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Analysis of biomedical signals can yield invaluable information for prognosis, diagnosis, therapy evaluation, risk assessment, and
disease prevention which is often recorded as short time series data that challenges existing complexity classification algorithms
such as Shannon entropy (SE) and other techniques. The purpose of this study was to improve previously developed multiscale
entropy (MSE) technique by incorporating nearest-neighbor moving-average kernel, which can be used for analysis of
nonlinear and non-stationary short time series physiological data. The approach was tested for robustness with respect to noise
analysis using simulated sinusoidal and ECG waveforms. Feasibility of MSE to discriminate between normal sinus rhythm
(NSR) and atrial fibrillation (AF) was tested on a single-lead ECG. In addition, the MSE algorithm was applied to identify
pivot points of rotors that were induced in ex vivo isolated rabbit hearts. The improved MSE technique robustly estimated the
complexity of the signal compared to that of SE with various noises, discriminated NSR and AF on single-lead ECG, and
precisely identified the pivot points of ex vivo rotors by providing better contrast between the rotor core and the peripheral
region. The improved MSE technique can provide efficient complexity analysis of variety of nonlinear and nonstationary
short-time biomedical signals.

1. Introduction

Biomedical signals are characteristic of their corresponding
physiological events and carry specific signatures [1]. Conse-
quently, deciphering signal characteristics provides informa-
tion regarding underlying processes that can be useful to
inform or guide therapy. Most physiological processes are
characterized by specific signals that reflect the nature and
activities of such processes, which can contain biochemical,
electrical, or physical information coming from molecular,
cellular, organ, or systemic level sources [2].Hence in a disease
state, alterations to these physiological processes yield signal
signatures that are different in some aspects from the normal

state [1]. Electrocardiogram (ECG), electroencephalogram
(EEG), electromyogram (EMG), electroretinogram, and so
on are some examples of electrical signals that are commonly
acquired for risk assessment, prognosis, diagnosis, therapy
evaluation, and prevention of various diseases [3].

Biomedical signal analysis requires accurate quantifica-
tion of the system state to distinguish between normal and
pathological function or to predict the future state of the sys-
tem using only short time series data that may only last a
few seconds. Signal analysis is typically complicated by con-
tamination with electromagnetic interference, power line
interference, zero mean white noise, pink noise, brown noise
from electrode movement, and other random noise [2].
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Many biomedical signals are captured only for 3–8 s and
therefore are short nonstationary and/or nonlinear time
series data, which prevent ordinary biomedical analysis
algorithms from completely capturing their intrinsic com-
plexity. For instance, Shannon entropy (SE) is commonly
used for biomedical complexity analysis of EEG and ECG
recordings [3–5]. However, one of the major limitations of
the SE approach is related to the specific characteristics of
the nonstationary and/or nonlinear time series data that
work well for long but is not robust for short data segments.
Several other symbolic dynamic approaches that use various
entropy-based measures, such as Kolmogorov entropy, spec-
tral entropy, wavelet entropy, permutation entropy, approxi-
mate entropy, and sample entropy, have been proposed to
capture the intrinsic dynamics of nonstationary time series
data to quantify their complexity [6–12]. However, it has
been shown that these various entropy-based methods are
efficient only for long time series and do not completely
capture the complexities of shorter nonstationary time series
data [13].

Recently, a multiscale entropy (MSE) technique was
proposed for coarse-grained time-scaling procedures to offer
more robust determination of the complexity of time series
data [14]. Such coarse-graining procedures may result in
invalid entropy value estimation for shorter time series;
and this limitation was addressed by implementing a
moving-average time series estimate [15]. However, the
moving average in prior work was only performed in the
forward direction, which can lead to significant underesti-
mation of the complexity information that is present in
the time series data [15]. Several variants of MSE have
thus been proposed [16], but all of them provide only
slight modifications from the original technique [15] and
specifically depend on a one-sided moving average, which
yields biased entropy estimates over different time scales.
Several variants of MSE have been applied to test synthetic
biomedical datasets without a rigorous demonstration of
their feasibility for a biomedical application [17–19]. There-
fore, using entropy-based techniques for rigorous complex-
ity analysis of a biomedical signal in normal and diseased
states has been very limited. Several researchers have used
MSE technique for a variety of analysis using cardiac sig-
nal analysis [20–25] showing some promise for complexity
assessment to aid diagnosis. However, the authors identify
a major limitation of these MSE variants with the system-
atic bias in the one-sided average which may have affected
the results. The introduced bias becomes extremely impor-
tant to consider for improvement because most biological
signals embed only subtle changes in short time series data
which may have significant diagnostic potential that could
be lost with such bias.

The challenge with short time series data analysis comes
from the fact that the complexity of the data may not embed
in the raw signal. Previously developed MSE techniques were
introduced with time-averaged time series over multiple time
scales for short time series analysis [15]. However, forward
averaging introduces a systematic bias in the complexity
estimation. To overcome this limitation, we proposed a
nearest-neighbor moving-average kernel to better capture

the complexity of nonlinear, nonstationary short time
series data. We introduce the concept of “memory” by tak-
ing into account the past and future time series value
while computing the nearest-neighbor moving average for
time series data. Therefore, we introduce the time-scale
factor “τ”, which represents time scaling in both forward
and reverse directions with respect to a particular time
point. Once this new time series is derived, the MSE estimate
can be obtained by calculating the entropy of the new time
series sample over multiple time scales to fully capture the
intrinsic complexity of nonlinear and nonstationary time
series data.

In this work, we propose an improved MSE technique,
which includes significant and robust modification of the
previously described MSE techniques. Specifically, we pro-
pose computation of the new time series with a nearest-
neighbor moving-average kernel that uses information
from the “past” and “future” values to accurately capture
the intrinsic dynamics of the short time series. Our mod-
ification will allow a robust analysis of nonlinear and non-
stationary time series.

The efficacy and robustness of the improved MSE
technique will be validated by performing noise analysis with
respect to white, pink, and brown noise, which are commonly
present in cardiac signals such as the ECG. Since SE has been
used widely for biomedical signal complexity analysis so far,
we will use it as a “gold standard”, and we will compare the
performance of the novel MSE technique with SE.We further
hypothesized that the improved MSE technique will robustly
quantify the complexity of nonlinear and nonstationary short
time series data. We tested this hypothesis by applying the
improved MSE technique for the analysis of the two phys-
iological applications: (i) discrimination between normal
sinus rhythm (NSR) and atrial fibrillation (AF) using a
single-lead ECG and (ii) the accurate identification of the
pivot point of rotors, which are potential ablation targets
for AF and other arrhythmias.

2. An Improved MSE Technique with
Nearest-Neighbor Moving-Average Kernel

The improved MSE algorithm consists of several steps
as described below. Let x = x1, x2, x3,… , xN represent
the electrogram time series of length N.

(1) Nearest-neighbor moving-averaged time series zτ is
computed for the chosen time-scale factor “τ” as
illustrated in Figure 1 using the following equation:

zτj =
1

2τ + 1 〠
2τ+1

i=j
xi, 1

where 1≤ j≤N− τ and i = 1,2,3,… ,N ; Figure 1
shows the schematic to obtain the nearest-neighbor
moving-window-averaging approach to obtain the
new time series.
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(2) Template vectors ymk δ with dimension m and delay
δ are constructed from zτ (see Figure 1) at each
specific τ as the following:

ymk δ = zk zk + δ⋯ zk + m − 1 δ , 2

where 1 ≤ k ≤N −mδ.

(3) The Euclidean distance dmij for each pair of template
vectors {ymi , ymj } is calculated using the infinity norm
as below:

dmij δ = ymi δ − ymj δ
∞
, 3

where 1 ≤ i, j ≤N −mδ and j > i + δ.

(4) Matched template vector pairs {ymi , ymj } are com-
puted based on a predefined tolerance threshold r as

dmij δ ≤ r 4

In this manuscript, the value for r is chosen to be 0.2
times the standard deviation of the raw time series x. The
delay factor δ is chosen to be 1. The total number of matched
template vectors is computed and denoted by n m, δ, r .

Steps 2–4 are then repeated for m+1 dimension, and the
total number of matched template vectors being computed is
denoted by n m + 1, δ, r .

Finally, the improved MSE is calculated as the following:

MSE x,m, δ, r = −ln n m + 1, δ, r
n m, δ, r 5

3. Materials and Methods

3.1. Noise Analysis. We evaluated the performance of the
improved MSE technique and compared it with the perfor-
mance of SE approach with respect to the most common
sources of noise: (i) zero mean white noise, (ii) pink noise
which has the inverse frequency response (1/f ), and (iii)
brown noise which has the inverse frequency squared
response (1/f 2) [26, 27].

White, pink, and brown noises were simulated in
MATLAB™, with 10,000 sample points. Ten short time series
(TS) versions of these data were created with 250, 500, 750,
1000, 2000, 4000, 5000, 6000, 8000, and 10,000 samples.
MSE was calculated via (5) for each noise using different
time-scale factors “τ” from 1 to 20 over varying time series
lengths. Normalized MSE (for τ=1, 2, 3, 5) and SE were
calculated by dividing the MSE (and SE) values by the
maximum value of MSE (and SE) across varying time series.
MSE and SE results for τ> 5 are quantitatively similar to that
of τ=5 and therefore are not shown.

3.2. Description of Datasets for Noise Analysis. To test the
robustness of an improved MSE technique in the presence
of various noises, we used (1) simplified non-physiological
sinusoidal wave and (2) physiological ECG signal, which is
the most commonly used time series signal for the diagnostic
of various diseases of the heart.

(1) A sinusoidal wave with single frequency of 10Hz and
a multifrequency sinusoidal wave with superposition
of 2, 5, 10, 15, and 20Hz frequencies were used. Ten
short time series versions of the data were simulated
in MATLAB.

(2) Noise-free flat baseline ECG was obtained using an
electronic ECG simulator with 10,000 sample points
at 250Hz sampling rate. Ten short time series ver-
sions of these data were created.

White, pink, and brown noises were added to the noise-
free signals and the analysis was performed as described in
sub-Section A to compare the performance of MSE and
SE techniques.

3.3. NSR and AF ECG Discrimination Analysis. Publically
available ECG datasets were obtained from the MIT-BIH
Physionet database during NSR and AF [28]. Ten NSR
and AF datasets of 10-second duration and 250Hz sam-
pling rate were used for analysis. The signals were not
preprocessed for noise removal and τ=3 for MSE calcu-
lation. NSR and AF datasets were compared using custom
MATLAB software. Mann–Whitney test with p value of

X1 X2 X3 X4 Xi Xi+1 Xi+2

Z1
(1) Z2

(1) Zi+1
(1)

Xi−1

�휏 = 1

Figure 1: Schematic illustration to produce nearest neighbor moving-average time series with scale factor τ= 1 for the MSE algorithm. Blue
squares represent raw time series data, and red dots represent the nearest-neighbor moving-averaged time series from whichMSE is obtained.
Brown squares represent the moving-window-averaging kernel for the raw second time point (X2) that averages one neighbor on both sides
with τ= 1 to produce the first new time series point Z1

(1). Similarly, green square produces Z2
(1) and so on (orange square) with the blue

square producing the last time series point Zi+1
(1).
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0.01 was used for testing statistical significance and was
performed using OriginPro software (OriginLab Corpora-
tion, Northampton, Massachusetts).

3.4. Optical Mapping Data from Isolated Rabbit Hearts.
Optical mapping movies during a single rotor or figure-of-
8 reentry were obtained from an isolated rabbit heart by
inducing ventricular tachycardia via burst pacing as
described previously [29, 30]. The movies were 3-second
long, acquired at 600 frames per second temporal and
64× 64-pixel spatial resolution. Two-dimensional (2D)
MSE maps were generated for both single rotor and figure-
of-8 reentry using the MSE values with the scale factors
τ=1, 2, and 3 at each pixel location across all the frames.
For comparison purposes, the 2D SE map was computed.
A custom MATLAB (MathWorks Inc., Natick, MA) pro-
gram was developed for all processing. Supplemental videos
SV1 and SV2 are provided for reference that shows the
phase movie of single and double rotor, respectively.

4. Results

4.1. Noise Analysis. Figure 2 shows the robustness of MSE
and SE techniques with respect to different types of noise:
white (a), pink (b), and brown (c). The middle row of
Figures 2(a)–2(c) shows the MSE values as a function of τ
for varying TS lengths. As expected, for white noise, MSE
monotonically decreases as τ increases, and changing TS
length does not affect the data. For pink noise, MSE increases
with the increase of the TS length, and for long TS (1000
samples), MSE does not depend on τ. For brown noise,
MSE decreases with the increase in the TS length and does
not depend on τ for long TS. These results demonstrate the
robustness of MSE since the expected behavior is observed
for each noise. The bottom row of Figures 2(a)–2(c) shows
the normalized values of MSE (for different τ) and SE as a
function of the TS length. As seen from these data, the values
of SE decrease as TS decreases for all types of noises, while
MSE values do not depend on the TS length. These results
demonstrate that the performance of MSE is better than SE,
especially for short time series.

The MSE of white noise is expected to show a monoton-
ically decreasing response with higher scale factors [14–16]
which was seen in Figure 2(a) middle panel with increasing
scale factor due to the nearest neighbor averaging that leads
to lower MSE for white noise is shown. For pink noise which
has a 1/f response, higher MSE than white noise is expected
but with a constant value across multiple time scales [14].
As expected, MSE levels out at higher time series lengths
above 1000 sample points across the different time scales seen
in Figure 2(b) middle panel. This means that for a sampling
rate of 250Hz, MSE can capture the complexity with just 4 s
of data. Similarly, for brown noise, MSE is expected to be
constant and as seen from Figure 2(c) middle panel after
a TS length of 750 sample points, MSE is more or less the
same across multiple time scales. Figures 2(a)–2(c) bottom
panel demonstrates the fact that SE estimates lower values
for short time series and gradually increases with increasing
time series length for all three types of noise. MSE has higher

values even for the shortest time series, thereby capturing the
complexity better than SE. Overall, the results indicate that if
at least 1000 sample points are available, MSE can capture the
complexity robustly compared to SE. For most physiological
monitoring, 250Hz sampling frequency is common, which
indicates that 4 s short time series data should be sufficient
for robust analysis using MSE.

Figure 3 demonstrates the robustness of MSE compared
with SE technique for single-frequency sinusoidal wave in
the absence and presence of different noises. Figure 3(a)
shows the single-frequency sinusoidal wave at 10Hz for 500
sample points (left panel), the MSE values as a function of
τ for varying TS (middle panel), and the normalized values
of MSE (for different τ) and SE as a function of TS length
(right panel) in the absence of noise. These data demonstrate
higher efficacy of the MSE technique in capturing the
complexity of the sine wave than that of SE, which only
works well for larger TS lengths. The robustness of the
MSE and SE techniques in identifying the complexity of a
single-frequency sinusoidal wave in the presence of noise is
shown in Figure 3 for the white (b), pink (c), and brown
(d) noises. The top row of Figures 3(b)–3(d) shows the
amplitude of sinusoidal wave with noise, while the bottom
row shows the normalized values of MSE (for different τ)
and SE as a function of TS length. Our results suggest that
MSE captures the complexity of sinusoidal waves better than
SE in the presence of these noises.

Figures 4 and 5 show the results for the multifrequency
sinusoidal wave and the noise-freeflat ECG, respectively. Sim-
ilar to the response seen in Figure 2 for raw noise, (b)–(d) of
Figures 4 and 5 demonstrate that SE is very small for short
TS and gradually increases with increasing TS length, while
MSE has high values even for the shortest TS, thereby captur-
ing the complexity better than SE. The results demonstrate the
efficacy of the novel MSE technique in quantifying the com-
plexity of complex time series data in the presence of noise
better than that of the commonly used SE approach.

4.2. ECG Analysis. Figure 6 shows the raw ECG with NSR (a)
and AF (b). Note that visual inspection of these traces cannot
be used to correctly discriminate between NSR and AF.
Figure 6(c) shows the boxplot of MSE values for 10 AF and
NSR datasets demonstrating statistically significant differ-
ences (p < 0 01) and therefore accurate discrimination
between NSR and AF. As observed in Figures 6(a) and 6(b)
visually, it is difficult to interpret the difference between
NSR and AF on the ECG as the chaotic nature of AF
manifests itself into small morphological disturbances which
need robust algorithms to effectively capture the complexity.
MSE robustly discriminates NSR and AF.

4.3. Identification of Pivot Point of the Rotor. A snapshot of a
phase movie of a single rotor in isolated rabbit heart is shown
in Figure 7(a). In this movie, different colors represent
different phases of the action potential, and the pivot point
of the rotor can be easily identified as the point where
different phases converge. Corresponding voltage traces from
the core (pixel “1”) and periphery of the rotor (pixel “2”) are
also shown. At the core of the rotor, broader distribution of

4 Journal of Healthcare Engineering

http://downloads.hindawi.com/journals/jhe/2018/8632436.f1.avi
http://downloads.hindawi.com/journals/jhe/2018/8632436.f2.avi


voltage amplitude occurs due to the chaotic nature at the
rotor pivot point and therefore, a higher MSE value was
expected. At the periphery of the rotor, more uniform elec-
trical activity is observed and hence, a lower MSE value was
expected. Figure 7(b) shows the 2D MSE maps for three
time-scale factor τ=1, 2, and 3. Note the MSE technique
can accurately identify the location of the pivot point of
the rotor for each τ. As seen from (b), the pivot point has
higher MSE values than the periphery thereby enabling its
precise localization, and higher values of “τ” results in better

contrast between the rotor core and periphery. Figure 7(c)
shows the normalized 2D SE map of the same single rotor.
It is important to note that although SE can correctly
identify the pivot point of the rotor, the contrast between
SE values at the core and the periphery is low, which
challenges accurate identification.

Figure 8(a) shows a snapshot of a phase movie for an
example of figure-of-8 reentry in an isolated rabbit heart.
Similar to Figure 7, one can see that the MSE technique can
correctly identify the location of the pivot points of the rotors
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Figure 2: (a) Top panel shows white noise with 500 sample points; Middle panel shows the MSE for various time series (TS) lengths; bottom
panel shows normalized MSE (for scale factors τ= 1,2,3, and 5) and SE; (b) top panel shows pink noise with 500 sample points; middle panel
shows the MSE for various time series (TS) lengths; bottom panel shows normalized MSE (for scale factors τ= 1,2,3, and 5) and SE; (c) top
panel shows brown noise with 500 sample points; middle panel shows the MSE for various time series (TS) lengths; bottom panel shows
normalized MSE (for scale factors τ= 1,2,3, and 5) and SE.
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for each τ and that the performance of the MSE technique is
much better than SE observed in Figures 8(b)–8(c).

As seen in Figure 7(b), it is seen that a scale factor of τ=1
was sufficient enough to provide the necessary contrast to
identify the rotor pivot points with higher MSE values at
the rotor pivot point than that in the periphery. Higher scale
factor values provided improved contrast as seen when
comparing 2D MSE maps in Figure 7(b). Similar results are
observed for figure-of-8 reentry data seen in Figure 8. It is

interesting to note that at pixel location “1,” the rotor mean-
ders to some extent which is also captured robustly by MSE
compared to SE.

5. Discussion

In this study, we developed an improvedMSE technique with
nearest-neighbor moving-average kernel and demonstrated
that it can be successfully used for the analysis of nonlinear
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Figure 3: (a) Left panel shows single-frequency (10Hz) sinusoidal wave with 500 sample points; middle panel shows the MSE for various
length time series across several scaling factors; right panel shows normalized MSE (for scale factors τ= 1–10) and SE; (b) top row shows
sinusoidal wave with white noise, (c) pink noise, and (d) brown noise; (b) bottom row shows normalized MSE (for scale factors τ= 1–10)
and SE for sine wave with white noise, (c) pink noise, and (d) brown noise, respectively.
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and nonstationary short time series physiological data. The
MSE robustly estimated the complexity of short time series
data compared to SE with various noises such as white, pink,
and brown noises. Major findings of this manuscript are
the following: (1) MSE discriminated NSR and AF on
single-lead ECG of 10 s recordings without any preprocess-
ing steps and (2) MSE precisely identified the pivot point of
the rotor (single and figure-of-8 reentry) with 3 s optical
mapping data from isolated rabbit hearts by providing

better contrast between the rotor core and the periphery
region when compared to the SE approach. The efficacy
of MSE technique was clearly demonstrated with short
time series analysis which can be used in a variety of other
physiological applications.

5.1. Sinusoidal Wave Analysis. Sinusoidal wave analysis is the
most elegant approach to demonstrate the efficacy of the
improved MSE technique over the conventionally used SE
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approach for short time series analysis of biomedical signals.
We demonstrated that both for single-frequency and multi-
frequency sinusoidal waves with added noise, SE underesti-
mated the complexity at short time series for all three noise
cases and performed better at longer time series lengths.
However, MSE was robust even at shorter time series with
1000 sample points in the presence of the three types of noise.
The results suggest the value of MSE technique in analyzing
complex short time series physiological signals that can be

contaminated with these noises and its use for the prognosis
and diagnosis of various disease states.

5.2. Noise-Free ECG Analysis. ECG analysis is very com-
monly used for a wide variety of cardiac conditions to
yield information regarding the state of the heart. Since
most remote and ambulatory real-time ECG monitoring
present at most 3–5 seconds of ECG data, conventional com-
plexity analysis methods such as SE are limited. However, we
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demonstrated that MSE robustly estimated the complexity of
short time series ECG data even in the presence of noise.

5.3. Discrimination between NSR and AF. AF is the most
common sustained cardiac arrhythmia that is associated
with increased risk of stroke, heart failure, and death
affecting more than 2.3 million people in the United States
and over 30 million people worldwide [31]. Although the
persistent form of AF can be detected relatively easy,
detecting paroxysmal AF is often a challenge since contin-
uous monitoring is required, which in turn requires methods
to discriminate NSR from AF through large quantities of
data [32].

Although there are several methods available for NSR
and AF discrimination, they face limitations in successfully
detecting AF with high sensitivity and specificity using
short-time ECG data [32–34]. The major issues with these
approaches are that they often distort the ECG by several
preprocessing steps with filters, they do not provide reliable
discrimination using short ECG time series data, and many
of them lack real-time capability that makes it difficult to
trust the data for diagnosis and treatment. Here, we dem-
onstrated that the improved MSE technique can robustly
discriminate AF from NSR using a single-lead ECG. The

results motivate the application and use of this MSE tech-
nique for many hand-held and remote ECG monitors to
autodetect AF.

5.4. Identification of Pivot Points of Rotors. Catheter ablation
to treat paroxysmal AF has been shown to be up to 87%
successful using pulmonary vein (PV) isolation [35–40].
However, in patients with persistent AF ablation, it is chal-
lenging since the location of the triggers is unclear, and it
has been shown that triggers commonly arise outside the
PVs. Recent research suggests that AF ablation has a success
rate of 28% with 51% after multiple repeat procedures in
persistent AF [41].

It is believed that rotors are caused by reentrant
mechanisms which might be responsible for maintaining
persistent AF. Identification of the rotor pivot point as a
suitable ablation target has been the research focus for
many investigators. However, these investigations are chal-
lenged with short time series data in the clinical setting.
Here, we used optical mapping data in which rotors can
be clearly visualized, and we demonstrated that the
improved MSE technique can precisely identify pivot
points in both single rotor and figure-of-8 reentry, thus
offering a robust mapping tool to guide identification of
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AF ablation targets. In the clinical setting, electrogram
recordings are frequently limited to 2.5–5-second seg-
ments due to the need for frequent catheter repositioning
during the procedure, challenging conventional mapping
approaches to precisely identifying substrates in AF and
other arrhythmias.

5.5. Limitations. A limitation of the improved MSE tech-
nique is the need to select a correct choice of the time
scale factor “τ.” Since the nearest-neighbor moving averaging
is employed, large time scales will cause excessive smoothing
of the data which may lead to loss of some complexity infor-
mation. Therefore, caution should be used in the appropriate
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choice of scaling factor. The results from this study suggest
that a scale factor of τ=3 may be a reasonable starting point
for many applications, but clinical validation is needed.

In addition, our analysis was limited to relatively small
number of datasets. More rigorous evaluation using a larger

number of datasets is critical in order to validate these
findings for ECG discrimination as well as for rotor identifi-
cation. Finally, we did not specifically evaluate ex vivo exam-
ples of AF but only of more organized cardiac arrhythmias to
determine critical rotor elements. Given the higher-order
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complexity associated with AF, further study is needed in
experimental models of AF to validate the use of MSE for
characterization of rotors in these arrhythmia examples.

6. Conclusions

An improved MSE technique with nearest-neighbor
moving-average kernel was developed to eliminate the sys-
tematic bias from one-sided averaging. The results demon-
strate that MSE technique can be successfully used for the
analysis of nonlinear and nonstationary short time series
physiological data. Compared to the commonly used SE
approach, MSE robustly estimated complexity with short
time series data with various noises such as white, pink,
and brown noises. The MSE discriminated NSR and AF
on single-lead ECG of 10 s recordings without any prepro-
cessing steps and precisely identified the pivot point of the
rotors with 3 s optical mapping data from isolated rabbit
hearts by providing better contrast between the rotor core
and the periphery region when compared to the SE
approach. Wide-range application of this technique on a
variety of time series data can open new avenues for analy-
sis and interpretation.

7. Future Work

Future work will focus on further validating the efficacy of
NSR and AF discrimination on a larger dataset. Also, the
MSE algorithm will be validated with a variety of rotor data
for accurate identification of ablation targets using both
optical mapping and intracardiac electrograms that can
guide patient-specific mapping and ablation.
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