RCC tumors, NK-TILs differ from autologous blood NK
cells regarding the expression of inhibitory receptors, which may
contribute to functional deficits within tumor tissues. However,
in some RCC highly infiltrated by NK cells, NK function could
be restored after stimulation with low-dose IL2 and the cytotoxic
activity of NK-TILs resided in the CD16dim/NKG2Ahigh NK cell
population.15,35

An open question concerns the origin of the NK-TILs for
which several hypotheses may be proposed. The activation of

tissue resident NK cells could occur although the marked
differences between peri- and intratumoral NK cells do not
favor this hypothesis. Moreover, NK precursors are present in
certain tissues, like lymph nodes (LN),49 and within these sites,
tumor cells may interfere with NK maturation and contribute
to the altered phenotype observed in blood NK cells. Our
preliminary results indicate that, compared with normal LNs,
NK cells from melanoma metastatic LNs are functionally
defective and displayed a co-reduced expression of a pattern of
activating receptors (CD16, NKG2D, DNAM-1 and NKp30)
close to that described in NK-TILs from ovarian carcinoma
and NSCLC.39,50 Alternatively, NK-TILs may be recruited from
the circulation through chemokine gradients produced by the
tumor.

These different hypotheses are not exclusive and the source of
NK cells may vary as a result of changes in the tumor
microenvironment (Fig. 3). The determination of the transcrip-
tion factors and/or the immune related genes expressed by NK
cells from different compartments will be a valuable strategy to
precise the origin of NK-TILs. For instance, in the case of
metastatic LNs, it will be likely useful to compare the
transcriptional profiles of NK cells derived from metastatic LNs
from diverse cancers (i.e., breast cancer, melanoma).

Mechanisms Underlying Alterations of NKs
in Cancer Patients

In cancer patients, the defects of blood NK cells depend of the
tumor type and are more severe in advanced stages, and NK TILs
are more affected than peritumoral NK cells.

Several mechanisms may contribute to the alterations of NK
cells in cancer patients depending on where NK and tumor cells
encounter (Fig. 3).

Circulating tumor cells (CTC) have been detected in
melanoma and other tumors51-54 and could directly modulate
blood NK cells. It would be interesting to evaluate whether the
alterations in blood NKs correlate with CTC quantity.

It can be postulated that NK cells are modulated at the tumor
site and then recirculate to peripheral blood. Little is known
about NK cell recirculation, but chemokine receptors and
selectins are considered good candidates for the orchestration of
NK trafficking. While NK recruitment at site of inflammation
was described, the data concerning a possible recirculation of
these cells to blood are scarce.55

Independently of the site, tumor cells may affect NK functions
in a direct or indirect manner, involving membrane and/or soluble
factors expressed and released by tumor cells. The functional
consequences will depend on the nature and the density of NK
ligands expressed by tumor cells. Cancer cells express ligands for
activating NK receptors and in solid tumors, NKG2DL, DNAM-
1L, as well as adhesion molecules are important determinants.
Thus, in situ, the downregulation/shedding of activating NK
receptors may be caused by the constitutive expression of NK
ligands or through the release of soluble factors by tumor cells in
the microenvironment. Soluble MICA/B molecules were shown
to downregulate NKG2D.56,57 However, in our study, there was
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no correlation between the phenotype of NK cells (NKG2D) and
seric levels of MICA/B in patients.

On the other hand, MHC-I molecules control the activation of
NK cells. Membrane HLA-G is expressed by RCC and melanoma
cells and participates in immune surveillance escape.58-61 In

particular, HLA-G has been described to upregulate inhibitory
receptors on NK cells.62 Soluble forms of non classical HLA-I
molecules were also implicated in tumor evasion from immune
response.63 We have detected elevated seric levels of HLA-E in
melanoma patients.64

Figure 3. Proposed hypotheses to explain the alterations of NK cells in cancers patients. NK cells are present in different body compartments (peripheral,
blood, secondary lymphoid organs and tissues) and NK defects may depend on where NK and tumor cells encounter: (1) Circulating tumor cells (CTC)
may directly affect the phenotype and function of blood NK cells; (2) metastatic cells invading certain sites of NK cell maturation (i.e., LN) can influence
final differentiation of NK cell subsets; (3) Compared with NK cells in normal tissue, NK-TILs are dysfunctional. Cancer cells can directly affect the
functional status of tissue resident NK cells or of recruited NK-TILs by cell-to-cell contacts or by the secretion of soluble immunosuppressive factors;
(4) NK-TILs may return to blood contributing to the altered phenotype observed on circulating NK cells. Finally, cytotoxic drugs and targeted therapies
can interfere with NK cell activation, affecting (directly or indirectly) their phenotype or signaling pathways.
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In RCC, prostate cancer and melanoma, a membrane-bound
IL15 has been described.65 Endowed with particular properties on
tumor cells, tumor IL15 is involved in NK cell activation and
survival36 (Fig. 2). It can exert reverse signaling and favor tumor
progression.66,67

TGFb is a major immunosuppressive molecule, known to
downregulate the expression of NKp30 and NKG2D.68 TGFb
expression was upregulated in metastatic LN from patients
with cervical cancer69 and anti-TGFb restores NK cell reactivity
in breast cancer patients.34 Supporting the hypothesis of a
modulation of NK status by soluble factors, changes in immune
function were shown to precede metastasis in melanoma
draining LN.70

In addition, the particular phenotype of NK cells in cancer
patients may be the result of NK cell interactions with other
tumor-modulated cells (DC, T cell subsets, fibroblasts) present at
the sites of NK maturation, and/or tumor microenvironment. In
melanoma, tumor-associated fibroblasts have been described to
directly suppress the function of IL2-activated blood NK cells
and to inhibit the cytokine-induced expression of NKp44,
NKp30 and DNAM-1 via cell-to-cell contacts.71

Developing from different tissues and expressing specific
pattern of molecules, each tumor type is unique and characterized
by the capacity to metastasize in preferential sites. Differences
observed in NK cells (blood NKs vs. NK-TILs) from patients
with different cancers likely reflect intrinsic characteristics of the
tumor that must be taken into account in the investigation of
NK cells in cancer patients.

Treatments Affect NK Cell Phenotype and Functional
Status

Another important issue from our recent studies is that con-
ventional chemotherapy affects circulating NK cells in melanoma
patients. Post-chemotherapy NK cells displayed an induced
expression of NKG2A and NKp46 receptors compared with
pre-chemotherapy patients and donors.31 This profile is com-
patible with a less mature phenotype, and was associated with
a reduced NK activation toward melanoma cells. The treatment-
induced modulation of NK cell status was not direct because
blood samples were collected at least four weeks after the
last course of chemotherapy. In addition, using global trans-
criptome analysis and immunohistochemistry, we showed that
dacarbazine induced stromal and immune related genes in
responsive cutaneous metastatic lesions.72 These data further
indicate that cytotoxic drugs, in addition to their direct
cytotoxicity to tumor cells, may also influence changes in the
tumor microenvironment. Thus, in vivo, chemotherapy acts
on tumor cells and on other immune cells causing the release
of cytokines or soluble factors that in turns modulate NK
status.

It is likely that compared with chemotherapy, “targeted
therapy,” which consists of a novel group of antibodies or small
kinase inhibitors targeting specific growth signaling pathways in
cancer cells, will exert slight effects on immune cells. However,
certain targeted therapies have shown to affect pathways

implicated in the activation of immune cells. A recent study has
compared the effects of sunitinib and Sorafenib, two kinase
inhibitors adopted for the treatment of RCC, on circulating NK
cells.73 They showed that NK cell function in RCC patients
is inhibited by Sorafenib as a consequence of an impaired
phosphorylation of PI3K and ERK, which directly control NK
cell reactivity. In contrast, pharmacological doses of Sunitinib
do not affect NK cell function. Thus, new therapies when
targeting signaling pathways shared by NK cells (and in general
in immune cells) can likely affect their function. In melanoma,
BRAF inhibitors have been developed for the treatment of
patients. It will be interesting to evaluate their effect on NK cells.
Another promising therapeutic approach in melanoma uses
anti-CTLA4 mAb to block an inhibitory receptor expressed by
activated immune cells (T cells). The effect of such mAbs on
NK cells deserves precise investigation.

NK cell activation by cancer therapy does occur and the
underlying mechanisms have been investigated. In GIST, gain-of-
function mutations of c-kit are found in 85% of tumors and
treatment by Imatinib, a c-kit inhibitor, is highly effective. In
certain patients, the efficacy of Imatinib was not associated with
c-kit mutation in tumor, but dependent on IFNc production by
NK cells upon DC-mediated activation.74

Treatments can also modulate the expression of NK ligands
on tumor cells. Cisplatin and 5-fluorouracil were described to
induce the expression of NKG2D ligands,75 likely augmenting
tumor cell susceptibility to NK lysis. IFNa, used as adjuvant
for the treatment of melanoma and RCC, increases the expres-
sion of HLA molecules, thus inhibiting NK cell activation
toward cancer cells.

All together these studies indicate that anti-cancer therapy
(conventional, targeted therapies) can exert important effects on
the innate immune response and particularly affect NK cell
activation. When NK-based adjuvant therapies are planned to
be used, it is important to evaluate whether and how they will
be compatible with the first line treatment. A clear example
concerns breast cancer patients for which responses to adjuvant
therapy by trastuzumab (a Her2-targeting monoclonal Ab)
positively correlate with NK cell activity76 and for which
chemotherapy was shown to affect NK function.77,78

Conclusion

In melanoma and RCC patients, complete responses have been
obtained by high doses of IL2 and first trials of allogenic NK cell
infusions in these patients demonstrated that the treatment is
safe.79 These clinical evidences indicated that NK-based immuno-
therapy approach may represent a good strategy for the adjuvant
treatment of cancer. However, only limited objective responses
have been achieved using the different NK-based protocols thus
far developed. These approaches were aimed at boosting the NK
lytic potential but neither the tumor compartment, nor the
previous therapies of patients were considered.

The recent findings on NK cell activation in cancer patients
indicate that several important parameters require consideration
for the choice of a NK-based therapy: immunogenicity and tumor
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capacity to modulate NK function, phenotype of circulating/
tumor-infiltrating NK cells and the effect of the treatment on NK
function.

Additional studies are necessary to characterize NK-TILs in
patients with solid tumors of different origins, tumor stages and
evolution in response to treatments. In solid tumors, the study of
NK cells from normal vs. tumor tissue is fundamental to under-
stand the modulation exerted by the tumor on NK functional
status. Moreover, some tumors like melanoma or breast cancers
mainly metastasize trough lymphatic vessels thus affecting LNs,
important sites of NK cell development and maturation. All these
parameters have to be considered for the development of new
more effective NK-based therapies.

All in all, these recent findings indicate that it is justified to
reconsider immunotherapy not as a competitive treatment but as
a complementary approach that can be integrated in therapeutic
strategies at different stages of the disease. In particular, NK-based

therapies would be probably more effective for the treatment
of minimal residual disease when associated to therapy inducing
NK ligands on tumor cells and enhancing the NK recruitment
to tumor sites.
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