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A B S T R A C T   

Oxidation of engineered nanomaterials during application in various industrial sectors can alter their toxicity. 
Oxidized nanomaterials also have widespread industrial and biomedical applications. In this study, we evaluated 
the cardiopulmonary hazard posed by these nanomaterials using oxidized carbon black (CB) nanoparticles (CBox) 
as a model particle. 

Particle surface chemistry was characterized by X-ray photo electron spectroscopy (XPS) and Fourier- 
transform infrared spectroscopy (FTIR). Colloidal characterization and in vitro dosimetry modeling (particle 
kinetics, fate and transport modeling) were performed. Lung inflammation was assessed following oropharyngeal 
aspiration of CB or oxidized CBox particles (20 μg per mouse) in C57BL/6J mice. Toxicity and functional assays 
were also performed on murine macrophage (RAW 264.7) and endothelial cell lines (C166) with and without 
pharmacological inhibitors. Oxidant generation was assessed by electron paramagnetic resonance spectroscopy 
(EPR) and via flow cytometry. Endothelial toxicity was evaluated by quantifying pro-inflammatory mRNA 
expression, monolayer permeability, and wound closure. 

XPS and FTIR spectra indicated surface modifications, the appearance of new functionalities, and greater 
oxidative potential (both acellular and in vitro) of CBox particles. Treatment with CBox demonstrated greater in 
vivo inflammatory potentials (lavage neutrophil counts, secreted cytokine, and lung tissue mRNA expression) and 
air-blood barrier disruption (lavage proteins). Oxidant-dependent pro-inflammatory signaling in macrophages 
led to the production of CXCR3 ligands (CXCL9,10,11). Conditioned medium from CBox-treated macrophages 
induced significant elevation in endothelial cell pro-inflammatory mRNA expression, enhanced monolayer 
permeability and impairment of scratch healing in CXCR3 dependent manner. 

In summary, this study mechanistically demonstrated an increased biological potency of CBox particles and 
established the role of macrophage-released chemical mediators in endothelial damage.   

1. Introduction 

Oxidation of nanomaterials such as carbon black (CB) alters their 
functional characteristics and creates opportunities for biomedical and 
industrial applications [1]. Oxidized CB particles can deliver macro-
molecules to cells (e.g., virus neutralization monoclonal antibodies), 
enhance nano/microparticle uptake and are postulated as an effective 

antigen delivery system for targeting cell-mediated immune response 
[2–5]. Ozone (O3)-treated carbon (CBox) is an attractive material for the 
construction of electrochemical capacitors [6] while oxidation of CB 
nanoparticles (NP) has shown potential for the generation of graphene 
quantum dots [7,8]. Moreover, treatment of carbon-based interfacial 
materials (polymer support interface) with O3 with or without ultravi-
olet (UV) light/heat is considered an efficient way to improve the 
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interface compatibility and mechanical properties [9]. These diverse 
applications reflect an increased potential for human exposure. There-
fore, oxidized CB particles are a material of interest to evaluate potential 
health issues that may arise from their exposure. 

Significant occupational and environmental exposure potential exist 
for engineered CB. CB NP are among the most widely produced nano-
materials with a variety of applications in pigments, paints, inks/toner 
and reinforcing agents in polymers [10–13]. Current worldwide pro-
duction of CB is estimated to be 8.1 million metric tons per year with a 
market value of $13 billion for applications (carbon black user’s guide) 
[14]. CB is classified as a possible human carcinogen (2B) by the In-
ternational Agency for Research on Cancer (IARC) [15]. In addition to 
occupational inhalation exposures (from mining and production), the 
use of CB in toner and as a rubber reinforcing material creates envi-
ronmental inhalation exposure scenarios [16]. Occupational inhalation 
exposure to CB is associated with lung and vascular complications 
[17–20]. In addition to pulmonary toxicity, significant genotoxicity and 
reproductive/developmental toxicity are also reported through direct 
and indirect mechanisms [21–23]. Moreover, CB is widely used as a 
model for environmental ultrafine particulate exposures [24]. 

CBox (sometimes referred to as aged black carbon or ozone-oxidized 
black carbon) has been shown to induce lung inflammation through 
PI3K/AKT, MAPK4 and IL-33 pathways as well as result in changes in 
immune cell proportions in murine lymph nodes [25–28]. Moreover, by 
utilizing in vitro systems [human lung bronchial and alveolar type-2-like 
cell lines (16HBE140, A549)] it was demonstrated that O3-exposed 
particles induce greater transcriptomic dysregulation, DNA damage, and 
mitochondrial dysfunction [29–31]. Another study utilizing a murine 
macrophage cell line (MH-S) failed to reproduce the increased inflam-
matory potential of CBox particles [10]. Despite numerous studies, the 
impact of these particles on endothelial cells and role of 
macrophage-derived factors in these responses is still not known. 

Given the robust association of CB and O3 with adverse cardiovas-
cular outcomes and increased inflammatory potential of O3-interacted 
CB, it is plausible that phagocyte-released, soluble inflammatory medi-
ators may induce in vitro endothelial changes. While there are large 
number of studies that report in vitro and in vivo toxicity of CB nano-
particles [32–37], there are only a handful that investigate the mecha-
nisms of endothelial dysfunction [38–40]. However, mechanistic studies 
explaining the impact of CBox NPs on the endothelial cell function are 
lacking. Therefore, we evaluated if CBox particles cause in vitro endo-
thelial dysfunction (increased monolayer permeability and impaired 
migration) and deciphered the mechanism of toxicity by showing that 
this occurs via inflammatory mediators released by macrophages. 

2. Materials and methods 

2.1. CB nanoparticles and CBox particle generation 

CB NPs (Printex 90®, a gift from Evonik, Frankfurt, Germany) were 
used as base material. CBox particles were generated using an animal 
inhalation exposure system which was originally developed by the au-
thors to perform co-exposures [41]. In this system, CB particles were 
aerosolized using a modified high-pressure acoustical generator (HPAG, 
IEStechno, Morgantown, WV). O3 was produced by passing pure oxygen 
through a corona discharge type O3 generator (HTU500AC, Ozone So-
lutions, Hull, IA). To collect the particles, CB aerosol (10 mg/m3) was 
mixed with ozone (2 ppm) for 3 h and then the suspended particles were 
collected on polycarbonate membrane filters. The particles were 
removed from filters by agitation without any chemical extraction. 
Elemental composition of particle surfaces was analyzed by X-Ray 
Photoelectron Spectroscopy (XPS) (Physical Electronics PHI 5000 Ver-
saProbe XPS/UPS). Fourier-transform infrared spectroscopy (FTIR) was 
performed using a Digilabs FTS 7000 FTIR system. Elemental composi-
tion of particle surfaces was analyzed by X-Ray Photoelectron Spec-
troscopy (XPS) (Physical Electronics PHI 5000 VersaProbe XPS/UPS). A 

detailed deconvolution of O1s and C1 peaks from XPS data was per-
formed using Peakfit v4.12 (Systat Software Inc. SannJose CA). 

2.2. Dispersion preparation, colloidal characterization, and dosimetry 
analyses 

The dispersion preparation, colloidal characterization, and dosi-
metric analyses of CB and CBox particle samples was performed ac-
cording to protocols described in detail elsewhere [42–48]. In summary, 
1.0 mL of CB or CBox suspensions at 0.5 mg/mL in deionized (DI) water 
underwent sonication (Branson Sonifier S-450D, 400 W, with Branson 
3-in. cup-horn, power delivered: 1.26 W) and 30 s high-speed vortexing. 
Following each round of cup-horn sonication & vortexing, the hydro-
dynamic diameter (z-average) of CB or CBox particles was measured by 
dynamic light scattering (DLS, Zetasizer Nano ZS, Malvern UK). This 
step was repeated until dH changed by less than 5% at which point the 
delivered acoustic energy is termed critical delivered sonication energy 
(DSEcr). 

Once sonicated at their respective DSEcr, CB and CBox were added to 
fully supplemented Dulbecco Modified Eagles Medium (DMEM) (10% 
vol fetal bovine serum (FBS) and 100 units of Pen-Strep) at final con-
centration of 0.1 mg/mL. The hydrodynamic diameter (dH), poly-
dispersity index, zeta potential, and conductivity of the particle 
suspensions in cell growth medium and DI water were measured for both 
CB and CBox. 

The effective densities of the CB and CBox particle samples in fully 
supplemented DMEM were experimentally measured according to the 
volumetric centrifugation method previously described by the authors 
[44]. The particokinetics of CB and CBox were calculated using the 
distorted grid (DG) model executed on MATLAB (MathWorks, Massa-
chusetts, USA) to calculate the fraction of administered CB or CBox 
particle mass (fD) delivered to the surface of cells as a function of 
exposure time and well geometry, according to a method previously 
implemented by the authors [42,49]. 

2.3. Electron Paramagnetic Resonance (EPR) spectroscopy 

EPR spin probe 1-hydroxy-3-carboxymethyl-2,2,5,5-tetramethyl- 
pyrrolidine (CMH) was purchased from Enzo Life Sciences. EPR 
spectra were recorded using a Bruker EMXnano spectrometer (Bruker 
BioSciences, Billerica, MA, USA) operating at X-band with a 100 kHz 
modulation frequency as described previously [41,50]. 

Acellular Reactive Oxidant Generation on Particle Surface: EPR spec-
troscopy was used to measure the oxidizing potential of CB and CBox 
particles using spin probe CMH. Briefly, particles (50 μg/mL) were 
incubated with EPR spin probe 1-hydroxy-3-carboxymethyl-2,2,5,5 
tetramethyl-pyrrolidine (0.2 mM, CMH, EPR silent) for 30 min at 
37 ◦C. CMH is oxidized by reactive species on the surface of the CB 
particles to 3-carboxymethyl-2,2,5,5- tetramethyl-pyrrolidinyloxy 
radical (CM•; EPR active). After incubation, samples were immedi-
ately frozen in liquid nitrogen and stored at − 80 ◦C until the EPR ex-
periments were carried out. 

To study the oxidizing potential of CB and CBox particles on biolog-
ical antioxidants such as ascorbate, the particles were incubated with 
sodium ascorbate (1 mM) in phosphate buffer (10 mM, pH 7.4) for 30 
min at 37 ◦C. After incubation, samples were immediately frozen in 
liquid nitrogen and stored at − 80 ◦C until the EPR experiments were 
carried out. Ascorbate is oxidized by reactive species on the surface of 
the CB particles to ascorbate radical. EPR spectroscopy was used to 
measure the formation of ascorbate radical [51]. 

Reactive Oxidants Generation by Particles in Serum: The formation of 
reactive oxidant species in the serum was also measured using CMH, as 
described before [50]. Briefly, samples were exposed to vehicle, CB and 
CBox in human serum (Sigma-Aldrich, St. Louis, MO; Cat #P2918) at the 
concentration of 50 μg/mL for 5 min at 37 ◦C, followed by incubation 
with EPR spin probe CMH (0.2 mM) for 30 min at 37 ◦C. After 

N. Majumder et al.                                                                                                                                                                                                                             



Redox Biology 47 (2021) 102161

3

incubation, samples were immediately frozen in liquid nitrogen and 
stored at − 80 ◦C until EPR experiments were carried out. 

Reactive Oxidants Generation by Particles in Macrophages: RAW 264.7 
macrophages were treated with vehicle, CB and CBox at a concentration 
of 50 μg/mL for 4 h, followed by washing with Chelex (Sigma-Aldrich, 
Cat #C7901)-treated PBS (pH 7.4) and incubation with CMH (0.2 mM) 
in Chelex-treated PBS for 30 min at 37 ◦C. After incubation, the cells 
were separated from dishes using a cell lifter and cells plus PBS were 
snap frozen in liquid nitrogen and stored at − 80 ◦C for further EPR 
experiments. 

At the time of EPR measurements, liquid samples were thawed and 
loaded (50 μL) into glass capillary tubes (Ref: 9600150; Hirschmann 
Laborgerate GmbH & Co. KG, D-74246 Eberstadt, Germany) that were 
sealed on one end using Critoseal clay and placed inside the 4 mm (O.D.) 
EPR quartz tube (Cat log: 707-SQ-250 M; Wilmad LabGlass, Vineland, 
NJ, USA). The quartz tube was positioned inside the resonator/cavity 
and EPR spectra were recorded at room temperature. The following EPR 
instrument settings were used: microwave frequency, 9.615 GHz; center 
field, 3425 G; sweep width, 100 G; microwave power, 20 mW; modu-
lation amplitude, 0.5 G; modulation frequency, 100 kHz; receiver gain, 
60 dB; time constant, 5 ms; conversion time, 15 ms, sweep time, 30 s; 
number of scans, 1. Data acquisition was performed using Bruker Xen-
on_nano software. The signal intensity was generated using first peak 
(low field) height of the EPR spectrum. Data processing was performed 
using GraphPad Prism 8 (GraphPad software, San Diego, CA). 

2.4. Ferric Reducing Ability of Serum (FRAS) assay 

Complimentary to EPR approach, the reactivity/acellular oxidative 
potential of the particulates was also evaluated using Ferric Reducing 
Ability of Serum (FRAS). FRAS measures the oxidant damage/antioxi-
dant depletion in human serum, a rich source of antioxidants that can 
help evaluate the oxidation induced by multiple chemically distinct 
oxidants. This approach has been previously used to evaluate the 
oxidative potential of various engineered nanomaterial [52,53]. Human 
serum was rapidly thawed and exposed to particulate at 5 mg/mL. The 
particulate containing solution was briefly sonicated and incubated at 
37 ◦C for 3 h on an orbital shaker set at 450 RPM. The particulate was 
separated from the serum by centrifuging the mixture at 14,000 g for 30 
min. To determine the oxidation, 50 μl of the serum supernatant was 
reacted with 1 mL of the FRAS solution. The FRAS solution which is a 
mixture of 10:1:1 vol/vol mixture of A: B: C reagent solutions was mixed 
right before reacting it with the serum. Reagent “A” consists of 14 mM 
sodium acetic trihydrate and 176 μM glacial acetic acid (Alfa Aesar, 
Haverhill, MA; Cat # 36289) in deionized water. Reagent “B” consists of 
10.1 mM TPTZ (2,4,6-tri(2-pyridyl)-s-triazine) Sigma-Aldrich, Cat 
#T1253) and 1 mM HCL in deionized water. Reagent “C” consist of 20 
mM FeCl3⋅6H2O (Sigma-Aldrich, Cat # 44944) in deionized water. The 
change in color was quantified by reading the absorption at 586 nm and 
change in antioxidants was plotted as % change from control serum. 

2.5. Murine model 

C57BL/6J male mice (8 weeks old) were purchased from Jackson 
Laboratory (Bar Harbor, ME) and acclimated at the West Virginia Uni-
versity (WVU) Animal Care Facility for a week before exposure. All 
animals were maintained in a room with a 12-h light/dark cycle and 
provided chow and water ad libitum. All animal procedures were 
approved by the WVU Institutional Animal Care and Use Committee) 
that is an AAALAC accredited program. CB (CB collected after aero-
solization without reaction with ozone) and CBox particles were 
dispersed in freshly collected lavage fluid (from naïve mice) and 
administered (20 μg in 50 μl volume) by oropharyngeal aspiration. We 
exposed 5 animals in each treatment group. Euthanasia was performed 
via intraperitoneal injection of Fatal Plus (250 mg/kg) at 24 h post 
exposure. 

2.6. RAW 264.7 and RAW-Blue™ cell culture 

RAW 264.7 murine macrophages (ATCC® TIB-71™) and RAW- 
Blue™ Cells (InvivoGen, San Diego, CA) were cultured in Dulbecco’s 
Modified Eagle’s Medium (DMEM) (Sigma-Aldrich St. Louis, MO), sup-
plemented with 10% fetal bovine serum (R&D Systems, Minneapolis, 
MN), 1% Penicillin-Streptomycin (Gibco™, Carlsbad, CA) 1% anti-
mycotic (Gibco™, Carlsbad, CA), in 5% CO2 and 37 ◦C. RAW-Blue™ 
cells are derived from RAW 264.7 macrophages with chromosomal 
integration of a secreted embryonic alkaline phosphatase (SEAP) re-
porter construct inducible by NF-κB and AP-1. Cells were treated with 
CB particles (50 μg/mL) and CBox particles (50 μg/mL) in DMEM 
(without phenol red) (Sigma-Aldrich St. Louis, MO). 

2.7. Murine endothelial cell culture 

Yolk sac-endothelial cells- C166 (ATCC® CRL-2581™) were cultured 
in DMEM cell culture medium (Sigma-Aldrich St. Louis, MO), supple-
mented with 10% fetal bovine serum (R&D Systems, Minneapolis, MN), 
1% Penicillin-Streptomycin (Gibco™, Carlsbad, CA), 1% antimycotic 
(Gibco™, Carlsbad, CA), in 5% CO2 and 37 ◦C. Cells were exposed using 
a well-established conditioned medium approach. Briefly, media was 
collected from vehicle, CB, CBox exposed RAW 264.7 cells after 24 h 
exposure. A 1:4 dilution of conditioned medium to fresh medium was 
then used to expose endothelial cells. 

2.8. Bronchoalveolar Lavage Fluid (BALF) collection and analyses 

Following euthanasia, approximately 1 mL ice cold sterile PBS was 
instilled through a tracheal canula into the lungs three times. The cells 
were counted in the lavage fluid and pelleted by centrifugation at 600 
RPM for 5 min at 4 ◦C and used for cytospin preparation using Cytospin® 
(Thermo Fisher Scientific, Waltham, MA) for differential counts. Cells 
were stained in Hema 3 (Fisher Scientific, Pittsburgh, PA). The lavage 
fluid supernatant was stored at − 80 ◦C for later investigation. Lavage 
protein content were quantified using Pierce BCA kit (Thermo Fisher 
Scientific, Waltham, MA) according to manufacturer’s 
recommendations. 

2.9. Enzyme Linked Immunosorbent Assay (ELISA) 

ELISA assays were performed to quantify keratinocyte chemo-
attractant (KC), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 
interleukin-13 (IL-13), interleukin-1β (IL-1β), thymic stromal lympho-
poietin (TSLP) and chemokine ligand 9 (CXCL9) using Duoset sandwich 
ELISA assay kits (R&D Systems, Minneapolis, MN) according to manu-
facturer’s recommendations. The limit of detection for these assays are 
as follows: IL-1β (1000 pg/mL – 15.6 pg/mL), TNF-α (2000 pg/mL – 
31.3 pg/mL), KC (100 pg/mL – 15.6 pg/mL), IL-6 (1000 pg/mL – 15.6 
pg/mL), IL-13 (4000 pg/mL – 62.5 pg/mL), TSLP (1000 pg/mL – 15.6 
pg/mL), CXCL9 (1000 pg/mL – 15.6 pg/mL). The quantification was 
done as previously described [54]. Briefly, standard curve for each 
cytokine was generated using known serially diluted protein concen-
trations. This standard curve and unknown samples were processed 
using ELISA methodology as provided by the manufacturer. The un-
known concentrations of cytokines were determined by performing 
linear regression analysis. 

2.10. Real-time PCR gene expression 

Total RNA was extracted from snap frozen lung tissues and cells 
using Qiagen RNeasy RNA isolation kit (Qiagen, Germantown, MD) and 
cDNA was synthesized using High-Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific, Waltham, MA). Sequences of PCR primers 
are provided in Supplementary Information Table 2. PCR reaction was 
performed in triplicate using AriaMX real time PCR machine (Agilent, 
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Santa Clara CA) using SYBR green chemistry, as previously described 
[36]. Relative expression level of genes of interest was measured using 
the comparative threshold method with 18S as internal control. Data 
was analyzed using ΔΔCt method, where fold change = 2− ΔΔCt. 

2.11. Flow cytometry for cellular oxidants 

RAW 264.7 cells were treated with CB and CBox particles and 
oxidative stress was also analyzed by flow cytometry (using dihy-
droethidium, DHE), Invivogen, San Diego, CA). Cells that were exposed 
for 4 h were harvested, centrifuged for 5 min at 400 g and stained with 
DHE at a concentration of 5 μM in warm Hank’s Balanced Salt Solution 
for 30 min in 37 ◦C. Cells were washed twice with Phosphate Buffered 
Saline and an increase in fluorescence was measured using BD-FACS 
Aria III equipment at 488 nm excitation and 615 nm emission 
wavelength. 

2.12. Western blot 

Cells were lysed 4 h post particle treatment using RIPA buffer 
(Thermo Fisher Scientific, Waltham, MA) supplemented with protease 
and phospatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). Total 
Protein was quantified using BCA (bicinchoninic acid) assay (Thermo 
Fisher Scientific, Waltham, MA), and proteins were separated electro-
phoretically in 4–12% bis-tris polyacrylamide gel followed by transfer to 
PVDF membrane. Membranes were blocked using 3% bovine serum al-
bumin (BSA) and incubated overnight at 4 ◦C with 1:1000 dilution of 
primary rabbit monoclonal antibodies (cat# 9251 phospho-JNK, cat# 
9252 JNK, cat# 3033 phospho–NF–kβ p65 and cat# 4764S Total- NF-kβ 
p65, Cell Signaling Technologies, Danvers, MA). Membranes were 
washed with tris buffered saline -tween solution and conjugated with 
anti-rabbit HRP conjugated secondary antibody for 1 h (1:10,000) (Cell 
Signaling Technologies, Danvers, MA). After washing, 

Fig. 1. Colloidal characteristics of CB and ozone reacted CB(CBOX). A) Intensity-weighted hydrodynamic diameter distributions of CB and CBOX dispersions in 
DMEM +10% vol/vol FBS. B). Volume-weighted hydrodynamic diameter distributions of CB and CBOX dispersions in DMEM +10% vol/vol FBS. C) tabulated data on 
colloidal characteristics of CB and CBOX. 
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chemiluminescent signal was developed using ECL prime (Thermo 
Fisher Scientific, Waltham, MA) and detected using Amersham Imager 
600 (Cytiva, Life Sciences, Marlborough, MA) imaging system. β-actin 
(1:1000) (catalog number sc-47778, Santa Cruz, Dallas, TX) was used as 
a loading control. The western blots were quantified using ImageJ 
software (NIH, Bethesda, MA) following the previously described 
method [55]. Briefly, the images were converted to 8 bit using the 
ImageJ software. Band density was normalized to the density of the 
loading control (β-actin) and then plotted as relative density of the 
phospho to total protein levels. 

2.13. NF-kβ/AP1 reporter assay 

NF-kβ/AP-1 activity was measured using RAW-Blue™ cells (Inviv-
oGen, San Diego, CA). NF-kβ activity causes SEAP production which can 
be quantified spectrophotometrically by QUANTI-Blue™ (Invivogen, 
San Diego, CA solution. Briefly, 25,000 cells were seeded in a 96-flat 
bottomed well plate. After 24 h, cells were treated with CB or and 
CBox (50 μg/mL) in DMEM (without phenol red) (Sigma-Aldrich, St. 
Louis, MO) for 16 h. Supernatant was collected and SEAP levels were 
measured spectrophotometrically at 655 nm wavelength using Spec-
traMax®iD5 (Molecular Devices, CA). 

2.14. In vitro permeability assay 

FITC-dextran based permeability assay was performed using In vitro 
Vascular Permeability Assay kit (EMD Millipore, Burlington, MA) as per 
the manufacturer’s instructions. Briefly, C166 cells were grown to 
monolayer on collagen-coated cell culture inserts for 72 h. Monolayer 
formation was verified using microscopy. Cells were exposed to condi-
tioned medium for 24 h, after which fluorescein isothiocyanate (FITC)- 
dextran (dilution 1:50) was added and incubated for 40 min to allow the 
tracer to permeate across the cell layer. The media was collected from 
the bottom wells, and fluorescence intensities were measured at an 
excitation wavelength of 485 nm and emission wavelength of 530 nm 
using SpectraMax®iD5 (Molecular Devices, CA). 

2.15. Scratch assay 

Wound/scratch assay was performed with C166 endothelial cells 
using silicon culture inserts (Ibidi®, Planegg, Germany). Briefly, cells 
were grown on inserts for 72 h. The polymer separation was removed, 
and cells were treated with conditioned medium as described above. 
Images were captured after time 0 and 24 h with a 10X objective using 
Zeiss Tissue Culture Scope (Zeiss Microscopy, Germany). Changes in 

Fig. 2. Fate and transport modeling. Deposited mass fraction at the cell-particle interface over time for CB (A–C) and CBOX (D–F) for 96-, 12-, or 6-well plates. 
Continuous lines correspond to the DG model predictions based on experimental data; dashed lines trace the regression modeling. 
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migration area were quantified using ImageJ software (NIH, Bethesda, 
MA). 

2.16. Statistical analyses 

Data are presented as mean ± standard error of mean (SEM) from at 
least three experiments with three technical triplicates in each group. 
Statistical differences were inferred using analysis of variance (one-way 
or two-way depending on the experimental design) and Tuckey’s post- 
hoc test. The individual groups were compared by Student-t test. Dif-
ferences between the groups were considered statistically significant if 
the p-value was less than or equal to 0.05 (95% confidence level). Sta-
tistics were performed using GraphPad Prism v8.3 (GraphPad Software, 
San Diego, CA). 

3. Results 

3.1. CB particles characteristics 

CB nanoparticle physicochemical characteristics have been previ-
ously reported by our group and others [32,33,35–37]. Briefly, primary 
particles are round/irregular in morphology and form loosely bound 

agglomerates. Transmission electron microscopy analyses revealed pri-
mary particles size to be 14 ± 6 nm. Specific surface area measurement 
of CB by Brunauer, Emmett and Teller (BET) method was 274 ± 27 
m2/g. Particles demonstrated no extractable polycyclic aromatic hy-
drocarbon (PAH) contents after 8 h of toluene extraction (manufacturer 
data). Mass spectrometry analysis indicated no detectable metal impu-
rities in the particles. Endotoxin levels were 0.15 EU/mg as demon-
strated by the Limulus Amebocyte Lysate (LAL) assay. 

3.2. Colloidal characteristics of CB and ozone reacted CB particles 

The DSEcr for 0.5 mg/mL aqueous dispersion of the CB and CBOX 
samples were calculated to be 151 and 340 J/mL, respectively. The 
effective densities of the CB and CBOX particle samples as measured by 
the Harvard VCM were 1.18 ± 0.01 and 1.17 ± 0.00 g/cm3, respectively 
[44]. Fig. 1A and B respectively present the intensity-weighted and 
volume-weighted hydrodynamic size distributions of the particle sus-
pensions in DMEM + FBS 10% (vol/vol) as measured by dynamic light 
scattering (DLS) at 0 h. The hydrodynamic size and stability of CB and 
CBOX suspensions in water and in DMEM + FBS 10% (vol/vol) as 
measured by DLS at time 0 and at 24 h is presented in a tabulated form as 
Fig. 1C. Interaction with O3 significantly increased the negative charge 

Fig. 3. Increased oxidative potential CBox 
NPs compared with CB. A) Representative 
room temperature X-band EPR spectra of 
CM•. EPR spectra of Control, CMH without 
particles in PBS, CB and ozone interacted CB 
(CBOX) suspensions (50 μg/mL in PBS pH 
7.6). The signal intensity was generated 
using first peak (low field) height of the EPR 
spectrum. Histogram present quantification 
of signals. B) Representative room tempera-
ture X-band EPR spectra of ascorbate radical 
production. EPR spectra of Control, CMH 
without particles in PBS, CB and ozone 
interacted CB (CBOX) suspensions (50 μg/mL 
in PBS). The signal intensity was generated 
using first peak (low field) height of the EPR 
spectrum. Histogram present quantification 
of signals. C) Ferrous reducing ability of 
serum (FRAS) assay of CB and CBOX pow-
ders. D) Representative room temperature X- 
band EPR spectra of CM•. EPR spectra of 
Control, CMH without particles in serum, CB 
and ozone interacted CB (CBOX) suspensions 
(50 μg/mL in serum). The signal intensity 
was generated using first peak (low field) 
height of the EPR spectrum. Histogram rep-
resents quantification of signals. Data are 
presented as mean ± standard error of mean 
of three independent experiments. Data 
analyzed by One-way ANOVA followed by 
Tukey’s post-hoc test. *p < 0.05 vs control 
and #p < 0.05 between CB and CBOX.   
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on the particle surface (zeta potential) in suspension especially in water 
(19.8 ± 0.4 to − 5.2 ± 0.4) causing a net near neutral charge and 
increased agglomeration. Moreover, CB particles formed smaller 
aggregates/agglomerates in suspension compared with CBox particles. 

3.3. Partico-kinetics and in vitro cellualar modeling 

The effective densities and volume weighted size distributions were 
used to determine CB and CBOX delivered to cell dose as a function of 
exposure time using the DG model. Fig. 2 presents the automatically 
generated deposited mass fraction vs. time for both types of particles, as 
calculated by the DG model for 6, 12, and 96-well plates. It appears that 
the sedimentation of agglomerate does not reach an equilibrium within 
24 h. For all types of well plates, the mean particle fraction deposited for 
CB and CBOX over 24 h tends asymptotically to 0.80 and 0.96, respec-
tively (Supplemental Table 1). 

3.4. Surface functional group alterations on CBox NPs 

Fourier-transform infrared spectroscopy (FTIR) was performed on 
the CB and CBox particle samples to characterize the change in chemical 
functionality. Supplementary Fig. S1 shows the spectra between 800 and 
1800 cm− 1. The spectra of CBox significantly differs from CB. Functional 
groups qualitatively identified include C––C, C–O, C––C stretching and 
C––O. The appearance of a strong absorption at 1660–1770 cm− 1 in 
ozone treated CB is a clear indication of enhanced presence of carbonyl 
group. XPS analyses revealed 5.7% increased O:C ratio. Deconvolution 
of O1s and C1s peaks from CB and CBox samples by XPS further 
confirmed the appearance of surface functional moieties (Supplemen-
tary Fig. S1). 

3.5. Oxidant generation on CBox NPs 

The oxidant potential of the ozone reacted CB particles was further 

Fig. 4. Ozone reacted carbon black 
(CBOX) particles induce greater inflam-
matory response in vivo compared to CB. 
C57Bl/6J mice were oropharyngeally 
exposed to 20 μg of particles in (in 50 μl of 
saline) and euthanized 24 h later. A) Bron-
choalveolar lavage (BAL) total cells, macro-
phages and neutrophils B) total protein 
contents in BAL fluid C) Real time RT-PCR 
mRNA expression of IL-6, KC, IL-1β, TNF-α, 
CXCL9, CXCL10, CXCL11 and CXCR3 in lung 
homogenates D) Inflammatory cytokine 
quantification in BAL fluid by ELISA. Data 
are presented as mean ± standard error of 
mean with N = 5–6 mice per group. Data 
analyzed by ANOVA followed by Tukey’s 
post-hoc test. *p < 0.05 vs control and #p <
0.05 between CB and CBOX.   
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studied using electron paramagnetic resonance (EPR) spectroscopy 
(Fig. 3A–B). We first evaluated the reactive surfaces of the CB particles 
using spin probe CMH and identified significantly greater reactive sur-
faces with CBox particles compared to CB. The EPR spectra of CB and 
ozone-interacted CB incubated with CMH in PBS for 30 min at 37 ◦C are 
shown in Fig. 3A. The EPR spectrum exhibits a characteristic triplet 
pattern with an isotropic hyperfine coupling constant of 16 G [56]. In 
addition, a significantly greater ascorbate radical EPR signal from the 
ozone interacted CB particles further confirmed increased oxidant gen-
eration potential compared with CB particles (Fig. 3B). Ferric Reducing 
Ability of Serum (FRAS) assay indicated increased potency of CBox par-
ticles to reduce antioxidants in the human serum (Fig. 3C). To further 
validate these findings and to confirm whether the reduction of anti-
oxidants happened in parallel to/as a result of oxidant generation, we 
performed EPR analyses on human serum exposed to particles. In 
concurrence with FRAS, our data clearly indicated a significantly greater 
oxidant generation in human serum after incubation with ozone inter-
acted CB particles (Fig. 3D). 

3.6. Increased in vivo biological potency of CBox particles 

A significantly greater number of bronchoalveolar lavage (BAL) 
neutrophils were observed in mice exposed to CBox particles compared 
to CB particles (Fig. 4 A). A significant increase in BALF protein content 
indicated an increased permeability of air-blood barrier in the lungs 
(Fig. 4 B). Real-time PCR analysis of lung homogenate further confirmed 
that CBox particles induced a greater pro-inflammatory gene expression 
compared to CB particles (Fig. 4C). A significant elevation in mRNA 
expression of IL-6, CXCL9, CXCL10, CXCL11, IL-1β, and TNF-α was 
detected in mice exposed to CBox particles compared to CB particles. 
ELISA analysis of various BALF cytokines showed a significant increase 
in protein concentration of IL-6, IL-1β, TNF-α and KC, indicating a higher 
inflammatory response in mice exposed to CBox particles compared to 
CB (Fig. 4 D). 

Fig. 5. CBox particles induces higher inflammation in murine macrophages (RAW 264.7 cells) compared to CB particles A) SEAP reporter assay for NF-kβ 
activity assay utilizing RAW Blue™ cells. RAW Blue™ cells were exposed to or CBox particles (50 μg/mL) for 4 h before collecting and supernatants were collected for 
SEAP activity assay (NF-kβ activity). B) Phosphorylation of p-65, C) Phosphorylation of JNK, D) Representative EPR spectra of vehicle/control (RAW 264.7 cells 
incubated with 0.2 mM CMH), CB (CB treated with RAW 264.7 cells and incubated with 0.2 mM CMH), CBox (ozone exposed CB treated RAW 264.7 cells incubated 
with 0.2 mM CMH). The signal intensity was generated using first peak (low field) height of the EPR spectrum. Histogram present quantification of EPR signals. For 
these EPR study, RAW 264.7 cells were incubated with CMH probe for 30 min at 37 ◦C and collected for experiments. RAW 264.7 cells were exposed to (vehicle or 50 
μg/mL particles) for 4 h and cell lysates were collected for Western blot analyses for phospho/total p65 subunit of NF-kβ and phospho/total JNK. Data are presented 
as mean ± standard error of the mean of three independent experiments each with triplicate of each condition. Data analyzed by ANOVA followed by Tukey’s post- 
hoc test. *p < 0.05 vs control and #p < 0.05 between CB and CBOX. 
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3.7. CBox particles induce greater inflammatory response and oxidative 
stress 

We utilized mouse macrophage cell line (RAW 264.7) to elucidate 
signaling pathways activated by the particle exposure. Further RAW- 
Blue™ (NF-kβ SEAP Reporter cell line) was used to quantify NF-kβ/AP1 
activity as SEAP production occurring under the control of NF-kβ and 
AP-1. A significantly greater SEAP indicated increased activation of NF- 
kβ/AP-1 by ozone reacted CB particles compared to CB particles and 
vehicle (Fig. 5A). These results were further validated by Western blot 
analysis confirming increased phosphorylation of p65 subunit of NF-kβ 
(Fig. 5B). JNK, a protein involved in oxidant response through mitogen 
activated protein kinase (MAPK) pathway, was significantly phosphor-
ylated after treatment with CBox (Fig. 5C). EPR spectroscopy using spin 
probe CMH on RAW 264.7 cells exposed to the CBox particles confirmed 
the significant cellular oxidants generated by CBox in vitro. (Fig. 5D). 

3.8. Inhibition of oxidant production and JNK protects cells from 
oxidative stress and inflammation induced by CBox 

EUK-134, a synthetic catalase-superoxide dismutase mimetic was 
utilized to elaborate the role of ozone treated CB particles in oxidant 
generation. Pre-treatment of RAW 264.7 cells with EUK-134 robustly 

protected the cells from CBox particle-mediated toxicity. DHE analyses 
demonstrated EUK-134 treatment significantly protected the cells from 
CBox particle-mediated oxidant stress (Fig. 6A, Supplementary Fig. S2). 
Further, treatment with EUK-134 resulted in significant decrease in NF- 
kB/AP-1 activity (as evident by reduced SEAP production) (Fig. 6B). LPS 
was used as a positive control for NF-kB activation. Apart from decrease 
in oxidative stress and NF-kB/AP-1 activation, EUK-134 treatment also 
significantly decreased in mRNA expression of inflammatory mediators 
IL-6, TNF-α, CXCL9, CXCL10, and CXCL11) (Fig. 6C, Supplementary 
Fig. S3). This was confirmed by decrease in protein level of TNF-α, 
CXCL9 and IL-6 in cell culture supernatants pre-treated with EUK-134 
(Fig. 6D). SPC600125, a potent JNK inhibitor, was utilized to under-
stand the role of JNK signaling pathway in CBox particles induced 
inflammation. We observed a significant decrease in mRNA expression 
of IL-6, TNF-α, CXCL9, CXCL10 and CXCL11 after treatment with 
SPC600125 (Fig. 6E, Supplementary Fig. S5). A significant decrease in 
TNF-α, CXCL9 and IL-6 protein levels was measured in the cell culture 
supernatants after 24 h of treatment, establishing the role of JNK in CBox 
particles-induced inflammation (Fig. 6F). 

Macrophage-secreted soluble mediators impact endothelial cell 
responses through CXCR3 pathway. In order to understand the in-
fluence of macrophage-secreted factors on endothelial cell responses, 
RAW 264.7 cells were challenged with CBox particles for 24 h and 

Fig. 6. EUK-134 (catalase-superoxide 
dismutase mimetic) and SPC600125 (JNK 
inhibitor protects from inflammatory 
impacts of ozone reacted CB particles. 
Pre-treatment with EUK-134 (5 μM) 30 min 
before particle exposure protects from 
increased A) Intracellular oxidant generation 
(dihydroethidium labeling) by flow cytom-
etry, B) SEAP secretion (NF-kβ activity), C) 
Pro-inflammatory mRNA expression and D) 
cytokine secretion in cell culture superna-
tants. Pre-treatment with SPC600125 (20 
μM) 30 min before particle exposure protects 
from increase in E) Pro-inflammatory mRNA 
expression by real time RT-PCR and F) 
cytokine secretion by ELISA in cell culture 
supernatants. After 30 min of pre-treatment 
cells were exposed to CB or ozone reacted 
CB particles (50 μg/mL) and supernatant/ 
cells collected after either 4 h (for flow 
cytometry, SEAP reporter assay and mRNA 
expression) or 24 h (ELISA assay). LPS (10 
ng/mL) was used as positive controls. Data 
are presented as mean ± standard error of 
the mean of three independent experiments 
with triplicates of each condition. Data 
analyzed by two-way ANOVA followed by 
Tukey’s post-hoc test. *p < 0.05 vs control, 
#p < 0.05 between CB and CBOX and, $ p <
0.05 between without and with pharmaco-
logical agents (EUK-134 and SPC600125).   
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supernatants (conditioned media containing the secreted factors) were 
collected. This media was diluted 1:4 with fresh media and was used to 
challenge endothelial cells. CBox particle conditioned medium from 
RAW 264.7 cells significantly upregulated inflammatory gene mRNA 
expression (IL-6, TNF-α, and GM-CSF) in endothelial cells (Fig. 7A). We 
also observed a significant upregulation of CXCR3 mRNA. Compared to 
the vehicle control, both CB and CBox particle treated cell conditioned 
media impaired the endothelial wound healing (measured by scratch 
assay) (Fig. 7B). CBox induced significantly greater scratch healing 
impairment. This impairment was significantly improved by addition of 
CXCR3 antagonist (NBI-74330). Challenge with the conditioned media 
significantly increased endothelial monolayer permeability that was 
significantly reduced by addition of NBI-74330 (Fig. 7C) confirming the 
role of macrophage secreted factors in inducing endothelial monolayer 
permeability. 

4. Discussion 

Herein, we demonstrate that CB particles, after interaction with O3, 
have altered surface chemistry characteristics and demonstrate an 
increased capacity for oxidant generation. Interaction with O3 resulted 
in not only changes in surface oxidation but also the colloidal charac-
teristics which also affect their delivered to cell dose over the 24 h 
exposure period. Compared to CB, CBox particles displayed a negative 
charge/zeta potential due to development of negatively charged func-
tionalities. These functionalities balance the positive charge in the 
starting material and thus result in a more neutral charge leading to an 
increased hydrodynamic diameter of CBox particles. These findings are 
in agreement with previously reported observations [10]. Fate and 
transport in vitro particle dosimetric modeling indicated a slightly 
greater deposition fraction for CBox particles compared to CB. We per-
formed equivalent deposited dose experiment to determine if this 

Fig. 7. Endothelial CXCR3 inhibition improves particle-induced impairment of endothelial cell dysfunction. Conditioned media was collected from RAW 
264.7 cells treated for 24 h with vehicle, CB or CBox particles (50 μg/mL). After testing for no adverse outcome, endothelial cells were exposed to four times diluted 
conditioned media with or without NBI-74330 (100 nM). A) Pro-inflammatory mRNA expression B) Scratch assay was performed using ibidi wound healing μ plates 
and images were captured (10X magnification) at 0 h and 24-h post scratch. Assay was repeated 2 times with triplicate of each condition each time. % wound closure 
was calculated using Image J software. C) FITC-dextran based permeability assay. Data are presented as mean ± standard error of mean. Data analyzed by two-way 
ANOVA followed by Tukey’s post-hoc test. *p < 0.05 vs control, #p < 0.05 between CB and CBOX and, $ p < 0.05 between without and with NBI-74330. 
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change in deposited dose has an influence on the outcomes (Supple-
mentary Fig. S5). Our results robustly reflect that even at the similar 
deposited to cell dose, CB particles did not induce increases in mRNA 
expression of inflammatory genes compared to CBox particles. FTIR 
analyses demonstrated that interaction with O3 leads to altered surface 
functional group composition. The appearance of absorptions at 1630 
and 1730 cm− 1 in CBox is an indication of enhanced presence of carbonyl 
and conjugated carbonyl groups. Absorption at 1240 cm− 1 potentially 
evolves from lactones, ethers, and the symmetric bend of hydrogen 
atoms on adjacent double-bonded carbon atoms [10,57]. O3 
treatment-mediated oxidation of the CB particles induced the appear-
ance of new bands between 1420 and 1580 cm− 1. Oxidation-dependent 
appearance of these new bands has also been previously observed with 
CB [58,59]. Similarly, XPS analyses of O1s peak indicated high intensity 
bands on CBox surface at ~531, 532 and 533 eV which corresponded to 
C–O, -C-C––O, C––O, and C–O (from C–O–C and C–OH) functional 
groups [3,60,61]. Deconvolution of C1s peak demonstrated peaks at 
~284 eV, 285, and, 288 eV corresponding to C–C/C–H bonded carbon, 
C–O, and -O-C––O (carbonyl carbon)/C––O/carboxyl carbon, respec-
tively [3,10,60,61]. 

As demonstrated by the FTIR analyses, there are significant increases 
in functional groups (carbonyls, carboxyl, hydroxyl) on the CBox parti-
cles (Supplementary Fig. S1). The appearance of such functionalities and 
known disorders in the structure of CB particles potentially lead to the 
formation of free radicals through Criegee intermediate formation [9,10, 
60]. It is plausible that Criegee intermediates (carbonyl oxides), which 
were originally described to be produced by interaction of O3 with hy-
drocarbons, are involved in the production of surface radicals [62,63]. 
Indeed, ozone reaction on the carbon surface by addition across unsat-
urated carbon bonds can lead to the formation of ozonide, resulting in 
free radical yield [63]. The graphitic and paramagnetic centers in the 
carbon are potential sites for such reactions [60]. Interaction of ozone 
with particles in the air was shown to create molecular oxygen and free 
radicals (some of them long lived) [64]. Here, using CMH probe and 
ascorbate, we demonstrated that the ozone treatment increases the 
reactive species/radicals on the surface of the CB particles (Fig. 3). 

This study has implications beyond the oxidized nanoparticle hazard 
identification. To some extent, similar reactions may potentially occur in 
the air when carbon-based particulates interact with O3 resulting in 
altered physicochemical characteristics of the particulates [65]. Partic-
ulate air pollution also contains significant amounts of aromatic hy-
drocarbons which are known to form ozonoids after interacting with O3 
and thus potentially form oxidants through Carigee 
intermediate-involved chemistry. Moreover, combined exposure to O3 
and particulate matter/diesel exhaust particles is known to have 
increased lung/cardiovascular toxicity [65]. We recently demonstrated 
a significant increase in the biological potency of inhalation co-exposure 
to CB and O3 and occurrence of the surface reactions at doses as low as 
200 ppb O3 and 250 μg/m3 CB [41]. In a similar vein, titanium dioxide 
(E171) particles were found to compromise the tight junction of intes-
tinal epithelial barrier when co-exposed with pesticides [66,67]. Present 
findings provide strong evidence that particle surface mod-
ifications/oxidation may also be playing an important role in the 
observed increased biological activity of the co-exposure. The potential 
synergistic effects from NP and gaseous co-exposures are usually ignored 
in nanotoxicology research [68–70]. 

We demonstrated that oxidants (both acellular and cellular), gener-
ated by the particles are mediated through NF-kB and JNK signaling in 
macrophages. This pro-inflammatory signaling was significantly blunted 
after administration of a synthetic catalase-superoxide dismutase 
mimetic (EUK134), confirming the role of oxidant production/oxidative 
stress in the observed pro-inflammatory response. EUK 134 has previ-
ously been successfully administered in both in vitro and in vivo studies 
to reduce the oxidant mediated signaling in cardiovascular, urologic and 
neurologic disorders such as myocardial ischemia reperfusion injury, 
pulmonary hypertension, ischemic brain injury [71–73]. The role of JNK 

phosphorylation in inflammatory signaling was confirmed using a spe-
cific JNK inhibitor SPC600125. Our results indicate that the inhibition of 
JNK signaling attenuated inflammatory mRNA (IL-6, TNF-α, GMCSF, 
CXCL9, TGF-β) and protein (TNF-α, CXCL9, IL-6) expression in RAW 
264.7 macrophages. JNK signaling has been previously shown to regu-
late diesel exhaust particle induced GM-CSF secretion by the airway 
epithelial cells [74]. 

Previous work has shown that calcium signaling, mitochondrial al-
terations and Rho-associated kinase (ROCK) are the mechanistic path-
ways involved in CB particle exposure related endothelial dysfunction 
[39,40]. We observed significantly greater CXCL-9 mRNA expression 
and secretion by macrophages after CBox particles exposure. We also 
observed similar increases in CXCL-10 and CXCL-11 mRNA expression in 
RAW 264.7 cells. These chemokines (CXCL9/10/11) have important 
roles in chemotaxis of immune cells during the inflammation/wound 
healing responses and have been shown to inhibit angiogenesis [75,76]. 
Humans have three isoforms of the CXCR3 receptor which can exert 
opposing effects depending on the isoform [76,77]. CXCL9/10/11 are 
known ligands for the CXCR3/GPR9/CD183 receptor [76]. CXCR3 was 
originally discovered in murine endothelial cells [78]. CXCR3 is a 
G-protein coupled receptor which is expressed on immune cells as well 
as epithelial and endothelial cells [79], and is implicated in multitudes 
of cellular functions including chemotaxis, cellular growth and prolif-
eration, angiogenesis/angiostasis, migration and apoptosis [80–82]. It is 
interesting to note that some of the pathways influenced by CXRC3 re-
ceptor (MAPK, phospholipase 3 and PI3K) are also implicated by 
ozone-interacted carbon particles [25,26,83]. Endothelial cells migra-
tion is an important factor in wound healing and impairment of 
migration delays wound healing. Endothelial wound healing was 
significantly delayed by the conditioned medium from CBox and the 
response was partially reversed by blocking CXCR3 (using NBI-74330) 
confirming that macrophage-released soluble factors were impacting 
migration through CXCR3. Our results are in agreement with previous 
findings of CXCR3 signaling leading to μ-calpain dependent 
cell-substrate adhesion molecule cleavage and impairment of endothe-
lial cell migration [84,85]. It has been previously demonstrated that 
knockout of chemokines or their receptors such as CXCR2 and CXCR3 in 
a cutaneous model resulted in delayed or incomplete wound healing 
[86]. Thus, it is probable that the role of CXCR3 and its ligands is cell 
type specific. Detailed in vivo analyses using genetically modified mice 
for endothelial specific (over expression/knockout) can further clarify 
the role of CXCR3 and its ligands in endothelial wound healing. 

From an environmental perspective, it is important to note that the 
engineered CB NPs significantly differ from atmospheric black carbon 
particles (BC) in terms of physicochemical characteristics and chemical 
composition [87]. While interaction with O3 does lead to aging of CB 
and induces surface functional group alterations, these particles are not 
considered BC in their entirety as they still demonstrate distinct chem-
ical composition (lack organic components like polycyclic aromatic 
hydrocarbons, metals, endotoxin) and shape/morphology (homogenous 
rounded vs irregular). However, considering the known role of particle 
size in dictating pulmonary toxicity, low toxicity low solubility dust 
(LTSD) particles are widely used as a surrogate of environmental ul-
trafine particle exposure. Previous reports on ozone interacted CB 
(sometimes referred as BC) utilized oxidized particles generated using 
100 ppm O3 in an N2 rich environment) [25–31,88]. We report here the 
oxidation of CB by as little as 2 ppm ozone which is routinely reported in 
numerous of in vivo studies [89–91]. 

It is known that exposure to CB particles results in systemic cardio-
vascular effects such as vasomotor dysfunction, endothelial toxicity/ 
activation, and atherosclerosis [38,92–94]. However, the lack of such 
outcomes on CBox particles motivated this study. In the current work we 
evaluated if oxidation further alters the observed CB toxicity and eval-
uated the mechanism of toxicity. Given the very minute number of ul-
trafine particles that reach systemic circulation (~0.3%) after inhalation 
of the particulate pollutants, there is a greater potential for secreted 
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factors from damaged pulmonary cells indirectly influencing the pul-
monary and systemic toxicity. Indeed, the significance of early pulmo-
nary responses in inducing systemic impacts of CB particles has already 
been demonstrated [95]. Because macrophages are among the first cells 
to be recruited at particle deposition sites, and are known to be a potent 
source of cytokine/chemokine production after CB exposure, we eval-
uated the influence of macrophage secreted factors on endothelial cells 
[34,96]. Endothelial dysfunction plays a critical role in many cardio-
vascular pathologies and includes upregulation of adhesion molecules, 
production of vasoactive molecules and production of inflammatory 
mediators. RAW 264.7 cells are widely used model for murine macro-
phages and particle studies. We used C166 cells as a murine endothelial 
cell model as these retain characteristics of endothelial cells. Moreover, 
both cell types are cultured in same media and thus present the oppor-
tunity to perform mechanistic studies involving secreted factors. Our 
study is the first to elaborate the impacts of CBox particles using this 
conditioned medium approach. 

In conclusion, this study establishes that oxidized CB particles pro-
duce acellular and cellular oxidants which are seminal factors for greater 
in vitro and in vivo inflammatory responses compared to CB NPs. We 
further mechanistically elaborated the role of particle-induced soluble 
factors (specifically CXCR3 ligands)-released from macrophages in 
impacting endothelial cell function. The observed pathways impacted 
by exposure are summarized in the overview figure (Fig. 8). Further 
mechanistic studies are needed to clarify the pathophysiological con-
sequences of pulmonary CBox particle exposure in occupational settings 
and for the general population. Moreover, microvascular functional 
assessments are needed to elucidate systemic vascular consequences of 
pulmonary exposure to CBox. 
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