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Abstract
Background: Estrogen may inhibit cell senescence that contributes to age-related 
disorders.
This study determined the effects of menopausal hormone treatments on circulating 
levels of markers of cell senescence.
Methods: Growth differentiation factor 15 (GDF15), tumor necrosis factor receptor 
1 (TNFR1), FAS, and macrophage inflammatory protein 1α (MIP1α) were measured 
in serum using multiplexed bead-based assays and compared among menopausal 
women participating in the Kronos Early Estrogen Prevention Study randomized to 
either placebo (n = 38), oral conjugated equine estrogen (oCEE, n = 37), or transder-
mal 17β-estradiol (tE2, n = 34). Serum levels of the senescent markers for each treat-
ment were compared to placebo 36 months after randomization using the Wilcoxon 
rank sum test.
Results: Serum levels of GDF15, TNFR1, and FAS, but not MIP1α, were lower in 
both the oCEE and tE2 groups compared to placebo. The difference in levels be-
tween treatment and placebo for GDF15, TNFR1, and FAS were greater for oCEE 
[−108 pg/mL (p = .008), −234 pg/mL (p = .0006), and −1374 pg/mL (p < .0001), 
respectively] than for tE2 [−76  pg/mL (p  =  .072), −105  pg/mL (p  =  .076), and 
−695 pg/mL (p = .036), respectively]. Additionally, TNFR1 showed a positive as-
sociation with time past menopause (correlation = 0.255, p = .019).
Conclusions: Circulating levels of some markers of cell senescence were lower in 
menopausal women treated with oCEE and tE2 compared to placebo. Differences in 
the magnitude of effect of the two active treatments may reflect the differences in 
circulating levels of estrogen metabolites due to formulation and mode of delivery. 
These data generate new hypotheses with regard to the effects of menopause on the 
biology of aging.
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1 |  INTRODUCTION

Cell senescence, a state of cell cycle arrest due to the finite 
capacity of cells to proliferate, also occurs as a result of the 
accumulation of molecular and cellular damage (Hayflick & 
Moorhead, 1961). Senescent cells secrete an array of cyto-
kines, chemokines, growth factors, and proteases collectively 
referred to as the senescence-associated secretory phenotype 
(SASP) (Baker et al., 2011; Hoenicke & Zender, 2012). The 
array of SASP proteins includes many proteins that have 
been shown to be regulated by estrogen and to be secreted by 
platelets, leukocytes, and vascular endothelium including the 
metalloproteins (MMPs), tumor necrosis factor-α (TNF-α), 
ecosinoids, and serotonin (Miller et al., 2015; Raz et al., 2016; 
Raz, Hunter, Jayachandran, Heit, & Miller, 2014). However, 
other proteins considered to be part of the SASP array (e.g., 
GDF15, Fas, MIP1α, and TNFR1) may be more specific 
indicators of the systemic senescent cell burden (Schafer 
et al., 2020).

In response to DNA damage, senescence serves as an an-
ticancer mechanism and may also have beneficial functions 
in embryogenesis, parturition, and tissue repair (Behnia 
et al., 2015; Demaria et al., 2014; Munoz-Espin et al., 2013). 
However, senescent cells that are not cleared efficiently by 
the immune system disrupt tissue function, which increases 
the vulnerability to the onset and progression of a host of 
age-related diseases, including pulmonary dysfunction, car-
diovascular disorders, osteoporosis, neurodegeneration, 
and diabetes (Baker et  al.,  2011; Farr et  al.,  2019; Musi 
et al., 2018; Palmer et al., 2019; Schafer et al., 2017). In part, 
the deleterious effects of senescent cells are mediated by the 
SASP. Strategies to remove senescent cells and suppress the 
SASP are now being pursued as a means to counter age-re-
lated diseases and geriatric syndromes (Baker et  al.,  2011; 
Kirkland & Tchkonia, 2017; Schafer et al., 2020).

Estrogen is a steroid hormone implicated in modulating 
cell senescence. For example, estrogen decreases cell se-
nescence in endothelial progenitor cells, and activates es-
trogen receptor alpha (ERα) to inhibit cell senescence-like 
phenotypes in human epithelial cells (Liu et  al.,  2016). 
Estrogen also slows deficits associated with aging and cell 
senescence in bone, such as declining bone density (Farr 
et al., 2019). However, little is known regarding how cell se-
nescence might be modified by natural changes in hormone 
concentrations, such as those that occur during menopause, 
and how this might be modulated by hormone therapies. 
Over 20% of the U.S. population will be aged 65 years or 
older by the year 2030 so it is important to better under-
stand and address the health problems associated with aging 
(Vespa, Armstrong, & Medin, 2018). Therefore, this study 
examined whether menopausal hormone therapies, in the 
form of oral conjugated equine estrogens (oCEE) and trans-
dermal 17β-estradiol (tE2), altered the circulating levels of 

a specific set of SASP proteins in women who had under-
gone natural menopause. It was hypothesized that hormone 
therapies would decrease the circulating concentrations of 
specific SASP proteins.

2 |  METHODS

2.1 | Study design

Serum samples collected from a subset (n = 109) of women 
who participated in the Kronos Early Estrogen Prevention 
Study (KEEPS) were used to evaluate the effect of meno-
pausal hormone treatments (HT) on markers of cellular se-
nescence. KEEPS was a placebo-controlled, double-blind 
randomized trial to assess the impact of HT on progression 
of atherosclerosis and carotid intima-medial thickening. 
KEEPS participants were between the ages of 42 and 58, 
within 5–36 months of their last menstrual period. Full in-
clusion and exclusion criteria are listed in the clinical trial 
description (KEEPS; NCT00154180) (Harman et al., 2005). 
Women were randomized to placebo patches and pills 
(n = 38), 0.45 mg/day oCEE (n = 37), or 50 µg/day tE2 in 
a weekly patch (n  =  34). Women assigned to active treat-
ments were also given micronized progesterone (200  mg/
day) for the first 12 days of each month. Treatment continued 
for 48 months with a fasting venous blood sample collected 
each year. Blood was collected according to a protocol that 
minimized the activation of platelets (Jayachandran, Miller, 
Heit, and Owen (2012). Serum prepared from the 36-month 
blood sample from a subset of the KEEPS participants was 
used in this study as this sample was collected during the pro-
gesterone treatment phase of the month. Serum was frozen 
at −70°C, and analyzed after one thaw. Perliminary experi-
ments utilized a broad plateform of proteins considered in the 
SASPs including sclerostin protein (SOST), disintegrein and 
metalloproteinase with thrombospondin type 1 motifs, mem-
ber 13 (ADAMTS13), and chemokine (C-C motif) ligand 
17 (CCL17 orTARC). However, many measurements were 
below the detection limits of the assay, thus limiting statis-
tical power upon which to draw meaningful conclusions. 
Therefore, the selected set of SASP proteins represents those 
whose measurements were robust and proteins that had not 
been previously shown to be regulated by estrogen in plasma 
or platelet lysate in recently menopausal women of KEEPS 
(Miller et al., (2015).

2.2 | Assays

Multiplexed bead-based immunoassays (Magnetic Luminex 
Assay, Human Premixed Multi-Analyte Kit, R&D Systems) 
were used to measure the presence of growth differentiation 
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factor 15 (GDF15), tumor necrosis factor receptor 1 (TNFR1), 
FAS, and macrophage inflammatory protein 1α (MIP1α, also 
referred to as CCL3). All assays were performed accord-
ing to the manufacturer's protocols (Schafer et  al.,  2020). 
Sensitivities and intra- and inter-assay confidence values of 
each protein in the assays are listed in Table 1. The assays 
were executed according to the protocols provided by the 
manufacturer.

The samples were deidentified during data collection and 
analysis. Samples were placed such that all treatment groups 
were represented on each plate in order to mitigate possible 
variation due to difference among plates.

2.3 | Statistical methods

Descriptive statistics are provided as mean (standard de-
viation) and median (quartile 1, quartile 3). Kruskal–Wallis 
tests were used to test overall differences in demographics 
and protein levels across the three treatment groups. Pairwise 
comparisons of tE2 versus placebo, and oCEE versus pla-
cebo were conducted using Wilcoxon rank sum tests with a 
Bonferroni adjustment for multiple comparisons. Hodges–
Lehmann estimates of protein level location shifts are given 
for significant differences. Associations of potential con-
founders [age, body mass index (BMI), 36 month visit age, 
and time since menopause] with protein levels were tested 
using Spearman correlations.

3 |  RESULTS

The average age of the 109 women at enrollment was 
53.1  years, and 56.1  years at the 36-month visit. Average 
time since menopause at the 36-month visit was 4.6  years 
with a range of 4.0 to 5.1 years; average BMI was 27.0 kg/
m2 (range of 24.2 to 30.8 kg/m2). There were no differences 
in demographics (age, years since menopause, BMI) across 
the three treatment groups at 36  months (Table  2). Age at 
baseline and at the 36-month visit, BMI, and time since men-
opause were not significantly correlated with protein levels, 
except that higher TNFRI levels were associated with longer 
time since menopause (Figure 1).

At 36 months, serum levels of GDF15, TNFR1, and Fas 
but not MIP1α varied by treatment group, with significantly 
lower levels in both the oCEE and tE2 group compared to 
placebo (Figure 2). GDF15, TNFRI, and FAS level difference 
estimates (95% CI) were −108 (−180, −31), −234 (−348, 
−120), and −1374 (−1940, −711) pg/ml respectively (all ad-
justed p-values < 0.02) for the oCEE versus placebo groups 
(Table 3). Levels of the measured SASP proteins did not cor-
relate with circulating levels of either estrone or 17β-estradiol 
(data not shown).

4 |  DISCUSSION

Serum levels of selective senescence-associated proteins 
(GDF15, TNFR1, and Fas) were lower in healthy, recently 
menopausal women using HT for 36  months compared to 
placebo. Furthermore, oCEE had a greater impact on reduc-
ing circulating levels of the SASP proteins than did tE2. 
Although GDF15, TNFR1, Fas, and MIP1α have demon-
strated sensitivity to age, they were not correlated with age at 
baseline and 36 months in this study, likely due to the small 
age range of participants (Schafer et  al.,  2020). GDF15, 
TNFR1, Fas, and MIP1α were selected from a large set of 
analytes because they have been shown, along with the SASP 
proteins osteopontin, Activin A, and interleukin 15, to be pre-
dictive of adverse health events and had not previously been 
evaluated as constituents of the cytokine mileu affected by 
menopausal HT (Miller et al., 2015; Raz et al., 2014, 2016; 
Schafer et al., 2020).

The SASP includes proteins with diverse biological func-
tions and their production may vary by the senescent cell of 
origin. GDF15, a cytokine belonging to the transforming 
growth factor (TGF)- β superfamily, is produced by active 
macrophages and is secreted by human senescent endothelial 
cells (Bootcov et al., 1997; Schafer et al., 2020). In humans, 
GDF15 is expressed in response to cellular damage and serum 
levels are positively correlated with age (Schafer et al., 2020). 
GDF15 also associated with senescence to promote colon 
cancer formation, and human airway epithelial senescence 
(Guo et  al.,  2019; Wu et  al.,  2016). However, secretion of 
this protein by senescent vascular endothelial cells seemed 
to be beneficial by promoting function of vascular progenitor 

Protein
Sensitivity (pg/
mL)

InterAssay Confidence 
Value

IntraAssay 
Confidence Value

MIP-1 α 16.2 6.8% 12.9%

GDF15 1.2 10.7% 14.7%

TNFR1 41.0 6.2% 9.1%

Fas 3.2 5.5% 8.1%

T A B L E  1  Sensitivity of Assays for 
SASP proteins in pg/mL, confidence values 
for assays in percent
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cells (Ha et al., 2019). In men with coronary artery disease, 
GDF15 levels were inversely correlated to serum testosterone 
and testosterone/estradiol ratio, but not to estradiol. However, 
in the same study, estradiol significantly decreased GDF15 

expression in vitro (Liu, Dai, Cui, Lyu, & Li,  2019). This 
study supports the effect of estradiol on GDF15 expression 
in women who were at low risk for cardiovascular disease. 
Estrogen could function to inhibit the increase in GDF15 that 
occurs with age.

TNFR1, a receptor that modulates the actions of tumor ne-
crosis factor alpha, increases cytotoxicity of a cell and causes 
the production of other inflammatory proteins (Tartaglia & 
Goeddel,  1992; Vandenabeele, Declercq, Vanhaesebroeck, 
Grooten, & Fiers, 1995). TNFR1 is modulated by estrogen 
(Deb et al., 2004). The modulatory effect of estrogen on ex-
pression of TNFR1 may be dose-dependent as high concen-
trations of estrogen upregulated the expression in cancers, 
whereas in this study TNFR1 levels decreased with meno-
pausal HT. TNFR1 is also associated positively with frailty 
and with rehospitalization after surgery (Schafer et al., 2020). 
The correlation between TNFR1 levels and age past meno-
pause suggests the involvement of yet other unidentified 
factors in regulation of this receptor. The ligand for this re-
ceptor, TNF-α, decreased in platelet lysate with HT over the 
48th month of treatment. However, there were no differences 
in the plasma levels of this ligand among groups (Miller 
et al., 2015). The distinctions in platelet content and plasma 

Placebo oCEE tE2
p-
valueN = 38 N = 37 N = 34

Age (years) at 36-month 
visit

55.8 (2.4) 56.2 (2.4) 56.2 (2.4) .2825

Years since menopause 4.4 (0.8) 4.7 (0.8) 4.7 (0.7) .1213

Body Mass Index (kg/m2) 27.1 (3.7) 27.7 (4.6) 26.3 (4.3) .3794

Estradiol (E2) 20.7 (7.6) 22.9 (6.2) 23.4 (13.2) .2071

Abbreviations: oCEE, conjugate equine estrogens; tE2, transdermal 17β-estradiol.

T A B L E  2  Demographic characteristics 
by treatment group, presented as mean 
(Standard Deviation)

F I G U R E  1  Correlation between TNFR1 levels in serum (pg/mL) 
and years past menopause. Each point represents an individual from 
the randomized groups: oCEE (n = 37), tE2 (n = 34), and placebo 
(n = 38) treatments

F I G U R E  2  Protein levels in pg/mL 
for GDF15 (upper left), Fas (upper right), 
TNFR1 (lower left), and MIP-1α (lower 
right) for oCEE (n = 37), tE2 (n = 34), and 
placebo (n = 38) treatments. Data are shown 
as medians, solid line; interquartile ranges, 
boxes; standard deviation, lines and bars
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levels of the ligand suggest that other cells may contribute to 
the circulating pool of this cytokine, some of which may be 
at various stages of activation of senescence. The relationship 
betwen ligand–receptor regulation by estrogen remains to be 
explored.

The Fas protein is a key regulator of the apoptotic cell 
pathways. Apoptosis is an essential cell mechanism in the 
maintenance of tissues. Estrogen inhibits the Fas/FasL sys-
tem through ERα (Mor, Straszewski, & Kamsteeg,  2002). 
Regulation of apoptosis is important in the treatment of 
age-related diseases (Muradian & Schachtschabel,  2001), 
and hormone treatments could potentially facilitate these pro-
cesses in menopausal women. This finding further supports 
the hypothesis that Fas is involved in aging processes and is 
impacted by estrogen.

Other cytokines and chemokines implicated in the SASP, 
including MIP1α, may be inhibited by estrogen treatment 
(Matejuk et al., 2001). The lack of an effect on MIP1α lev-
els in this study may reflect the small number of partici-
pants in each group, the low levels of E2 reached with the 
treatment, or that the presence of progesterone may have 
antagonized the effects of the estrogen. The lack of correla-
tion of serum levels of hormones with those of the SASPs 
proteins may reflect the narrow range of serum hormone 
values or that sensitivity of the regulatory mechanisms for 
the SASPs at the cellular level may differ by tissue as the 
tissue or cellular origin of the SASPs cannot be determined 
by the study approach. Additional research is needed to 
clarify these relationships.

Functionally, SASPs correlate positively with frailty 
and adverse cardiovascular surgical and cancer outcomes 
(Schafer et al., 2017). The results of this study suggest that 

HT in menopausal women may reduce frailty. Although 
specific measures of frailty were not measured in KEEPS 
and the women were relatively young (mean age 55 years), 
some chronic conditions of aging, [decreases in bone mineral 
density, sleep disturbances, depression, vaginal atrophy, and 
deposition of β amyloid in the brain], were alleviated by the 
HT treatments (Cintron et al., 2017; Farr, Khosla, Miyabara, 
Miller, & Kearns,  2013; Gleason et  al.,  2015; Kantarci 
et al., 2016; Taylor et al., 2017). In older women of Estrogen 
Early versus Late Intervention with Estadiol (ELITE), estro-
gen treatments reduced the rate of increase of carotid inti-
ma-medial thickness (Hodis et al., 2016), a result consistent 
with the finding of this study that estrogen lowered the en-
dothelial-prominent GDF15 SASP. On the contrary, abrupt 
loss of ovarian hormones by bilateral oophorectomy prior to 
the age of 45  years increased the risk for age-related mor-
bidities in women (Rocca et al., 2016, 2017, 2018; Zeydan 
et al., 2019). Indeed, many of the SASPs were present in older 
cohorts and women who had undergone oophorectomy for 
ovarian cancer (Schafer et al., 2020). Taken together, these 
studies support the hypothesis that ovarian hormones and 
HT at menopause modulate the aging process. Indeed, the 
results are consistent with previous literature demonstrating 
an inhibitory effect of estrogen on cellular processes associ-
ated with cellular inflammation, apoptosis, and senescence 
(Evans, MacLaughlin, Marvin, & Abdou,  1997; Fliegner 
et  al.,  2010; Imanishi, Hano, & Nishio,  2005a; Imanishi, 
Kobayashi, Hano, & Nishio, 2005b; Le May et al., 2006; Liu, 
Guo, & Guo, 2002; Miller, Jayachandran, Hashimoto, Heit, 
& Owen, 2008; Spyridopoulos, Sullivan, Kearney, Isner, & 
Losordo,  1997; Turner & Kerber,  2017). Direct evidence 
for regulation of organ/cells specific SASPs by estrogenic 

T A B L E  3  Protein levels by treatment group at 36 months, adjusted for years since menopause

Treatment N Mean (SD) Median (Q1, Q3)
3-group 
p-value

p-value versus 
placeboa 

GDF15 Placebo 37 598.4 (158.1) 577 (517, 695) .0141 —

oCEE 38 498.8 (152.8) 479 (383, 585) — .0022

tE2 34 543.6 (207.3) 487 (396, 633) — .2104

TNFRI Placebo 37 1,181.7 (261.3) 1,220 (962, 1,401) <.0001 —

oCEE 38 967.3 (248.3) 961 (771, 1,084) — <.0001

tE2 34 1,096.5 (217.9) 1,091 (949, 1,193) — .0680

Fas Placebo 37 6,871.3 (1,411.1) 6,864 (5,962, 7,931) <.0001 —

oCEE 38 5,505.1 (1,266.6) 5,424 (4,649, 6,675) — <.0001

tE2 34 6,256.9 (1,255.9) 5,989 (5,105, 7,119) — .0552

M1P1 α Placebo 36 100.3 (111.6) 56 (38, 114) .8411 —

oCEE 35 98.6 (87.9) 87 (44, 123) — 1.0000

tE2 33 113.0 (124.5) 75 (34, 145) — 1.0000

Abbreviations: oCEE, conjugate equine estrogens; tE2, transdermal 17β-estradiol.
aBonferroni-corrected for multiple comparisons. 
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hormones requires further study with particular attention to 
the chronological age, menopausal age, use of menopausal 
HT, source of the sample (plasma or serum, as the relative 
concentration of some proteins may be influenced by platelet 
activation of bound to factors activated by the coagulation 
cascade.

Differentiation of various formulations and metabolites of 
estrogen on tissue-specific cellular mechanisms of aging war-
rants further investigation, especially if some of these factors 
are to be considered as potential senolytics (Stout et al., 2017; 
Yanai & Fraifeld, 2018). It is not possible from this study to 
identify which steroid metabolite was most effective on spe-
cific target cells. CEE consists of a mix of estrone, estrone 
sulfate as well as 17β-estradiol, which have antioxidant prop-
erties and differentially bind to estrogen receptors (Bhavnani 
& Stanczyk, 2014). The first past metabolism of some of the 
components of CEE to 17β-estradiol varies among women 
due, in part, to genetic variants in enzymes associated with 
steroid metabolism, including sulfonation and cellular uptake 
(Moyer et al., 2018; Moyer, de Andrade, Weinshilboum, & 
Miller, 2016). Therefore, the greater effectiveness for oCEE 
compared to tE2 could reflect direct effects in the liver. It 
remains to be tested if oral formulaltions of 17β-estradiol 
would have similar effects on these markers of senescence 
as oCEE. Taken together, these results could indicate a new 
approach by which to study and determine the effects of HT 
on age-related diseases.
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