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Abstract
Purpose  FDOPA PET shows good performance for the diagnosis of striatal dopaminergic denervation, making it a valuable 
tool for the differential diagnosis of Parkinsonism. Textural features are image biomarkers that could potentially improve the 
early diagnosis and monitoring of neurodegenerative parkinsonian syndromes. We explored the performances of textural 
features for binary classification of FDOPA scans.
Methods  We used two FDOPA PET datasets: 443 scans for feature selection, and 100 scans from a different PET/CT system 
for model testing. Scans were labelled according to expert interpretation (dopaminergic denervation versus no dopaminergic 
denervation). We built LASSO logistic regression models using 43 biomarkers including 32 textural features. Clinical data 
were also collected using a shortened UPDRS scale.
Results  The model built from the clinical data alone had a mean area under the receiver operating characteristics (AUROC) 
of 63.91. Conventional imaging features reached a maximum score of 93.47 but the addition of textural features signifi-
cantly improved the AUROC to 95.73 (p < 0.001), and 96.10 (p < 0.001) when limiting the model to the top three features: 
GLCM_Correlation, Skewness and Compacity. Testing the model on the external dataset yielded an AUROC of 96.00, with 
95% sensitivity and 97% specificity. GLCM_Correlation was one of the most independent features on correlation analysis, 
and systematically had the heaviest weight in the classification model.
Conclusion  A simple model with three radiomic features can identify pathologic FDOPA PET scans with excellent sensitiv-
ity and specificity. Textural features show promise for the diagnosis of parkinsonian syndromes.

Keywords  18FDOPA · Parkinsonian syndromes · Machine learning · Radiomics · Texture analysis

Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease worldwide with a rising preva-
lence due in part to population ageing [1]. In addition to 
the well-known cardinal motor symptoms, it is associated 

with numerous non-motor symptoms such as autonomic 
dysfunction, cognitive impairment and sleep disorders [2], 
and is responsible for increasing disability and mortality 
[3]. The main pathological feature of PD is dopaminergic 
cell loss in the substantia nigra pars compacta that leads to 
dopamine deficiency in the basal ganglia; this process is 
exponential and starts years before the clinical diagnosis, 
as motor symptoms only appear after the loss of 50% of 
nigral dopamine neurons [4]. The development of biomark-
ers is considered critical to diagnose patients at an early 
stage, to predict the rapidity of neuron loss and to monitor 
the progression of the disease; all of which are essential for 
the development of disease-modifying drugs [5, 6].

6-[18F]FDOPA is a PET radiotracer that reflects vesicu-
lar dopamine storage within the striatum [7] and has been 
shown to correlate with the severity of PD symptoms [8]. 
For the diagnosis of dopaminergic denervation, it has been 
estimated to reach 95% sensitivity [9]. Visual analysis relies 
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for the most part on assessing the homogeneity of striatal 
uptake and the point of maximum uptake [10]. However, it 
is intrinsically limited by the fact that the striatum is both 
the pathological target and the reference area for the internal 
uptake level. Semi-quantification using striatal-to-occipital 
ratios (SOR) helps in assessing the global and local uptake 
level, but the heterogeneity of uptake within the striatum 
remains difficult to gauge.

The computation of statistical textural features is a way 
to quantify heterogeneity in images, including 3D PET 
data [11]. Briefly, the process involves the calculation of 
a matrix that captures the relationships between two or 
more voxels, in different directions; then, various image 
biomarkers are computed directly from this matrix. The 
high-throughput extraction of a large number of these 
quantitative biomarkers, or features, defines the field 
of radiomics [12]. Depending on the disease, imaging 
technique, acquisition protocol and numerous other fac-
tors, different features may be useful, such that machine 
learning algorithms are often applied to identify one or 
more relevant features [13]. Texture analysis has shown 
promising results for DAT SPECT [14–16], and has been 
applied to FDOPA PET for glioma analysis [17] but has 
not yet been applied to FDOPA PET for striatal study.

The aim of this study was to identify textural features that 
could function as biomarkers of dopaminergic denervation 
on FDOPA PET, and to measure their performances.

Material and methods

Patients

Two datasets were retrospectively analysed, an explora-
tion dataset and a testing dataset. The exploration dataset 
consisted of all patients consecutively referred for striatal 
FDOPA PET/CT to the nuclear medicine department of 
the Centre Antoine Lacassagne, Nice, France, from Janu-
ary 8, 2020, to April 14, 2021. Inclusion stopped after 
reaching 450 subjects. We excluded six patients with an 
abnormal acquisition time, as it was shown to affect tex-
tural features [18, 19]. We also excluded one patient who 
had poor scan quality (visually unreadable). The final 
number of patients in the exploration dataset was 443, 
with 171 scans (39%) interpreted as positive and 272 
scans (61%) interpreted as negative.

Clinical data were collected from patients on the day 
of their referral, using a shortened version of the Move-
ment Disorder Society–sponsored revision of the Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS) 
[20] (detailed in the electronic supplementary material). 
Twenty-five motor and non-motor symptoms were quanti-
fied between 0 and 4, for a maximum total score of 100.

The second dataset was reserved for testing the model 
and comprised 100 patients referred to the same centre 
between May 10, 2019, and August 28, 2019, with scans 
acquired on a different PET/CT system (see below). 
Patients were selected in a consecutive manner, and 
the same exclusion criteria were applied. After reach-
ing 60 negative scans, only positive scans were included 
in order to reproduce the positive/negative ratio of the 
exploration dataset. No clinical data were collected in 
this group.

Image acquisition

For the exploration dataset, FDOPA PET/CT images 
were acquired on a Biograph Vision 600 (Siemens, 
Erlangen, Germany). The images were obtained after a 
period of 85–95 min following the intravenous injection 
of 3 MBq/kg of 3,4-dihydroxy-6-[18F]fluoro-L-pheny-
lalanine (DOPAVIEW® AAA company). PET acquisi-
tion time was 6 min. The acquisition matrix size was 
512 × 512. Images were reconstructed using OSEM, 
with 12 iterations and 5 subsets, and a Gaussian filter 
with FWHM = 3 mm was applied. Time-of-flight (TOF) 
correction was applied, but not point spread function 
(PSF) correction. The reconstructed voxel size was 
0.709 × 0.709 × 2.00 mm.

For the test dataset, FDOPA PET/CT images were 
acquired on a Biograph mCT 40 (Siemens, Erlangen, 
Germany). The images were obtained after a period 
of 85–95  min following the intravenous injection of 
2 MBq/kg of 3,4-dihydroxy-6-[18F]fluoro-L-phenyla-
lanine (DOPAVIEW® AAA company). PET acquisi-
tion time was 10 min. The acquisition matrix size was 
512 × 512. Images were reconstructed using OSEM, with 
6 iterations and 24 subsets, and a Gaussian filter with 
FWHM = 4 mm was applied. No TOF or PSF correc-
tions were applied. The reconstructed voxel size was 
0.795 × 0.795 × 2.03 mm.

In both cases, protein-containing foods were banned 
4 h prior to the procedure, as per EANM guidelines. 
Patients with no contraindications received 100  mg 
of carbidopa 1 h before injection [21]; the number of 
patients who did not receive carbidopa was 22 in the 
exploration dataset (5%) and 4 in the test dataset (4%).

For all scans, ground truth was the interpretation of a 
nuclear medicine specialist with extensive experience in 
FDOPA imaging (J.D.). This expert had access to clinical 
data, MRI data when available and semi-quantification soft-
ware based on automatic positioning of atlas-derived striatal 
VOI and comparison of the SOR to a reference database 
(Siemens Scenium Striatal analysis). For this study, sub-
jects with evidence of uni- or bilateral dopaminergic den-
ervation were considered positive, and those with normal 
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scans or evidence of vascular parkinsonism were considered 
negative.

Image processing

VOI segmentation and feature extraction was performed 
on LIFEx version 6.3 [22]. On each side, a threshold of 
40% of the SUVmax was applied over the caudate and 
putamen. When this led to the creation of several distinct 
VOI, only the largest VOI was kept. All left-side and 
right-side features were later averaged for each subject. 
Forty-three features were computed for each 3D VOI, 
including shape descriptors (n = 5), first-order histogram 
statistics (n = 7) and second- and higher-order statis-
tics from the grey-level co-occurrence matrix (GLCM) 
(n = 6), grey-level run-length matrix (GLRLM) (n = 11), 
neighbourhood grey-level difference matrix (NGLDM) 
(n = 3) and grey-level zone-length matrix (GLZLM) 
(n = 11). They are listed, along with their Image Bio-
marker Standardisation Initiative (IBSI) denomination 
[23], in the electronic supplementary material.

To assess texture robustness, several computation set-
tings were tried. All histogram features were computed 
after absolute discretisation [24, 25] between a lower 
bound of 0 and an upper bound of 10, using either 32, 64 
or 128 grey levels (GLs) [26]. Voxel size was either recon-
structed to be isotropic (1 × 1 × 1 mm or 2 × 2 × 2 mm) 
[27], or left with default values. For the features derived 
from the grey-level co-occurrence matrix (GLCM), three 
different distances were tried: 1, 2 and 5 [14]. Thus, in 
total, the 43 features were computed 21 times for all 443 
patients in the exploration dataset (Table 1).

Independently for each dataset, features were standardised 
by removing the mean and scaling to unit variance.

Data analysis

Statistical differences between groups were tested with 
a z test for binary variables and, for continuous vari-
ables, with the Student t-test or the Mann–Whitney U 

test as appropriate. The correlations between features 
were computed with Pearson’s correlation coefficient, 
for each parameter set, and averaged for each feature, 
giving a 43 × 43 correlation matrix. Feature reproduc-
ibility across different parameter sets was assessed using 
the concordance correlation coefficient (CCC) [28]. This 
index measures the agreement between two methods of 
measuring the same continuous variable [29]. A CCC 
of 1 indicates perfect agreement; a value below 0.9 is 
generally considered poor [30].

In order to perform feature selection, we used logis-
tic regression models with L1 penalisation, also known as 
LASSO [31]. The LASSO performs its own feature selec-
tion by setting the coefficients of less useful features to zero, 
which allows for good performance even against a large num-
ber of features [32] while ultimately yielding a simple and 
understandable model [33]. To optimise the model param-
eters, we used the SAGA solver, a popular variant of the 
stochastic average gradient solver adapted for the LASSO 
[34]. We systematically performed fivefold cross-validation 
and the regularisation strength was selected by the cross-
validation for each iteration. Furthermore, we performed 
1000 bootstrap resamples in order to estimate the confidence 
interval and the probability of variable selection [35].

After performing feature selection on the explora-
tion dataset, the chosen features were tested on the test 
dataset, using the optimal parameter combination and a 
standard logistic regression model. We reported AUROC, 
sensitivity, specificity and balanced accuracy.

Descriptive statistics including the mean of features 
and the AUROC of individual features were only com-
puted for one parameter set. This set was chosen accord-
ing to the best performance reached by the models, using 
all features. This was also the reference set for the CCC.

For the clinical data only, we had to compensate for miss-
ing values using mean imputation.

All statistical tests and model building were performed 
on Python version 3.7.11 using free and open-source 
packages. The source code is available on: https://​github.​
com/​tirol​ab/​FDOPA-​PET-​analy​sis.

Table 1   List of the 
combinations of pre-processing 
parameters that were studied. 
GLCM grey-level co-occurrence 
matrix

32 grey levels 64 grey levels 128 grey levels

GLCM distance = 1 Default voxel size 32–1-default 64–1-default 128–1-default
1 × 1 × 1 mm 32–1-111 64–1-111 128–1-111
2 × 2 × 2 mm 32–1-222 64–1-222 128–1-222

GLCM distance = 2 1 × 1 × 1 mm 32–2-111 64–2-111 128–2-111
2 × 2 × 2 mm 32–2-222 64–2-222 128–2-222

GLCM distance = 5 1 × 1 × 1 mm 32–5-111 64–5-111 128–5-111
2 × 2 × 2 mm 32–5-222 64–5-222 128–5-222
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Results

The population is described in Table 2. For the exploration 
dataset, out of 443 patients, 171 (39%) showed unilater-
ally or bilaterally reduced uptake, while 272 (61%) had 
a normal FDOPA distribution. Overall, 56% were male, 
95% were right-handed and 19% had diabetes. At the time 
of referral, 16% of patients were taking antiparkinsonian 
medication, and 8% were taking antipsychotic drugs. 
The median age was 74, with IQR 68–80. Five percent 
of patients could not receive carbidopa before injection. 
When comparing positive and negative patients, we found 
the sex ratio, as well as the proportion of patients with 
diabetes, and the proportion of patients taking antiparkin-
sonian drugs or antipsychotic drugs, to be significantly 
different.

In the test dataset, the proportion of positive and nega-
tive scans was identical to that of the exploration dataset, 
by design. The sex ratio, the mean age and the proportion 
of patients who received carbidopa were also similar to the 
exploration dataset. No data was collected on the presence 
of diabetes, right- or left-handedness or drugs taken.

The mean (SD) SUVmean across all VOIs was 2.61 
(0.76) and mean (SD) SUVmax was 4.56 (1.25). Mean (SD) 
VOI volume was 12.9 mL (3.7).

The histograms of the conventional features showed 
considerable overlap between the “positive” and “negative” 
populations; some are shown in Fig. 1a. ROC curves were 
drawn to estimate the predictive value of features in iso-
lation (Fig. 1b). The features with the highest AUC were 
GLCM_Correlation (93.91), Skewness (93.22) and Sphe-
ricity (91.91).

The mean clinical score was 22 for patients with negative 
scans and 20 for patients with positive scans. The differ-
ence between the mean values was not significant (Student’s 

p-value: 0.18). The mean (SD) AUC reached by the clinical 
model was 63.91 (5.27).

Concerning the impact of the pre-processing of the image 
data, the CCC results are shown in Fig. 2. First-order his-
togram features (except for SUVmin) were very robust, but 
overall textural features were highly affected by the choice 
of pre-processing parameters, with most features showing 
CCCs below 0.9, indicating poor agreement.

A “conventional” series of models were trained to 
study the performance of non-textural features, as a 
baseline performance. They used the following features: 
SUVmin, SUVmean, SUVmax, Total Volume Uptake 
(TVU) (the product of the SUVmean by the volume in 
millilitres, named Total Lesion Glycolysis in LifeX), Vol-
ume (mL), Surface, Sphericity and Compacity. Twenty-
one models were trained, one for every pre-processing 
parameter set. The highest score was reached with the 
128–2-222 set, with a mean (SD) AUROC of 93.47 (2.17) 
(Table 3).

A second series of models including all features was 
trained following the same training process as the first 
series. The highest score was reached with the 64–5-
111 set, with a mean (SD) AUROC of 95.73 (1.93) 
(Table 3). There was a significant difference between 
this score and that of the best-performing “conventional” 
model (p < 0.001). Excluding the 22 patients who had 
not received carbidopa did not significantly change the 
results. For this set, Table 4 shows the first five features 
ordered by the probability of their coefficient being non-
zero, as well as the average coefficient of each feature 
when non-zero. The top feature was GLCM_Correlation, 
which was selected in every instance, and had the high-
est average coefficient. This feature was selected 100% 
of the time in all parameter sets (except the ones with a 
default (non-isotropic) voxel size), giving it the highest 

Table 2   Characteristics of the 
population, with p values of the 
z test for binary variables and 
Mann–Whitney U test for age; 
in bold when significant for 
alpha = 0.05

All scans Positive scans Negative scans p value

Exploration dataset
  n 443 171 272
  Mean age 72.7 72.8 72.6 0.305
  Males (%) 56 65 50 0.002
  Right-handed (%) 95 97 94 0.254
  Type 2 diabetes (%) 19 14 23 0.05
  Taking antiparkinsonian drug (%) 16 26 10  < 0.001
  Taking antipsychotic drug (%) 8 2 11 0.001
  Received carbidopa (%) 95 97 94 0.292

Test dataset
  n 100 40 60
  Mean age 73.9 75.1 73.1 0.179
  Males (%) 51 60 45 0.142
  Received carbidopa (%) 96 98 95 0.532
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average probability of selection. The complete list of 
selected features is available as electronic supplemen-
tary material.

The Pearson correlations between the top five features, 
as well as SUVmean, SUVmax and Volume, are shown in 
Fig. 3. The full figure with all features is available as elec-
tronic supplementary material.

We then built a “simplified” model, using only the top 
three features, which had a probability of being included 
close to 100%. Those features were GLCM_Correlation, 
Skewness and Compacity (Table 4). This model was only 

trained on the 64–5-111 set as this was the pre-processing 
parameter combination that enabled the best performance 
in the previous model. The mean (SD) AUC score was 
96.06 (1.79) using cross-validation on the exploration 
dataset. There was a significant difference between this 
score and that of the best-performing “conventional” 
model (p < 0.001).

Finally, our “simplified” model was trained on the entire 
exploration dataset and tested on the testing dataset. The 
AUROC was 98.21 with a balanced accuracy of 95.83%, a 
sensitivity of 95.00% and a specificity of 96.67%.

Fig. 1   Histograms of Volume, SUVmax and GLCM_Correlation for positive and negative scans (a) and ROC curves with AUROC for the same 
variables (b)
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Discussion

In this study, we explored the feasibility and the value of a 
radiomic approach for the diagnosis and quantification of 
dopaminergic denervation.

The clinical scores revealed that the patients of our 
population had moderate symptoms of parkinsonism at 
the time of referral. The clinical score was not significantly 
different between patients with positive and negative 
scans, and the model built with the clinical features had 
a mediocre AUC score. This can be explained by the fact 
that most patients are referred for FDOPA imaging when 

the clinical presentation is atypical. Likewise, the fact that 
there were significantly more patients taking antiparkin-
sonian medication in the positive group reflects the real-
life situation of neurologists using L-DOPA therapy as a 
diagnostic test. The proportion of patients taking antip-
sychotic drugs was higher in the negative group because 
those patients are more likely to present with drug-induced 
parkinsonism. The higher proportion of male subjects in 
the positive group is in agreement with the 3:2 sex ratio 
described in the literature [2].

The histograms and ROC curves showed the sub-opti-
mal performance of Volume and SUVmax, considered 

Fig. 2   Concordance correlation coefficient for the 64–5-111 set versus all other sets, for all 43 features
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independently, to classify the patients. The higher volume 
in positive patients is explained by the segmentation method: 
a fixed relative threshold will yield a greater volume when 
the SUV values decrease.

We proved that the addition of textural features to 
our model significantly improved its performance. This 
enhanced performance did not change when we restricted 
the entry variables to the top three features identified by the 
LASSO.

GLCM_Correlation was the only feature to be systemati-
cally selected and systematically had the heaviest weight in 

the model. For a given grey-level co-occurrence matrix, the 
equation for Correlation along one direction is:

with μ and σ respectively the mean and standard deviation 
for row i or column j.

This feature reflects the linear dependency of grey levels 
within the VOI: in theory, its value is closer to 0 when the 
spatial distribution of values in the VOI is random. In our 
study, positive scans had on average a higher GLCM_Cor-
relation value. One hypothesis is that the uptake gradient 
observed in PD [10] could be responsible for the increase 
in Correlation along the antero-posterior axis. However, in 
3D, the features are averaged over 13 directions, making this 
relationship less obvious.

We showed that this feature is only moderately corre-
lated with morphological features, as the highest coefficient 
was 0.66, for the correlation with Volume (Fig. 3). Thus, 
GLCM_Correlation is not simply a proxy of the VOI vol-
ume—a well-known pitfall in radiomics [36]—nor other 
conventional indices. GLCM_Correlation has previously 
been described as a robust and independent feature in other 
clinical scenarios [37–40]: our results are in agreement with 
those findings, despite the relatively small size of VOI in this 
study, which has been raised as a potential limit of textural 
features [24]. Pre-processing settings had a high impact on 
the feature values, as shown by CCC, but this is not a sur-
prising result as other authors have previously demonstrated 
the inevitable effect that the number of grey levels and the 
voxel size have on textural values [18, 41]. However, this 
did not affect the feature selection and model scores. This 
may mean that the change in absolute values did not signifi-
cantly alter the relative order of features [42]. It is important 
to note that non-isotropic voxel sizes were the only param-
eter change that resulted in GLCM_Correlation not being 
selected 100% of the time.

Finally, we tested our results on an external dataset with 
the same positive/negative ratio, as per expert recommenda-
tions [33, 43]. With 95.00% sensitivity with 96.67% specific-
ity, we showed that our model still performs well on scans 
acquired with a different PET/CT system and a different 
protocol, as long as features are normalised beforehand.

To our knowledge, this is the first radiomics study to 
explore the diagnosis of dopaminergic denervation on 
FDOPA PET. For DAT SPECT, Rahmim et al. [15, 16] 
showed the potential of radiomics for the prediction of the 
UPDRS score; they also found Correlation to be a feature 
of interest, but only for the MOCA score. Before them, 
Martinez-Murcia et al. [14] had published promising results 
comparing several feature selection methods, but did not 

CorrelationGLCM =
∑

i

∑

j

(i − �i) ∙ (j − �j) ∙ GLCM(i, j)

�i ∙ �j

Table 3   Mean and standard deviation of AUC scores for models 1 
and 2 according to parameter set. Highest score in bold

Conventional All features

Mean 
AUROC

SD Mean 
AUROC

SD

32–1-111 92.45 2.37 94.16 2.04
32–1-222 93.36 2.16 94.90 1.86
32–2-111 92.50 2.47 94.92 1.90
32–2-222 93.25 2.13 95.01 1.57
32–5-111 92.44 2.35 95.22 1.64
32–5-222 93.32 2.27 95.50 2.00
32–1-default 92.95 2.28 94.04 2.14
64–1-111 92.41 2.43 94.26 1.68
64–1-222 93.24 2.15 94.72 1.90
64–2-111 92.52 2.34 94.92 1.79
64–2-222 93.36 2.21 94.99 2.02
64–5-111 92.60 2.37 95.73 1.93
64–5-222 93.23 2.17 95.65 1.88
64–1-default 92.77 2.45 94.26 2.09
128–1-111 92.63 2.42 94.60 1.66
128–1-222 93.24 2.17 94.71 1.73
128–2-111 92.50 2.39 94.89 1.54
128–2-222 93.47 2.17 94.44 2.05
128–5-111 92.55 2.37 95.17 2.14
128–5-222 93.28 2.16 94.96 1.88
128–1-default 92.96 2.28 94.50 1.57

Table 4   Top five features for the 64–5-111 set ordered by probability 
of inclusion, and average coefficient when selected. TVU total vol-
ume uptake, the product of the SUVmean by the volume in millilitres, 
equivalent to total lesion glycolysis

Feature Probability Coefficient

GLCM_Correlation 1.00 2.47
CONVENTIONAL_SUVb-

wSkewness
0.98 0.66

SHAPE_Compacity 0.97  − 0.67
NGLDM_Contrast 0.84  − 0.51
TVU (mL) 0.58  − 1.17
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identify Correlation as relevant for distinguishing positive 
from negative DaTSCANs.

Our study has several strengths. The cohort design 
ensured that our dataset was close to the target population, 
with patients scanned at an early stage and an authentic ratio 
of positive and negative scans. We included a large number 
of patients, complying with the expert recommendation of 
including more than ten patients for each feature [13]. Our 
classification followed the visual analysis of an expert helped 
by the most recent semi-quantitative analysis software. The 
simplicity of the 40% isocontour method is likely to ensure 
a good interobserver reproducibility, although we did not 
test it. We studied feature correlation and robustness, and 

assessed their usefulness using a series of simple but power-
ful models. Lastly, we tested our model on scans acquired on 
a different PET/CT system with different parameters, which 
is an essential part of the radiomics process [43, 44]. To 
account for the differences of the two systems, we scaled 
features independently for the exploration and testing data-
set. The similarity of our results on the two sets is in favour 
of the good generalisability of the model. It should be noted, 
however, that in order to reproduce our results in a different 
centre, a minimum of 30 patients will be necessary to ascer-
tain the mean and variance of each feature in the new centre, 
in order to apply standardisation on the features before using 
the model.

Fig. 3   Pearson’s correlation coefficients between the top five features, 
as well as SUVmean, SUVmax and Volume, averaged across all 21 
parameter sets. Positive coefficients are in blue, negative coefficients 

in red. Clustering follows the unweighted pair group method with 
arithmetic mean
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We should also point out some limits to this study. Firstly, 
we chose to average the features computed independently on 
both striatal regions. Thus, the difference between patients 
with strongly asymmetric dopaminergic denervation and 
healthy patients was less noticeable than if we had chosen 
the most pathological side for each patient: this could have 
reduced our power in this study. Secondly, we did not study 
the impact of different acquisition parameters, image recon-
struction settings and segmentation methods on model per-
formance, all of which have been found to influence textural 
features [45, 46]. Finally, the clinical impact of our model 
remains to be tested.

Conclusion

Using a LASSO approach, we were able to train a model 
based on only three conventional and textural features, which 
could predict dopaminergic denervation as visually assessed 
by a medical expert, with a mean AUROC of 96.06. Testing 
the model on an independent dataset yielded high perfor-
mances, with an AUROC of 96.00, a sensitivity of 95.00% 
and a specificity of 96.67%. Combining textural and conven-
tional features significantly improved the model compared to 
using conventional features alone. The most important tex-
tural feature for the models was GLCM_Correlation which 
we found to be independent and robust. Further research is 
needed to confirm the clinical usefulness of our model for 
the diagnosis of dopaminergic denervation on FDOPA PET 
scans.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00259-​022-​05816-7.

Funding  This work has been supported by the French government, 
through the 3IA Côte d’Azur Investments in the Future project managed 
by the National Research Agency (ANR) with the reference number 
ANR-19-P3IA-0002.

Data availability  The datasets generated during this study are available 
from the corresponding author on reasonable request.

Code availability  https://​github.​com/​tirol​ab/​FDOPA-​PET-​analy​sis

Declarations 

Ethics approval  The study was approved by the French bioethics 
committee for research in nuclear medicine (Comité d’éthique de la 
recherche en médecine nucléaire) under the IRB number CEMEN 
2021–05.

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article's Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkin-
son’s disease. Rev Neurol (Paris). 2016;172:14–26.

	 2.	 Kalia LV, Lang AE. Parkinson’s disease.  Lancet. 
2015;386:896–912.

	 3.	 GBD 2016 Parkinson’s Disease Collaborators. Global, regional, 
and national burden of Parkinson’s disease, 1990–2016: a system-
atic analysis for the Global Burden of Disease Study 2016. Lancet 
Neurol. 2018;17:939–53.

	 4.	 Biju G, de la Fuente-Fernández R. Dopaminergic function and 
progression of Parkinson’s disease: PET findings. Parkinsonism 
Relat Disord. 2009;15(Suppl 4):S38-40.

	 5.	 Marek K, Jennings D, Tamagnan G, Seibyl J. Biomarkers for 
Parkinson’s [corrected] disease: tools to assess Parkinson’s 
disease onset and progression. Ann Neurol. 2008;64(Suppl 
2):S111-121.

	 6.	 Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, 
Bowman D, et al. Finding useful biomarkers for Parkinson’s 
disease. Sci Transl Med. 2018;10:eaam6003.

	 7.	 Snow BJ, Tooyama I, McGeer EG, Yamada T, Calne DB, Taka-
hashi H, et al. Human positron emission tomographic [18F]
fluorodopa studies correlate with dopamine cell counts and lev-
els. Ann Neurol. 1993;34:324–30.

	 8.	 Ribeiro M-J, Vidailhet M, Loc’h C, Dupel C, Nguyen JP, Pon-
chant M, et al. Dopaminergic function and dopamine transporter 
binding assessed with positron emission tomography in Parkin-
son disease. Arch Neurol. 2002;59:580–6.

	 9.	 Ibrahim N, Kusmirek J, Struck AF, Floberg JM, Perlman SB, 
Gallagher C, et al. The sensitivity and specificity of F-DOPA 
PET in a movement disorder clinic. Am J Nucl Med Mol Imag-
ing. 2016;6:102–9.

	10.	 Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Boh-
nen NI, et al. EANM practice guideline/SNMMI procedure 
standard for dopaminergic imaging in Parkinsonian syndromes 
1.0. Eur J Nucl Med Mol Imaging. 2020;47:1885–912.

	11.	 Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes 
in tumor texture indices in PET: a comparison between visual 
assessment and index values in simulated and patient data. J 
Nucl Med. 2017;58:387–92.

	12.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van 
Stiphout RGPM, Granton P, et al. Radiomics: extracting more 
information from medical images using advanced feature analy-
sis. Eur J Cancer. 2012;48:441–6.

	13.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more 
than pictures, they are data. Radiology. 2016;278:563–77.

	14.	 Martinez-Murcia FJ, Górriz JM, Ramírez J, Moreno-Cabal-
lero M, Gómez-Río M. Parametrization of textural patterns in 
123I-ioflupane imaging for the automatic detection of Parkin-
sonism. Med Phys. 2014;41:012502.

3795European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:3787–3796

https://doi.org/10.1007/s00259-022-05816-7
https://github.com/tirolab/FDOPA-PET-analysis
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1 3

	15.	 Rahmim A, Salimpour Y, Jain S, Blinder SAL, Klyuzhin IS, 
Smith GS, et al. Application of texture analysis to DAT SPECT 
imaging: relationship to clinical assessments. Neuroimage Clin. 
2016;12:e1-9.

	16.	 Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd 
E, Lu L, et al. Improved prediction of outcome in Parkinson’s 
disease using radiomics analysis of longitudinal DAT SPECT 
images. Neuroimage Clin. 2017;16:539–44.

	17.	 Zaragori T, Oster J, Roch V, Hossu G, Chawki MB, Grignon 
R, et al. 18F-FDOPA PET for the noninvasive prediction of 
glioma molecular parameters: a radiomics study. J Nucl Med. 
2022;63:147–57.

	18.	 Bailly C, Bodet-Milin C, Couespel S, Necib H, Kraeber-Bodéré 
F, Ansquer C, et al. Revisiting the robustness of PET-based tex-
tural features in the context of multi-centric trials. PLoS ONE. 
2016;11:e0159984.

	19.	 Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, 
Bitarafan-Rajabi A. The impact of image reconstruction settings 
on 18F-FDG PET radiomic features: multi-scanner phantom and 
patient studies. Eur Radiol. 2017;27:4498–509.

	20.	 Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Mar-
tinez-Martin P, et al. Movement Disorder Society-sponsored 
revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS): scale presentation and clinimetric testing results. Mov 
Disord. 2008;23:2129–70.

	21.	 Darcourt J, Schiazza A, Sapin N, Dufour M, Ouvrier MJ, Benisvy 
D, et al. 18F-FDOPA PET for the diagnosis of parkinsonian syn-
dromes. Q J Nucl Med Mol Imaging. 2014;58:355–65.

	22.	 Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert 
C, et al. LIFEx: a freeware for radiomic feature calculation in mul-
timodality imaging to accelerate advances in the characterization 
of tumor heterogeneity. Cancer Res. 2018;78:4786–9.

	23.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, 
Andrearczyk V, Apte A, et  al. The image biomarker stand-
ardization initiative: standardized quantitative radiomics 
for high-throughput image-based phenotyping. Radiology. 
2020;295:328–38.

	24.	 Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in oncological 
PET/CT: a methodological overview. Nucl Med Mol Imaging. 
2019;53:14–29.

	25.	 Orlhac F, Soussan M, Chouahnia K, Martinod E, Buvat I. 
18F-FDG PET-derived textural indices reflect tissue-specific 
uptake pattern in non-small cell lung cancer. PLoS ONE. 
2015;10:e0145063.

	26.	 Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden 
B, Buvat I. Tumor texture analysis in 18F-FDG PET: relation-
ships between texture parameters, histogram indices, standardized 
uptake values, metabolic volumes, and total lesion glycolysis. J 
Nucl Med. 2014;55:414–22.

	27.	 Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. 
Characterization of PET/CT images using texture analysis: the 
past, the present… any future? Eur J Nucl Med Mol Imaging. 
2017;44:151–65.

	28.	 Lin LI. A concordance correlation coefficient to evaluate repro-
ducibility. Biometrics. 1989;45:255–68.

	29.	 Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, 
Voyvodic JT, et al. Quantitative imaging biomarkers: a review 
of statistical methods for technical performance assessment. Stat 
Methods Med Res. 2015;24:27–67.

	30.	 McBride GB. A proposal for strength‐of‐agreement criteria for 
Lin’s Concordance Correlation Coefficient. Biometrics. 2005;

	31.	 Tibshirani R. Regression shrinkage and selection via the LASSO. 
Journal of the Royal Statistical Society Series B (Methodological). 
[Royal Statistical Society, Wiley]; 1996;58:267–88.

	32.	 Hastie T, Tibshirani R, Friedman J. The elements of statistical 
learning. New York, NY: Springer New York; 2009.

	33.	 Zwanenburg A. Radiomics in nuclear medicine: robustness, 
reproducibility, standardization, and how to avoid data analy-
sis traps and replication crisis. Eur J Nucl Med Mol Imaging. 
2019;46:2638–55.

	34.	 Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental 
gradient method with support for non-strongly convex compos-
ite objectives. arXiv:14070202 [Internet]. 2014; Available from: 
http://​arxiv.​org/​abs/​1407.​0202

	35.	 Efron B, Tibshirani R. Bootstrap methods for standard errors, con-
fidence intervals, and other measures of statistical accuracy. Sta-
tistical Science Institute of Mathematical Statistics. 1986;1:54–75.

	36.	 Welch ML, McIntosh C, Haibe-Kains B, Milosevic MF, Wee L, 
Dekker A, et al. Vulnerabilities of radiomic signature develop-
ment: the need for safeguards. Radiother Oncol. 2019;130:2–9.

	37.	 Papp L, Rausch I, Grahovac M, Hacker M, Beyer T. Optimized 
feature extraction for radiomics analysis of 18F-FDG PET imag-
ing. J Nucl Med. 2019;60:864–72.

	38.	 Guezennec C, Bourhis D, Orlhac F, Robin P, Corre J-B, Delcroix 
O, et al. Inter-observer and segmentation method variability of 
textural analysis in pre-therapeutic FDG PET/CT in head and neck 
cancer. PLoS ONE. 2019;14:e0214299.

	39.	 Forgacs A, PallJonsson H, Dahlbom M, Daver F, DiFranco MD, 
Opposits G, et al. A study on the basic criteria for selecting het-
erogeneity parameters of F18-FDG PET images. PLoS One. 
2016;11:0164113.

	40.	 Hall-Beyer M. Practical guidelines for choosing GLCM tex-
tures to use in landscape classification tasks over a range of 
moderate spatial scales. Int J Remote Sens. Taylor & Francis; 
2017;38:1312–38.

	41.	 Doumou G, Siddique M, Tsoumpas C, Goh V, Cook GJ. The pre-
cision of textural analysis in (18)F-FDG-PET scans of oesopha-
geal cancer. Eur Radiol. 2015;25:2805–12.

	42.	 Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, et al. Robustness 
versus disease differentiation when varying parameter settings in 
radiomics features: application to nasopharyngeal PET/CT. Eur 
Radiol. 2018;28:3245–54.

	43.	 Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates 
in PET and CT studies with texture features: a systematic review. 
PLoS ONE. 2015;10:e0124165.

	44.	 Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design character-
istics of studies reporting the performance of artificial intelligence 
algorithms for diagnostic analysis of medical images: results from 
recently published papers. Korean J Radiol. 2019;20:405–10.

	45.	 Pfaehler E, Beukinga RJ, de Jong JR, Slart RHJA, Slump CH, 
Dierckx RAJO, et al. Repeatability of 18 F-FDG PET radiomic 
features: a phantom study to explore sensitivity to image recon-
struction settings, noise, and delineation method. Med Phys. 
2019;46:665–78.

	46.	 Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, 
et al. Impact of image reconstruction settings on texture features 
in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

3796 European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:3787–3796

http://arxiv.org/abs/1407.0202

	Development and validation of a radiomic model for the diagnosis of dopaminergic denervation on [18F]FDOPA PETCT
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Material and methods
	Patients
	Image acquisition
	Image processing
	Data analysis

	Results
	Discussion
	Conclusion
	References


