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Simple Summary: Pasta factories can be infested by insects. By following the odour of cereal-based
pasta, insects can enter packages of commercial products. The aim of this work was to compare the
bioactivity of volatiles produced by cereal- and legume-based macaroni pasta on adults of granary
weevil, Sitophilus granarius, in multi-choice behavioural bioassays. Tests were performed with ten
commercially available Italian macaroni pastas made from six different cereals or four different
legumes. Granary weevil adults were more attracted to cereal-based pastas than legume-based
pastas, but the differences in attractiveness were not always significant. Gas chromatography-
mass spectrometry analysis of head-space solid-phase microextraction collections from the different
pasta samples highlighted marked qualitative and quantitative differences, with aliphatic aldehydes
and aliphatic alcohols being the most abundant volatile components of cereal- and legume-pastas,
respectively. Moreover, the results of the two-choice behavioural bioassays suggested that the low
level of attraction to legume pasta is mainly due to the lack of attractant stimuli other than emission
of repellent compounds.

Abstract: The attractiveness of ten commercially available Italian macaroni pastas made from differ-
ent cereals [Triticum durum; Triticum durum (whole wheat); Triticum dicoccum; mixture of five cereals;
Triticum turgidum; Triticum turanicum] or legumes (Cicer arietinum; Lens culinaris; Pisum sativum; Vicia
faba) to Sitophilus granarius, was compared. S. granarius adults were more attracted to cereal pastas
than legume pastas, but the differences in attractiveness were not always significant. Consistent
with the results of behavioural bioassays, the mortality of adults over 20 days exposed to pasta
samples was 100% with the legume pasta samples and only 8% with the T. turanicum pasta. GC-MS
analysis of HS-SPME extracts from the different pasta samples highlighted marked qualitative and
quantitative differences, with aliphatic aldehydes and aliphatic alcohols being the most abundant
volatile components of cereal- and legume-pastas, respectively. In two-choice behavioural bioassays,
insect attraction to a 1:1 combination of T. turanicum and C. arietinum pastas (80%) was even higher
than that observed in T. turanicum pasta alone (64%) and in C. arietinum pasta alone (20%). This
strongly suggested that the low attractiveness of legume pasta is mainly due to the lack of attractant
stimuli rather than emission of repellent compounds.

Keywords: granary weevil; special pasta; food preferences; HS-SPME/GC-MS

1. Introduction

Pasta factories can be infested by insects, mainly larvae of Plodia interpunctella (Hübner)
(Lepidoptera: Pyralidae) and adults of Lasioderma serricorne (F.) (Coleoptera: Anobiidae),
Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae), Sitophilus spp. (Coleoptera:
Curculionidae) and Tribolium spp. (Coleoptera: Tenebrionidae), leading to negative eco-
nomic and commercial consequences [1–8].
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In particular, dried cereal pasta can be infested with Sitophilus spp. during shipment
in trucks, railcars and ships, as well as during retail storage, or even in the consumer’s
home [6,9–12]. Following the odour of cereal-based pasta, adult weevils (as penetrator)
can enter packages of commercial products enlarging the air vent micro-holes, through
the openings made by them, or through the existing openings created by poor seals or
mechanical damage [6,11–15].

Paper and cardboard packaging are the most commonly used materials, and are
generally considered the most susceptible to insect attack [15]. To prevent infestation,
resistant and sealed packages can be used [8,16–20]. Most food products available on the
market, including cereal-based pasta, are packaged to prevent infestation [20–24], although
contamination by insects is still frequent.

In recent years, consumers are requiring new types of pasta with healthy nutritional
characteristics, as a good source of plant-based protein and fibre, certified gluten free
and non-GMO. For these reasons, the food industry has produced and marketed pasta
made with flours derived from legumes. The legume-based pasta production process is
very similar to that of wheat-based pasta. The dried legumes are milled and then run
through fine-mesh sieves until only a fine-textured flour remains. Water is mixed into the
flour, other ingredients are sometimes added, and then the dough is kneaded and finally
extruded through dies into various shapes.

To our knowledge, there is no published scientific literature that considers Sitophilus
granarius (L.) infestations in dried pasta made with legume flour. However, there are some
studies that consider the relationship between S. granarius adults and legume seeds [25,26].

The granary weevil, S. granarius, is distributed throughout the temperate regions of
the world and is a frequent pest of wheat, also attacking barley, maize, sorghum, rice, and
other cereal grains. Larval stages feed inside the kernels, leaving only the hulls. They
sometimes infest sunflower seeds, dried beans, chickpeas, peanuts, fava beans, acorns,
chestnuts, pasta products, and ornamental dried corn [9,27].

It is known that legume seeds contain a wide range of allelochemicals with toxic and
deterrent effects against insect pests [28,29]. An admixture of yellow split-peas (Pisum
sativum L.) with wheat resulted in a marked reduction in the survival and reproduction
rate of Sitophilus oryzae (L.) [30,31].

Concentrations as low as 0.01% pea protein were shown to cause adult mortality and
reduced reproduction for several stored-product insect pests [32,33]. The repellence of pea
seed fractions to stored-product insect pests has been demonstrated in multiple-choice
tests, in which wheat kernels were dusted with fractions rich in either protein, fibre or
starch. This result is probably due to either the olfactory or gustatory effects of the pea
fractions [25,26]. However, to the best of our knowledge, semiochemical interactions
between stored-product pests and legume-derived products remain little investigated.

The main purpose of this work was to compare the bioactivity of volatiles pro-
duced by cereal- and legume-based macaroni pasta against adults of S. granarius in multi-
choice behavioural bioassays. Moreover, head-space solid-phase microextraction (HS-
SPME) extracts from the different types of pasta tested in bioassays were analysed by
gas-chromatography coupled with mass-spectrometry (GC-MS) to highlight differences
between their odour blends.

2. Materials and Methods
2.1. Insects

A wild S. granarius population found and reared on barley with no history of exposure
to insecticides was maintained in a climatic chamber at 28 ± 2 ◦C and 70 ± 5% RH, with an
L12:D12 photoperiod. Unsexed 1 to 2-week-old adults were used in behavioural bioassays
and susceptibility tests.
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2.2. Pasta Materials

Ten commercially-available Italian macaroni pasta brands of different types and
shapes (penne and rigatoni) (samples A–J) made from cereal-based (Triticum durum Desf.
(A); Triticum durum (whole wheat) (B); Triticum dicoccum L. (C); five cereals (wheat, spelt,
barley, maize and rye) (D); Triticum turgidum L., Kamut (E); and Triticum turanicum Jakubz.,
Khorasan (F), or legume-based (Lens culinaris Medik (G); Cicer arietinum L. (H); Pisum
sativum L. (I); and Vicia faba L. (J)) flours were used.

The nutritional information (average values) for 100 g of each macaroni pasta is
reported in Table 1.

Table 1. Nutrition facts of the ten different types of commercial Italian macaroni pasta used in the tests.

Samples Pasta Type Cereal/Legume Energy
Value

Fats
g/100 g

Carboydrates
g/100 g

Fibers
g/100 g

Proteins
g/100 g

Salt
g/100 g

C
er

ea
lp

as
ta

A Durum wheat
pasta Triticum durum 359 kcal

1525 kj
1

0.3 satur.
74.0

3.5 sugars 3.0 13.5 0.03

B Durum whole
wheat pasta Triticum durum 347 kcal

1468 kj
2.20

0.5 satur.
64.5

2.5 sugars 6.5 14.0 0.004

C Spelt pasta Triticum dicoccum 351 kcal
1485 kj

3.1
0.5 g
satur.

65.0
sugars 3.2 7.0 12.0 0.06

D Five cereals pasta wheat, spelt,
barley, maize, rye

352 kcal
1484 kj

2.2
0.5 satur.

67.0
sugars 3.0 6.8 12.5 0.007

E Kamut pasta Triticum turgidum 350 kcal
1483 kj

1.3
0.3 satur.

69.0
sugars 4.3 3.0 14.0 0.00

F Khorasan pasta Triticum
turanicum

346 kcal
1453 kj

1.4
0.3 satur.

68.0
sugars 2.5 4.8 13.0 0.03

Le
gu

m
e

pa
st

a

G Lens pasta Lens culinaris 325 kcal
1375 kj

0.3
0.2 satur.

48.0
sugars 1.2 13.6 25.8 0.05

H Chickpea pasta Cicer arietinum 345 kcal
1457 kj

3.1
1.6 satur.

53.8
sugars 1.8 11.1 20.0 0.06

I Pea pasta Pisum sativum 334 kcal
1415 kj

0.5
0.3 satur.

57.5
sugars 7.2 6.7 21.4 0.05

J Faba bean pasta Vicia faba 334 kcal
1412 kj

0.5
0.3 satur.

54.3
sugars 2.6 6.3 24.7 0.05

2.3. Multiple-Choice Behavioural Bioassays

The attractiveness of different macaroni pastas to adult granary weevil adults was
compared using a circular olfactometer arena (100 cm diameter, 50 cm height) similar to
that described in previous studies [5].

Modified Petri dishes (9 cm diameter), each baited with a sample (25 g) of different
macaroni pastas, were equally spaced along the edge of the arena, and 100 S. granarius
adults were released at its centre. To prevent insect escape, Teflon paint was applied to the
arena walls. The number of “trapped” insects was counted 1 day and 7 days after their
introduction to the arena. After each experiment, baits were renewed and the positions of
the different Petri dishes were randomly assigned. Tests were carried out in the dark at
28 ± 2 ◦C and 70 ± 5% RH. For each experiment, six replicates were performed.

2.4. Two-Choice Behavioural Bioassays

The attractiveness of Khorasan pasta (F) and chickpea pasta (H) was compared using
the circular olfactometer arena, the modified Petri dishes and the methodology described
above. The numbers of trapped and untrapped (free in the arena) insects were checked
1 day after their introduction to the arena. The following pairwise comparisons were
performed (First vs. Second choice): 25 g of Triticum turanicum vs. control (empty modified
Petri dish); 25 g of Cicer arietinum vs. control; mixed 25 g of Triticum turanicum and 25 g
of Cicer arietinum vs. control; mixed 50% Triticum turanicum and 50% Cicer arietinum vs.



Insects 2021, 12, 765 4 of 14

mixed 75% Triticum turanicum and 25% Cicer arietinum; mixed 50% Triticum turanicum and
50% Cicer arietinum vs. mixed 25% Triticum turanicum and 75% Cicer arietinum; and 100%
Triticum turanicum vs. 100% Cicer arietinum. For each experiment, four replicates were
performed (see Table 2).

Table 2. Behavioural responses of S. granarius adults in two-choice bioassay. In a row, significant differences between first
and second choices are indicated by Student’s t-test.

Two-Choice Bioassay First Choice
(±SE)

Second Choice
(±SE)

Student’s t-Test Response Index
(±SE)First vs. Second Choice t-Value p-Value

F vs. Control 64.50 ± 2.25 1.25 ± 0.25 <0.001 28.111 63.25 ± 2.25
H vs. Control 20.00 ± 1.08 3.50 ± 0.65 0.001 13.863 16.50 ± 1.19

F+H (1:1) vs. Control 80.00 ± 1.47 2.00 ± 0.41 <0.001 63.687 78.00 ± 1.22
F vs. H 73.75 ± 1.55 4.75 ± 0.48 <0.001 35.242 69.00 ± 1.96

F+H (1:1) vs. F+H (3:1) 40.75 ± 2.84 39.25 ± 4.33 0.828 0.236 1.50 ± 6.34
F+H (1:1) vs. F+H (1:3) 39.00 ± 1.78 41.50 ± 1.32 0.464 –0.837 −2.5 ± 2.99

In each trial, a response index (RI) was calculated using RI = [(T − C)/Tot] × 100,
where T is the number of insects responding to the first choice, C is the number responding
to the second choice, and Tot is the total number of insects released [13].

2.5. Susceptibility of Pasta Samples

For each type of pasta tested, 25 g samples were placed in wide-necked vials (100 mL
volume) and infested with 30 unsexed 1 to 2-week-old granary weevil adults. To ensure
air exchange, a series of small holes were punched in the vial screw caps. Vials were
maintained in the dark at 28 ± 2 ◦C and 70 ± 5% RH. Granary weevil mortality was
recorded 20 days after the start of the experiment, and emergence of new adults (F1)
was checked every 2 days for 8 consecutive weeks. For each experiment, four replicates
were performed.

2.6. Extraction of Pasta Volatiles

To identify and quantify the volatile compounds emitted by the different types of
pasta tested in the behavioural bioassays, the static head-space solid-phase micro-extraction
(HS-SPME) technique was used according to Beleggia et al. (2009) and Germinara et al.
(2019) [34,35]. Pastas were stored in their unopened packages at room temperature until
use. Before analysis, 10 g of each pasta sample was ground in an electric mill for 20 s at
6000 rpm (Waring® laboratory blenders, Fisher scientific, Göteborg, Sweden) and placed
in a 20 mL headspace vial (Supelco Co., Bellefonte, PA, USA), sealed with a PTFE/silicon
septum (Supelco Co., Bellefonte, PA, USA) for analysis. The vial was then conditioned at
50 ◦C for 30 min in a water bath prior to SPME headspace sampling.

Extraction was performed using SPME fibres (Supelco Co., Bellefonte, PA, USA)
coated with either 50/30 µm of divinylbenzene–carboxen–polydimethylsiloxane (DVB–
CAR–PDMS). The fibres were conditioned before use by heating them in the injection
port of the GC system, according to the manufacturer’s recommendations, at 270 ◦C
for 1 h. Then, the SPME needle was introduced through the septum, and the fibre was
exposed in the vial to the headspace of the pasta sample for 90 min. A temperature of
50 ◦C was maintained during headspace sampling. After the extraction time, the fibre
was recovered and transferred to the injection port of the GC, where the compounds were
thermally desorbed at 250 ◦C for 4 min. A fibre cleaning step of 10 min at the conditioning
temperature with the split valve opened was performed in the GC injector after every
chromatographic run to remove any absorbed residue. Before the acquisitions, a blank test
was performed under the same experimental conditions to check for possible impurities.
Each sampling was performed in triplicate.
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2.7. Gas Chromatography-Mass Spectrometry (GC-MS)

GC–MS analyses were performed using an Agilent 7890B series gas chromatograph
(Agilent Technologies, Milan, Italy) coupled with an Agilent 5977A mass selective detector
(MSD) equipped with an HP-5MS capillary column (30 m × 0.25 mm ID, 0.5 µm film
thickness, J&W Scientific Inc., Folsom, CA, USA). The desorption step was carried out
in the splitless mode (4 min) with a programmed temperature from 60 ◦C to 250 ◦C at
5 ◦C/min, with a final holding time of 15 min. Spectra were recorded in the electron
impact mode (ionization energy, 70 eV) in a range of 15–550 amu at 2.9 scans/s. The
identification of volatile compounds was achieved by comparing mass spectra with those
of the data system library (NIST08, p > 90%), and, wherever possible, by comparing
retention times (R.T.) and mass spectra with those of commercially available standards.
Moreover, a mixture of a continuous series of straight-chain hydrocarbons, C5–C40 (Alkane
Standard Solution C6–C40, Sigma Aldrich, Milan, Italy), was injected into an HP-5MS
column under the same conditions previously described for the pasta samples to obtain the
linear retention indices (RIs) [36]. Component relative percentages were calculated based
on GC peak areas. Each extract was analysed in triplicate.

2.8. Data Analysis

For the multiple-choice behavioural bioassays, the numbers of insects found in the
different dishes were subjected to Friedman two-way ANOVA by ranks. In the case of
significance (p < 0.05), the Wilcoxon signed ranks test was used for separation of means.

For the two-choice behavioural bioassays, Student’s t-test was used to compare the
mean numbers of insects found in the two choices.

The data on susceptibility of pasta samples were submitted to one-way analysis of
variance (ANOVA). Means were separated using the Tukey-Kramer honest significant
difference (HSD) test at the 0.05 significance level [37].

Statistical analyses were performed using SPSS statistical software 13.0 (SPSS Inc.,
Chicago, IL, USA).

3. Results
3.1. Multiple-Choice Behavioural Bioassays

Olfactory responses of granary weevil adults to different pasta samples in multiple-
choice behavioural bioassays are reported in Figures 1 and 2. Significant differences in
adults captured by the Petri dishes containing different macaroni pastas were recorded
1 day (χ2 = 35.029, df = 9, p < 0.001) and 7 days (χ2 = 35.553, df = 9, p < 0.001) after the start
of the experiment.

After 1 day, S. granarius showed preference, in decreasing order, for Khorasan pasta
(28.83%), five cereal pasta (12.83%), Kamut pasta (7.83%), durum whole wheat pasta
(6.83%), durum wheat pasta (5.50%), faba bean pasta (4.17%), spelt pasta (4.50%), pea
pasta (3.83%), lens pasta (2.67%), and chickpea pasta (2.17%), indicating an overall lower
attractiveness for legume-based pastas. The number of insects attracted to the Khorasan
pasta was significantly higher (Wilcoxon test, p < 0.05) than those attracted to the remaining
pasta samples. Lentil and chickpea pastas attracted the lowest numbers of adult insects,
which were not significantly different (Wilcoxon test, p > 0.05) from the numbers attracted
by other legume, spelt, and durum wheat pastas (Figure 1).

Similar results were obtained after 7 days in the olfactometer arena. S. granarius
showed preference, in decreasing order, for Khorasan pasta (40.50%), five cereal pasta
(13.33%), Kamut pasta (6.00%), durum wheat pasta (6.50%), durum whole wheat pasta
(5.00%), faba bean pasta (4.50%), chickpea pasta (3.50%), spelt pasta (4.33%), lens pasta
(2.83%), and pea pasta (2.17%) (Figure 2). The number of insects attracted to Khorasan
pasta was significantly higher than those attracted to the other pasta samples (Wilcoxon
test, p < 0.05). The number of insects attracted to five cereal pasta was significantly higher
(Wilcoxon test, p < 0.05) than those attracted to the durum wheat, spelt and various legume-
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based pastas. The latter were the weakest attractants, without significant differences among
them (Wilcoxon test, p > 0.05).
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3.2. Two-Choice Behavioural Bioassays

The results of the two-choice behavioural bioassays are reported in Table 2. When
individually compared with an empty Petri dish, Khorasan, chickpea, and a 1:1 mixture
of both pastas attracted 64%, 20%, and 80% of test insects, respectively. In total, 73.5% of
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insects chose the Khorasan pasta when presented with Khorasan pasta and chickpea pasta,
whereas a preferential orientation of adult insects was not observed when making a choice
between mixtures of Khorasan and chickpea pastas in different proportions.

3.3. Susceptibility of Pasta Samples

The mean numbers of live and dead S. granarius adults 20 days after exposure to
different pasta samples in wide-necked vials are reported in Table 3. According to our
results, significant differences were recorded in weevil mortality (F = 32.869; df = 9, 30;
p < 0.01). A 100% mortality rate of adult insects was recorded in all legume-based pastas,
significantly higher than those recorded for durum wheat pasta (70.00%), five cereal pasta
(68.33%), and Khorasan pasta (27.50%).

Table 3. Percentage of dead adults (±SE) checked after 20 days of contact with the macaroni pasta samples and number of
progeny (F1) emergence.

Samples Pasta Percentage of Dead
Adults (±SE) *

Number of Progeny
Emergence

A Durum wheat pasta 70.00 ± 5.27 b 0
B Durum whole wheat pasta 76.67 ± 3.60 bc 1
C Spelt pasta 85.83 ± 2.50 bc 0
D Five cereals pasta (wheat, spelt, barley, maize rye) 68.33 ± 5.00 b 0
E Kamut pasta 73.33 ± 4.30 bc 0
F Khorasan pasta 27.50 ± 4.97 a 10
G Lens pasta 100.00 c 0
H Chickpea pasta 100.00 c 0
I Pea pasta 100.00 c 0
J Faba bean pasta 100.00 c 0

* Means followed by the same letter are not significantly different (Tukey-Kramer HSD test at p < 0.05).

After the incubation period, new adults (F1 progeny) emerged from the Khorasan
pasta (ten samples) and from the durum whole wheat pasta (one sample). No adults
emerged from the other types of macaroni pasta.

3.4. Characterisation of Pasta Volatiles

HS-SPME/GC-MS was used to detect the main components in the odour profile of the
different pasta samples. The percentages of specific compounds, expressed as relative abun-
dance, are reported in Table 4. Across all ten pastas, a total of 50 volatile compounds in the
chemical classes of alcohols, aldehydes, ketones, esters, lactones, terpenes, hydrocarbons,
furans, and other compounds were detected.
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Table 4. VOCs levels detected in the head-space of different cereal and legume pasta samples.

Area (%) ± S.E. 1

Peak No. Compound R.T RIcal
2 RIref

3 A B C D E F G H I J

Aldehydes
3 3-Methylbutanal 1.70 665 668 0.69 ± 0.01 - 2.11 ± 0.03 0.74 ± 0.01 - - - - - -
4 2-Methylbutanal 1.75 669 668 - 1.35 ± 0.02 1.08 ± 0.01 0.72 ± 0.01 - - - - - -
5 Pentanal 1.91 709 706 1.07 ± 0.03 0.66 ± 0.03 1.61 ± 0.03 1.89 ± 0.04 1.43 ± 0.02 1.82 ± 0.07 0.37 ± 0.03 0.22 ± 0.02 0.51 ± 0.01 -
8 Hexanal 2.85 803 801 33.31 ± 0.64 32.66 ± 0.36 23.24 ± 0.07 35.4 ± 0.26 38.01 ± 0.08 38.66 ± 0.36 8.33 ± 0.10 6.00 ± 0.07 10.03 ± 0.08 8.59 ± 0.21
13 Heptanal 4.92 901 902 2.81 ± 0.03 - 1.14 ± 0.02 2.24 ± 0.05 1.05 ± 0.04 1.44 ± 0.07 - 0.13 ± 0.01 0.58 ± 0.06 -
15 (E)-2-Heptenal 6.45 957 954 3.32 ± 0.05 - 2.14 ± 0.02 2.47 ± 0.07 3.2 ± 0.09 1.82 ± 0.04 0.91 ± 0.01 0.54 ± 0.03 1.15 ± 0.03 0.65 ± 0.02
23 Octanal 7.87 996 998 1.53 ± 0.01 0.82 ± 0.01 0.66 ± 0.01 0.87 ± 0.02 1.13 ± 0.07 0.76 ± 0.06 0.41 ± 0.01 1.06 ± 0.03 1.24 ± 0.05 -
30 (E)-2-Octenal 9.58 1051 1054 1.42 ± 0.02 1.08 ± 0.03 2.93 ± 0.04 1.18 ± 0.05 1.18 ± 0.08 1.36 ± 0.10 1.65 ± 0.04 1.58 ± 0.03 0.41 ± 0.01 1.66 ± 0.04
34 Nonanal 11.00 1096 1100 11.64 ± 0.38 3.09 ± 0.05 2.15 ± 0.02 6.22 ± 0.07 8.87 ± 0.18 3.48 ± 0.02 1.26 ± 0.03 2.54 ± 0.12 3.70 ± 0.10 1.93 ± 0.03
36 (E)-2-Nonenal 12.75 1160 1157 - 1.82 ± 0.03 1.22 ± 0.06 2.77 ± 0.05 3.13 ± 0.07 1.12 ± 0.07 0.63 ± 0.02 0.69 ± 0.01 0.89 ± 0.02 0.88 ± 0.03
39 Decanal 14.07 1202 1201 2.83 ± 0.01 0.98 ± 0.07 0.71 ± 0.01 1.86 ± 0.04 2.81 ± 0.12 1.04 ± 0.10 0.27 ± 0.03 0.67 ± 0.03 0.59 ± 0.02 0.71 ± 0.01
40 2,4 Nonadienal 14.30 1215 1217 - 0.48 ± 0.01 0.34 ± 0.01 0.16 ± 0.01 0.22 ± 0.01 0.18 ± 0.05 0.07 ± 0.01 0.16 ± 0.02 - -
46 2-Butyl-2-octenal 18.72 1353 1360 0.47 ± 0.01 0.91 ± 0.02 0.81 ± 0.06 0.64 ± 0.02 0.73 ± 0.02 2.50 ± 0.09 - 0.21 ± 0.01 - -

Total aldehydes 59.09 ± 1.15 43.85 ± 0.58 40.14 ± 0.69 57.16 ± 0.62 61.76 ± 0.71 54.18 ± 1.01 13.9 ± 0.25 13.8 ± 0.31 19.1 ± 0.35 14.42 ± 0.30
Alcohols

6 3-Methylbutanol 2.15 638 740 - - 0.25 ± 0.02 - - - - 0.15 ± 0.03 0.53 ± 0.03 0.60 ± 0.02
7 1-Pentanol 2.44 765 771 2.02 ± 0.08 1.95 ± 0.02 2.15 ± 0.03 2.47 ± 0.05 3.07 ± 0.04 4.85 ± 0.05 3.28 ± 0.11 4.08 ± 0.04 4.24 ± 0.07 2.43 ± 0.11
9 1-Hexanol 4.11 867 870 1.89 ± 0.02 3.3 ± 0.05 3.92 ± 0.04 1.25 ± 0.05 1.99 ± 0.07 2.57 ± 0.21 42.09 ± 0.51 38.22 ± 0.24 45.06 ± 0.24 39.97 ± 0.22
12 2-Heptanol 4.87 891 896 2.23 ± 0.05 1.53 ± 0.02 0.76 ± 0.01 - 0.71 ± 0.29 0.78 ± 0.02 2.27 ± 0.08 0.86 ± 0.03 1.83 ± 0.03 0.86 ± 0.03
17 1-Heptanol 6.86 961 966 - 0.18 ± 0.01 0.36 ± 0.01 - - 0.73 ± 0.04 1.93 ± 0.03 3.00 ± 0.07 2.30 ± 0.10 0.75 ± 0.02
18 1-Octen-3-ol 7.15 969 971 3.81 ± 0.04 2.39 ± 0.02 3.48 ± 0.02 4.13 ± 0.07 3.42 ± 0.09 3.71 ± 0.02 6.81 ± 0.01 2.47 ± 0.14 5.19 ± 0.10 5.24 ± 0.05
21 3-Octanol 7.65 987 991 - - - - - - 0.52 ± 0.02 - 0.62 ± 0.02 0.25 ± 0.02
22 2-Octanol 7.80 984 994 1.83 ± 0.03 0.66 ± 0.02 0.52 ± 0.01 0.86 ± 0.02 1.43 ± 0.06 1.45 ± 0.03 1.15 ± 0.06 0.70 ± 0.02 0.87 ± 0.03 0.69 ± 0.02
26 2-Ethylhexanol 8.68 1036 1038 0.62 ± 0.01 0.75 ± 0.02 1.21 ± 0.05 - - - - 0.12 ± 0.00 - 0.59 ± 0.02
31 (E)-2-Octenol 9.91 1057 1060 0.22 ± 0.01 - - 0.31 ± 0.01 - - 0.56 ± 0.03 0.55 ± 0.03 0.93 ± 0.03 0.42 ± 0.02
32 1-Octanol 9.99 1059 1063 - 0.42 ± 0.01 - 0.43 ± 0.02 0.65 ± 0.03 0.94 ± 0.03 1.33 ± 0.02 3.86 ± 0.05 2.82 ± 0.08 0.68 ± 0.03

33 2,5-Dimethylcy-
clohexanol 10.68 1084 1099 - - - - 0.52 ± 0.06 2.03 ± 0.08 0.23 ± 0.02 0.85 ± 0.03 0.23 ± 0.01 -

37 1-Nonanol 13.05 1158 1165 - - - - - - 0.98 ± 0.07 2.28 ± 0.09 1.21 ± 0.05 1.00 ± 0.06

Total alcohols 12.62 ± 0.19 11.18 ± 0.15 12.65 ± 0.16 9.45 ± 0.20 11.79 ± 0.58 17.06 ± 0.41 61.15 ± 0.93 57.14 ± 0.72 65.83 ± 0.77 53.48 ± 0.58
Ketones

1 2-Propanone 1.33 481 487 - 2.43 ± 0.07 0.76 ± 0.01 1.42 ± 0.02 1.72 ± 0.01 0.52 ± 0.02 0.26 ± 0.03 - - 0.48 ± 0.01
10 2-Heptanone 4.63 881 889 - - 2.09 ± 0.05 0.92 ± 0.03 - - - - 0.49 ± 0.02 -
28 3-Octen-2-one 8.99 1027 1030 - 0.15 ± 0.01 0.42 ± 0.01 - 0.33 ± 0.01 1.77 ± 0.07 0.55 ± 0.03 1.53 ± 0.67 1.08 ± 0.08 0.41 ± 0.30

Total ketones 0 2.58 ± 0.05 3.27 ± 0.04 2.34 ± 0.04 2.05 ± 0.01 2.29 ± 0.07 0.81 ± 0.05 1.53 ± 0.67 1.57 ± 0.06 0.89 ± 0.26
Terpenes

14 α-Pinene 5.80 931 939 - 0.41 ± 0.01 0.23 ± 0.01 0.54 ± 0.03 - - 0.27 ± 0.01 0.20 ± 0.01 0.50 ± 0.03 1.69 ± 0.03
19 Sulcatone 7.38 973 974 2.20 ± 0.06 2.08 ± 0.04 1.39 ± 0.01 1.53 ± 0.02 0.54 ± 0.06 0.80 ± 0.04 0.63 ± 0.03 - 0.21 ± 0.01 0.34 ± 0.01
25 Limonene 8.66 1028 1031 - 0.95 ± 0.02 0.34 ± 0.02 1.09 ± 0.03 0.54 ± 0.06 0.46 ± 0.05 0.43 ± 0.03 0.13 ± 0.01 - 0.72 ± 0.01
49 Geranyl acetone 20.71 1451 1455 0.65 ± 0.02 0.5 ± 0.03 0.52 ± 0.01 0.64 ± 0.02 1.06 ± 0.04 - 0.13 ± 0.01 - - 0.08 ± 0.01

Total terpenes 2.85 ± 0.05 3.94 ± 0.09 2.48 ± 0.04 3.80 ± 0.08 2.14 ± 0.11 1.26 ± 0.06 1.46 ± 0.06 0.33 ± 0.49 0.71 ± 0.07 2.83 ± 0.29
Aromatics

11 Styrene 4.67 874 890 2.86 ± 0.04 3.25 ± 0.06 4.36 ± 0.04 1.17 ± 0.05 1.97 ± 0.07 1.20 ± 0.11 3.4 ± 0.04 4.40 ± 0.12 - 9.51 ± 0.14
16 Benzaldehyde 6.57 958 960 9.24 ± 0.24 3.51 ± 0.05 3.6 ± 0.02 6.04 ± 0.11 7.78 ± 0.07 4.62 ± 0.09 0.24 ± 0.01 0.23 ± 0.03 0.47 ± 0.02 0.49 ± 0.02
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Table 4. Cont.

Area (%) ± S.E. 1

Peak No. Compound R.T RIcal
2 RIref

3 A B C D E F G H I J

27 Benzyl alcohol 8.83 1027 1031 0.41 ± 0.01 - 0.76 ± 0.02 - 0.23 ± 0.02 2.45 ± 0.07 0.55 ± 0.02 0.35 ± 0.02 0.34 ± 0.02 1.20 ± 0.06

35 Phenethyl
alcohol 11.29 1112 1116 - - - - - - 0.22 ± 0.01 0.41 ± 0.01 0.31 ± 0.01 1.63 ± 0.04

Total aromatics 12.51 ± 0.22 6.76 ± 0.08 8.72 ± 0.07 7.21 ± 0.13 9.98 ± 0.10 8.27 ± 0.21 4.41 ± 0.07 5.39 ± 0.15 1.12 ± 0.03 12.83 ± 0.21
Lactones

29 Gamma-
Hexalactone 9.44 1048 1056 - 0.26 ± 0.01 0.42 ± 0.01 - - - 0.85 ± 0.03 0.72 ± 0.01 0.64 ± 0.03 0.24 ± 0.02

41 Gamma-
octalactone 15.56 1243 1250 - - - - - - 0.55 ± 0.01 0.49± 0.04 0.47 ± 0.05 -

45 Gamma-
nonalactone 18.44 1358 1361 - - - - - - 1.12 ± 0.07 4.23 ± 0.04 2.34 ± 0.13 0.47 ± 0.03

Total lactones 0 0.26 ± 0.01 0.42 ± 0.01 0.00 0.00 0.00 7.12 ± 0.08 5.44 ± 0.06 3.45 ± 0.15 0.71 ± 0.03
Furans

20 2-Pentylfuran 7.52 981 988 3.54 ± 0.08 11.88 ± 0.46 12.20 ± 0.07 9.20 ± 0.13 2.37 ± 0.12 6.10 ± 0.12 7.41 ± 0.08 9.49 ± 0.08 3.27 ± 0.09 1.63 ± 0.05
Hydrocarbons

38 Dodecane 13.88 1192 1200 - 1.17 ± 0.01 0.82 ± 0.02 0.48 ± 0.03 0.22 ± 0.02 0.41 ± 0.04 0.24 ± 0.03 0.13 ± 0.01 0.07 ± 0.01 0.53 ± 0.01

42 2,6,11-Trimethy
dodecane 16.18 1269 1275 0.74 ± 0.02 1.62 ± 0.02 2.25 ± 0.07 0.81 ± 0.02 0.84 ± 0.03 0.54 ± 0.07 0.99 ± 0.06 0.26 ± 0.02 0.04 ± 0.01 1.85 ± 0.04

44 Tridecane 16.73 1287 1300 1.55 ± 0.02 7.37 ± 0.34 5.68 ± 0.1 2.15 ± 0.07 0.35 ± 0.03 1.04 ± 0.12 0.25 ± 0.03 0.66 ± 0.03 0.20 ± 0.01 0.72 ± 0.01
48 Tetradecane 19.37 1396 1400 - 0.67 ± 0.02 0.62 ± 0.01 0.49 ± 0.04 0.39 ± 0.02 0.36 ± 0.06 0.22 ± 0.02 0.14 ± 0.03 0.21 ± 0.02 0.89 ± 0.04
50 Pentadecene 21.71 1488 1492 - 1.07 ± 0.01 1.12 ± 0.03 1.45 ± 0.04 0.87 ± 0.03 0.76 ± 0.04 0.22 ± 0.01 0.04 ± 0.01 0.06 ± 0.01 0.65 ± 0.02

Total
hydrocarbons 2.29 ± 0.08 11.90 ± 0.69 10.49 ± 0.15 5.38 ± 0.18 2.67 ± 0.11 3.11 ± 0.21 1.92 ± 0.13 1.23 ± 0.08 0.58 ± 0.05 4.64 ± 0.09

Others
2 Acetic acid 1.48 623 633 - - 2.02 ± 0.01 - - - - 0.52 ± 0.01 - 1.43 ± 0.02
24 Hexyl acetate 8.22 1001 1007 - - - - - 0.78 ± 0.05 0.33 ± 0.03 1.57 ± 0.06 0.44 ± 0.03 0.13 ± 0.01

43 Hexanoic acid,
pentyl ester 16.42 1274 1282 0.51 ± 0.01 0.77 ± 0.03 0.62 ± 0.01 0.47 ± 0.03 0.33 ± 0.02 0.47 ± 0.05 0.35 ± 0.02 0.48 ± 0.01 0.17 ± 0.01 0.54 ± 0.03

47 Hexanoic acid,
hexyl ester 19.04 1374 1383 0.5 ± 0.01 - - - - - 0.13 ± 0.01 0.72 ± 0.01 - -

Total others 1.01 ± 0.01 0.77 ± 0.03 2.64 ± 0.01 0.47± 0.03 0.33 ± 0.02 1.25 ± 0.07 0.81 ± 0.08 3.29 ± 0.04 0.61 ± 0.05 2.10 ±0.02

1 N = 3 replicates; 2 RI Lit = Linear retention index from literature; 3 RI Exp = Determined linear retention index against mixture of n-alkanes (C5–C40) on HP-5MS column.
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A total of 27, 34, 40, 34, 33, and 33 volatile compounds were respectively identi-
fied in the head-space of samples A, B, C, D, E, and F, obtained from different cereals,
whereas 42, 43, 30, and 40 compounds were identified from the G, H, I, and J legume-based
pasta samples.

In cereal-based pasta samples, aldehydes were the most represented chemical class,
both in terms of the number of compounds (10–13) and relative abundance (40.14–61.76%),
followed by alcohols, aromatics, furans, and hydrocarbons. In the head-space volatile
fraction of legume-based pasta samples, alcohols were the most numerous (11–12) and
abundant (53.8–61.15) among different chemical classes, followed by aldehydes, aromatics,
furans, and lactones.

In the head-space fraction of all cereal-based pasta samples, hexanal was the most
abundant compound (23.24–38.66%). In these samples, further major volatile components
were nonanal (11.64%) and benzaldehyde (9.24%) in sample A (wheat flour); 2-pentylfuran
(12.20%) and tridecane (7.37%) in sample B (wholemeal wheat flour); 2-pentylfuran (22.0%)
and tridecane (10.4%) in sample C (wholemeal spelled flour); pentylfuran (9.20%), nonanal
(6.22%), and benzaldehyde (6.04%) in sample D (five cereal flour); nonanal (8.87%) and
benzaldehyde (7.78%) in sample E (Kamut flour); and 2-pentylfuran (6.10%) and benzalde-
hyde (4.62%) in sample F (Khorasan flour). Samples E and F emitted similar substances,
with the exception of the total aldehydes, which were present in a higher percentage in
sample E, and a higher percentage of alcohols in sample F.

Hexenol was the main volatile compound identified in the head-space fraction of
all legume-based pastas. Additional major volatile components of these samples were
hexanal (8.33%), 2-pentylfuran (7.41%), and 1-octen-3-ol (6.81%) in sample G (lentil flour);
2-pentylfuran (9.49%), hexanal (6.00%), styrene (4.40%), and gamma-lactone (4.23%) in
sample H (chickpea flour); hexanal (10.03%), 1-octen-3-ol (5.19%), and 1-pentanol (4.24%)
in sample I (pea flour); and styrene (9.51%), hexanal (8.59%), and 1-octen-3-ol (5.24%) in
sample J (fava bean flour).

4. Discussion

The results of multiple-choice behavioural bioassays showed that S. granarius adults
are able to selectively respond to odours of different types of Italian cereal- and legume-
based pastas. In fact, in both the day one and day seven tests, cereal-based pastas were
overall more attractive than legume-based ones. Among all pasta samples tested, those
made from T. turanicum (Khorasan) and five cereals (wheat, spelt, barley, maize, and rye)
were the most attractive. Whereas, those from whole wheat T. durum, T. dicoccum, and
particularly from different legumes, were the weakest attractants.

To investigate the nature of the low attractiveness of legume-based pastas to granary
weevil adults, two-choice behavioural bioassays were performed. In these experiments,
pastas obtained from T. turanicum (Khorasan pasta) and C. arietinum (chickpea pasta)
confirmed their respective high and low attractiveness to adult insects. Whereas, a 1:1
mixture of the two pastas elicited a significant insect attraction, comparable to that of T.
turanicum pasta. This strongly suggests that the low attractiveness of legume-based pastas
to granary weevils mainly depends on the lack of attractive odour stimuli rather than
the presence of repellent volatile compounds. This hypothesis was further confirmed by
pairwise comparisons of different mixtures of the two types of pasta where a preferential
insect orientation was not observed due to the presence of both the attractive (Khorasan
pasta) and the non-attractive source (chickpea pasta) in both test odour-stimuli.

Several studies have highlighted the importance of ratios and concentrations of
volatiles for host location by phytophagous insects [38–42]. Male and female granary
weevil antennae are capable of selectively perceiving a wide range of individual ce-
real grain volatiles [43] and kernel solvent extracts from different durum and bread
wheat genotypes [35]. In behavioural bioassays testing various concentrations of 20 EAG
(Electroantennography)-active volatiles, five compounds (1-butanol, 3-methyl-1-butanol,
pentanal, maltol, and vanillin) acted uniquely as attractants, three compounds (1-pentanol,
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(E,E)-2,4-heptadienal, and phenylacetaldehyde) were attractive at lower concentrations
but repellent at higher doses, and 12 compounds (1-hexanol, butanal, hexanal, heptanal,
(E)-2-hexenal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 2,3-butanedione, 2-pentanone,
2-hexanone, 2-heptanone, and furfural) were repellent at high doses, strongly suggesting
that host finding behaviour of granary weevils depends on the balance of positive and
negative semiochemical stimuli [13].

In the head-space of different pasta samples, a total of 50 volatile compounds were
identified by chemical analysis. Even though many of these compounds were found in
the head-space fractions of both cereal- and legume-based pastas, differences in their
relative proportions along with qualitative differences were highlighted. In fact, the odour
profiles of cereal-based pastas mainly contained aldehydes, followed by alcohols, aromatics,
furans, and hydrocarbons whereas those of legume-based pastas were characterised by
a high content of alcohols, followed by aldehydes, aromatics, furans, and lactones. Short
chain aldehydes are lipid oxidation products of the hydroperoxide lyase pathway of
oxylipin metabolism [44,45], which can be converted into the corresponding alcohols by
the action of alcohol dehydrogenase [46]. Ketones and hydrocarbons are also derived
from lipid oxidation, from both enzymatic and non-enzymatic oxidative degradations,
while terpenes are naturally present/synthesised by the plant [47]. Lactones are strongly
related to legumes [48]. Furans are mainly produced by the Maillard reaction during pasta
drying [34,49]. Differences in composition of the pasta volatile fractions might account for
differences in attractiveness of various pasta samples to granary weevil adults.

In our study, S. granarius adults strongly preferred Khorasan and, to a lesser extent,
five cereal pastas over the other samples tested, with legume-based pastas being less
preferred. However, by matching the volatile profiles of pasta samples with the known
behavioural activity of some of their components, it is difficult to draw conclusions about
the compounds involved in determining the olfactory preference of S. granarius adults. In
fact, the volatile fractions of both cereal- and legume-based pastas are comprised of some
of the above-mentioned granary weevil attractants and repellents [13], but they represent
only a limited number of VOCs, identified in this study, and the behavioural activity of
many of these components is still unknown [50]. Therefore, the contributions of other,
even minor, volatile compounds emitted by the most attractive pasta samples, alone and in
combination with known attractants, deserve further investigation.

The response pattern of insects to different pasta samples did not vary markedly
between 1 and 7 days; this strongly suggests that the olfactory preference of insects was
mainly determined by the first choice made in response to the odour profiles of different
pasta samples. However, since insects remained alive and fed on the pastas during the
experiments, the possible release of additional volatiles, mainly by insects, which were
not detected in the SPME collections from the pasta samples alone, cannot be excluded.
Further studies are needed to confirm differences in the attractiveness of pasta samples to
granary weevils in short-term behavioural bioassays and to characterize the SMPE volatile
profiles of pastas fed upon by insects to better understand the chemical bases of attraction.

As reported, in susceptibility tests, 100% mortality of adult weevils was recorded
20 days after their exposure to all legume-based pastas and no progeny were recorded
during the eight consecutive weeks. Therefore, consistently with results of behavioural
bioassays, susceptibility tests demonstrated the unsuitability of legume-based pastas as a
food source for adult granary weevils. This is in fairly good agreement with previous stud-
ies reporting a significant reduction of survival and reproduction of conspecific S. oryzae
adults fed with an admixture of yellow split-peas and wheat [30,31] or rice treated with
1% pea flour extract [51]. Similar results were obtained by Fields et al. (2001) [25] with
nine stored-grain beetles, including S. oryzae, S. granarius, and S. zeamais, reared on wheat
kernels or flour treated with P. sativum fractions. Altogether, Sitophilus spp. were the most
sensitive species and the protein-rich pea fraction was more toxic than the fibre fraction,
which was more toxic than the starch fraction [26].
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The toxicity of pea albumin 1b (PA1b), a 37 amino-acid peptide extracted from pea
seeds, for cereal weevils (Sitophilus spp.) was discovered by Delobe et al. (1998) [33],
and a high-affinity binding site for this entomotoxin in susceptible Sitophilus strains was
characterised [52]. However, the diverse biological activities of legume fractions towards
stored-product pests strongly suggest that the contents of different toxic and deterrent
allelochemicals in legume flour remain active, even after the pasta production process, as
demonstrated by our study.

5. Conclusions

From a practical perspective, it is interesting to define the biological activity of volatile
and non-volatile components of legume-based pastas, as they could allow the identifica-
tion of possible repellent, deterrent, and toxic compounds to be used, for example, for
the preparation of bioactive packaging able to limit the risk of infestation of packaged
products [21,50]. However, more work is needed to determine the linkage between the
bioassays and the volatile compounds from the chromatography studies.
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