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Zebrafish: A Versatile Animal Model for Fertility Research

Jing Ying Hoo,1,2,3 Yatinesh Kumari,4 Mohd Farooq Shaikh,4

Seow Mun Hue,2 and Bey Hing Goh1,5,6

1Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia,
Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
2School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
3Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
4Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia,
Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
5Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan,
47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
6Center of Health Outcomes Research andTherapeutic Safety (Cohorts), School of Pharmaceutical Sciences,
University of Phayao, Phayao 56000, Thailand

Correspondence should be addressed to Bey Hing Goh; goh.bey.hing@monash.edu

Received 10 December 2015; Accepted 20 June 2016

Academic Editor: Young-Mi Lee

Copyright © 2016 Jing Ying Hoo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a
favored vertebrate organism for the research in science of reproduction.There is a significant growth in amount numbers of scientific
literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this
particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of
zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal.The discoveries and findings have
proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral
characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger
foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense
importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the
proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility,
showing its versatility and its potential usage for fertility research.

1. Introduction

Danio rerio, or commonly known as zebrafish, is a tropical
freshwater fish. It was previously a well-known aquarium fish
at home, which has rapidly transformed into an indispensable
animal model for scientists of today’s world. The numerous
advantages and characteristics possessed by this small animal
have never failed in tempting researchers in utilizing this
animal model for their scientific research projects. Perhaps,
the popular usage of this animal owns to their cheap and easy
maintenance of animal in the laboratory [1, 2]. Nonetheless,
the fact that well-characterized gene functions of zebrafish

which is showing a high degree of similarity with human
gene have certainly improved confidence level and potential
implications of research findings [3, 4]. This may explain the
drastic usage growth of this small animal in experimentation
in recent years. Basically, the studies which have been done
with zebrafish had basically contributed to a vast advance-
ment in many fields of science. The usage of zebrafish in
scientific research could be seen playing significant roles in
fundamental research such as evolutionary science, genetics,
neurobiology, and development biology [5–7]. In terms of
application sciences, it has been widely utilized for drug
discovery or even environmental monitoring effort [8–10].
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Fertility or reproductive science is one of the popular
fields in medical research. The impactful discoveries in this
field are including the assisted reproductive technology (in
vitro fertilization), erectile dysfunction medication such as
cGMP-specific phosphodiesterase, and hormonal treatment
techniques to overcome infertility [11, 12]. Unfortunately,
infertility problems are still persisting around the globe with
an alarming percentage of around 20% of infertile couples
[13].This thus explained that the need of continuous research
in fertility and further advancement in level of fundamental
understanding of the reproductive system in human is amust
in general.

In this context, zebrafish have swum into view as a
promising model in assessing reproductive complications
owing to its developmental and physiological advantages
[14–17]. The short cycle of reproductive period and the
transparency of these animals at early developmental stages
are allowing the researchers to carry out research activi-
ties in more efficient or hassle-free way than before [18,
19]. A close degree of similarity of reproductive regulation
systems between human and zebrafish has also permitted
the researchers to study and understand the system in a
more comprehensive way. This could be also seen from the
identification of important neurons which are involved in
regulating the reproductive system and presence of similar
reproductive hormones and responses in this animal [20, 21].
Along with these fundamental research findings, zebrafish
have indirectly granted the scientists evaluating the potential
hazardous compounds on reproductive system on human.
Furthermore, zebrafish are amenable to geneticmanipulation
which has offered another important aspect for researchers to
study the gene effects on reproduction [22, 23]. Together with
the establishment of courtship behavior in zebrafish [1, 24], it
dispelled the pervasive myths of zebrafish usage in fertility
research.

2. Reproductive Gender and
Biology of Zebrafish

Mammals have dimorphic sex chromosomes and practice
male heterogametic system. Gene SRY (sex determining
region Y) is of large effect on mammals’ sex determination
by acting as a genetic switch that initiates male pathway
in bipotential gonad [25, 26]. Zebrafish, however, lack of
the sex determination cascade. Complex sex determination
system with combined effects of genetic and environmental
factors such as surrounding temperature [27], exposure to
sex hormones (e.g., oestrogen and androgen), and oxygen
availability [28] have been revealed by consistent works in
gonad ontogenetic differentiation of zebrafish. On the genetic
point of view, recent studies have suggested chromosome 4
as the potential sex chromosome in natural zebrafish with
their sex determination mechanism strongly weakened in
domesticated zebrafish strain [29, 30].

On the other hand, similar to humans, several autosomal
genes have proven significant roles in development anddiffer-
entiation of gonads and reproductive cells. For instance, Anti-
Müllerian Hormone (amh) is one of the critical hormones

in sex differentiation during fetal development. Under tight
transcriptional regulation by sox9, steroidogenic factor 1
(SF-1), Wilm’s tumor suppressor gene 1 (wt1), and GATA4,
amh is released from the Sertoli cells in fetal testes [31–
33]. In addition to degeneration of Müllerian ducts, a pair
of ducts which further develops into Fallopian tubes and
uterus, amh also inhibits the expression of a P450 aromatase
enzyme, known as Cyp19a1, which converts androgens to
estrogens [34]. In this context, zebrafish share similar features
of vertebrate gonadogenesis by having amh expression in
their gonad along with the identification of gene binding
sites for the same transcriptional factors in the amh gene
promoter sequence [35, 36]. Besides, inhibition of early
spermatogonial differentiation remains as the other known
aspect of conserved bioactivity of amh between zebrafish and
mammals [37].

Meanwhile, zebrafish have short generation time by
having all of the precursors for major organs after 24 hours
of fertilization and typically achieve reproductive maturity
within 3 to 6 months after fertilization with the maturity
period corresponding to the body length of approximately
23mm [24]. Althoughmice have similar development length,
zebrafish which are oviparous can produce around 200 to
300 eggs per week, thus permitting large-scale experimental
analysis. High level of genetic homology is also shared across
both species [3]. On the other hand, zebrafish display similar
anatomy of germ cell organs to that in humans [38, 39]. Male
zebrafish have paired testes with tubule organizations.Within
each tubule, the walls are lined by Sertoli cells and they func-
tion mainly to support testes morphogenesis and spermato-
genesis while Leydig cells detected in the interstitial spaces
act as primary testosterone producer [38, 39]. One distinct
spermatogenesis pattern observed in zebrafish is the presence
of spermatogenic cyst which consists of a group of Sertoli cells
enveloping germ cells that develop synchronously, instead
of having few germ cells with different development stages
in Sertoli cell as observed in higher vertebrates [40]. On
the other hand, study also showed the presence of accessory
sperm duct gland in male zebrafish which functions mainly
in the secretion of mucosubstances and production of sperm
trails [41].

While for female zebrafish, the key similarities of the
reproductive system lie in the structure and functions of
ovaries. A pair of bilateral ovaries is observed in female
and it is located between the swim bladder and abdominal
wall [42]. Ovarian wall is lined with thin epithelium with
numbers of oogonia and oocyte follicles surrounded by
interstitial tissues and somatic cells observed. Lobulated
structures with interlobular spaces and the joining with
oviduct have been revealed through histological sectioning
[43]. Across vertebrates, ovaries are the site of development
and production of female gametes [44, 45]. There are four
stages of ovarian development in zebrafish, namely, primary
oocyte stage with observation of relatively small spherical
cells, cortical-alveolar stage with enlarged oocytes filled with
cortical alveoli, vitellogenic stage characterized by presence
of egg yolk in oocytes, and finally maturation stage in which
oocytes with irregular layer can be observed [46]. Similar
to other teleost fish and humans, zebrafish follicle contains
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an oocyte surrounded by zone radiata along with a follicular
layer made up of inner granulosa cells and outer thecal cells
layer [47]. Ovulation takes place following rupture of the lay-
ers and it ismainly induced bymale gonadal pheromones [24,
44]. It is also significantly promoted with the accumulation of
steroid glucuronides such as 5a-androstane-3a, l7𝛽-diol, and
cholesterol inmale holdingwater and administration of testes
homogenates [38, 48].

Altogether, besides the biological advantages of zebrafish
which include rapid embryonic development, large embry-
onic production, and high degree of similarity to human
genome, there are striking homologies between the reproduc-
tive system of human and zebrafish and the many similarities
in aspects spanning from the reproductive anatomy and
physiology to gene functions and expression. As such, they
serve as the ideal system for analyzing fertility as well as
embryonic development.

2.1. Reproductive Behavior and Performance of Zebrafish.
Zebrafish are early morning breeders and group spawners
[24, 49]. Females proved capable of spawning at frequent but
irregular basis, with several hundred of eggs in a spawning
session [50]. An interspawning frequency of approximately
one to six days is observed [51]. Eggs spawned by zebrafish
are optically translucent and are normally larger as compared
to other fishes, with approximately 0.7mm in diameter [24].
Besides having healthy sexual organ and morphological sex-
ual characteristics development and undisrupted steroido-
genesis [52, 53], normal courtship behavior is one of the
crucial criteria for successful reproduction among zebrafish
[24]. Both male and female zebrafish display different mat-
ing behavior. The five typical behavior displayed by male
zebrafish are chase in the form of swimming or following
the females (chase), having contact with female by using its
nose or tail (tail-nose), circling around females (encircle),
circling around females in the “figure eight” pattern (zig-zag),
and rapid tail movement against females’ bodies (quiver) [1,
24, 54]. While for females, their sexual behaviors begin with
approach by swimming abruptly towards males (approach),
swimming alongsidemales or staying still when being chased
(escort), swimming aroundmales or halting in front of males
(present), and swimming to one preferred location in its
habitat (lead) and oviposition (egg-lay) [1, 24].

During a courtship episode, chase, tail-nose, and
approach are the three initiatory mating activities displayed
by both genders of zebrafish followed by present and escort
from females as receptive behavior [1, 24]. However, some
females may chase males away aggressively when the male’s
approach is unfavorable. Then, repetitive behaviors such as
encircle and zig-zag are presented [1, 24]. After the display of
repetitive behavior, female zebrafish start to swim towards a
specific location for at least three times [49]. Finally, males
swim and spread their caudal and dorsal fins around females
for alignment of their genital pores. Rapid tail oscillation can
then be observed to encourage spawning [1, 49, 54]. Studies
suggested the simultaneous release of sperms and eggs. To
be precise, sperms are released before egg deposition [41].
Generally, male courtship behavior peaks in the first 30

minutes of courtship period and it may continue for an hour
[1]. For both territorial and nonterritorial males, the same
courtship behavior can be identified. However, nonterritorial
males tend to pursue females in the whole available mating
space whereas territorial males display their mating behavior
limited to the areas close to spawning site and other males’
approaches are often unwelcomed [55].

Reproductive performance of zebrafish is affected by sev-
eral environmental factors such as photoperiod [56, 57], tank
volume [58], water temperature and pH [57], topography,
fish densities, and presence of natural habitats items such as
aquatic plants and substrates [59]. Zebrafish have endogenous
reproduction rhythm which is significantly influenced by
photoperiod and a cycle of 10-hour light and 14-hour dark
has been normally practiced for breeding [56, 57]. In both
wild and laboratory environments, zebrafish normally spawn
in the first few hours of daylight [1, 24]. However, spawning
in the afternoon by wild zebrafish and in the late evening
by zebrafish in captivity have also been observed [24].
Additionally, they prefer to spawn in the areas with natural
habitats items such as aquatic plants and substrates as well
as in shallow areas with greater embryo production observed
[59]. On the other hand, chamber volume varies according
to the number and size of breeding adults. A tank volume of
not less than 300mL is recommended for successful breeding
between six zebrafish with weight ranges from 0.50 g to 0.70 g
and 0.95 g for male and female, respectively [58]. Meanwhile,
zebrafish breeders normally go with a water temperature of
24 to 30∘C along with pH between 7.0 and 8.0 [57]. Feeding
practices which include type of diet, frequency, and density
of feeding are also of significant importance in zebrafish
spawning. Several recommended diets for breeding zebrafish
have been suggested. These include feeding zebrafish with
formulated diet, Gemma Micro 300 at 5% of body weight
once daily [60], flake diet to satiation three times daily or on
a rotating diet of flake food and freshly hatched brine shrimp
(Artemia nauplii) in everymorning and evening, respectively
[61, 62], and Spirulina platensis-based diet three times daily at
5% of body weight [63]. Meanwhile, nutritional supplemen-
tation in phospholipids (phosphatidylcholine) [64], highly
unsaturated fatty acids (e.g., diet with 1 : 1 squid oil : linseed
oil) [65] andMoringa leaf [66] have been proved to promote
reproductive system of zebrafish. It is important to note that
breeding zebrafish require rich feeding.

Phenotypic cues such as paternal and maternal body size
[51, 67, 68], fin length [69, 70], group size [71], and behavioral
traits [72] have been extensively studied to identify their
potential effects on the reproductive success of zebrafish.
Besides the well-known fact that large females displayed
higher fecundity along with provision of high qualities of
eggs and larvae [51, 67], pronounced size-dependent paternal
effect on a broad range of reproductive parameters is identi-
fied. Large (28-29mm) and very large (30-31mm) males can
contribute to higher hatching probability along with early
hatching time and larger offspring hatched [51, 68]. In an
indirect male-size effect, females have shown their preference
towards large (26–34mm), territorial males by allocating
more eggs to them as compared to small males [24, 51, 73].
Meanwhile, studies showed that wild type females do not
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show preferences towards long and short fin males, hence
suggesting that it is the total body size that females prefer
as compared to overall apparent size [69, 70]. However, one
study discovered the strong association between long fin
males and females [70]. Besides visual information, adult
females display mate selection in response to olfactory cue.
They showed strong preference towards odour stimuli from
nonkin males, thus avoiding inbreeding which often leads
to reduced fecundity and quality of offspring [74]. On the
other hand, lower reproductive success in terms of mean per
capita egg production was observed at higher fish densities
(e.g., 5 males and 10 females), owing to increased aggression
level among males and competition among females over
oviposition site [71]. On top of that, decreased courtship
rate was shown in the high density male-biased group. This
observation can be explained by the tendency of territorial
males to engage in territorial defense, rather than in mate
acquisition [24, 71]. In view of the significant impact of
population density and sex ratio on mating success of
zebrafish, a small mating group of approximately five along
with male to female ratio of 1 : 2 is often recommended for
effective breeding [71]. During a courtship period, males
often compete with each other. Besides acquiring a territory
and maintaining dominancy, study illustrated that males that
are bold and aggressive have greater reproductive fitness by
allowing greater proportion of eggs fertilized [72].

3. Regulation of Reproductive System

The reproductive system is a functional cooperation among
sex organs in an organism to produce a new life. In
general, gametes producing gonads, ducts, and open-
ings are some of the main reproductive elements shared
among vertebrates [75]. Normal sexual functioning requires
strong genital muscles, extensive vascular network, and
tight neuroendocrine regulations. In mammals, the repro-
ductive system is tightly regulated by three interrelated
hormonal feedback control axes: hypothalamic-pituitary-
adrenal (HPA) axis, hypothalamic-pituitary-gonadal (HPG)
axis, and hypothalamic-pituitary-thyroid (HPT) axis [75].
The key components and functions of all of the three axes in
zebrafish correspond closely to mammals [21].

3.1. Hypothalamic-Pituitary-Gonadal (HPG) Axis. Hypotha-
lamic-Pituitary-Gonadal (HPG) axis is defined as a func-
tional cooperation between three endocrine glands: hypotha-
lamus, anterior pituitary gland (APG), and gonads in regulat-
ing reproduction, development, and aging in animals [76]. In
HPG axis, kisspeptin (Kiss1) neurons, andGnRHneurons are
the twomain control points in hypothalamus [77]. Both of the
neurons play important role in the regulation of the secretion
of reproductive hormones, luteinizing hormone (LH), and
follicular stimulating hormone (FSH) from APG [78, 79].

Evolutionary studies showed the presence of four Kiss-
R genes lineages (Kiss-R1a, Kiss-R1b, Kiss-R2a, and Kiss-
R2b). In humans, only Kiss-R1a lineage is conserved [77].
Kiss1 neurons are the main mediator of sex steroid feedback
loop [80, 81]. Along with this, sex steroid receptors such as

estrogen receptor alpha receptors, androgen receptors, and
progesterone receptors can be found on the neurons. As
the neurons are colocalized with GnRH neurons, they are
also defined as the upstream regulator of GnRH neurons
in hypothalamus [82]. In humans, there are more Kiss1
neurons in the arcuate (ARC) nucleus as compared to the
anteroventral periventricular nucleus (AVPV) [83]. Kiss1
neurons located in ARC act as the regulator in negative feed-
back mechanism of sex steroid hormones on the secretion
of GnRH from GnRH neurons. While for Kiss1 neurons in
AVPV, they mainly function in the preovulatory GnRH/LH
surge process [82, 84].

To date, zebrafish remains as one of the few teleosts
with detailed information gathered on the distribution and
functions of kisspeptin. In zebrafish, two kiss genes, Kiss1
and Kiss2, have been identified successfully through in situ
hybridization [85, 86]. Kiss1 neurons are limited to habenular
nucleus while Kiss2 are widely distributed in ventral and
caudal region of hypothalamus, thalamus, preoptic area,
mesencephalon, and pallium [87]. Meanwhile, few studies
have reported the functional similarities of neuropeptide
kisspeptin between zebrafish andmammals. Similar to mam-
malian Kiss1 signaling, habenular Kiss1 in zebrafish plays
pivotal role in puberty onset through regulation of GnRH
secretion [88, 89]. Additionally, regulation of gonadotropins
release is also one of the potential physiological roles of
kisspeptin in both zebrafish and human [83, 85]. Neverthe-
less, Kiss2 but not Kiss1 appears as the predominant GTH-I
and GTH-II regulator in zebrafish [88].

GnRH neurons are neuron cells that play pivotal role
in regulation of the release of reproductive hormones, LH
and FSH from APG [79, 90]. Three types of GnRH genes:
herring GnRH (GnRH1), chicken GnRH-II (cGnRH-II), and
salmon GnRH (sGnRH/GnRH3) are identified in humans
[91]. GnRH1 is the classical hypothalamic reproductive
neuroendocrine factor which further allows LH and FSH
secretion from APG. In zebrafish, two forms of GnRH
are identified, namely, chicken GnRH-II (cGnRH-II) in the
midbrain tegmentum and salmon GnRH (sGnRH/GnRH3)
which is expressed in olfactory bulb and preoptic area of
hypothalamus [92, 93]. Unlike other fishes which possess
three GnRH isoform [94], GnRH3, instead of GnRH1 takes
the role of activating and controlling the pituitary release of
LH and FSH in zebrafish [95].

In both humans and zebrafish, FSH (GTH-I in zebrafish)
and LH (GTH-II in zebrafish) are produced by pituitary cells
in response to GnRH from GnRH neurons in hypothalamus
[83, 95].The roles of these glycoprotein hormones in steroido-
genesis and gametogenesis are conserved across species. In
males, FSH regulates the spermatogonial proliferation and
differentiation in Sertoli cells. While for females, FSH plays
critical role in stimulating estrogen and inhibin alpha subunit
(inha) production during folliculogenesis, as also reported in
mammals [96, 97]. In mammals and zebrafish, expression of
inha peaks during full-grown stage of follicles and it acts as an
endocrine hormone which triggers final oocyte maturation
and ovulation by stimulating LH production [98, 99]. In
regard to the characterization of FSH receptors, zebrafish
GTH-I receptors display strong sequence similarities to that
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Figure 1: Crosstalk between HPG and HPT in mammals. T3 displays its estrogenic action by stimulating the expression of both estrogen
receptors 𝛼 and 𝛽. Increased in expression of steroidogenic acute regulatory protein (StAR) followed by elevated testosterone level were
also observed following acute exposure to T3. Meanwhile, administration of T4 has been shown to cause elevation in the level of LH and
FSH. However, low serum testosterone was observed under T4-induced hyperthyroidism and the low testosterone level is attributed to the
decreased catalytic activities of testicular enzymes involved in lipogenesis (blue arrow: HPG; pink arrow: HPT).

of humans [100]. Besides FSH, oocytematuration and growth
in both humans and zebrafish require the hormonal functions
of LH and 17𝛼,20𝛽-dihydroxy-4-pregnen-3-one (17𝛼,20𝛽-
DP), a maturation inducing hormone [101, 102]. Meanwhile,
LH also regulates steroidogenesis in Leydig cells, though to a
lesser extent in zebrafish [103]. Nevertheless, cAMP/protein
kinase A pathway remains as the common underlying mech-
anism in LH-mediated testicular steroid production across
species [103]. Viewing from the findings above, HPG axis
of zebrafish appears to have striking resemblance to that of
more evolved vertebrates, conserving the major outline of
reproductive cells and hormones identified in mammals.

3.2. Hypothalamic-Pituitary-Thyroid (HPT) Axis. HPT is
physiologically related to HPG and both of the axes work
together in regulating reproductive functions [104]. The
presence of thyroid hormone receptors in ovaries and effect
of estrogen hormone level on HPT axis have proven the
reciprocal relationship between these two axes [75, 105].
In mammals, triiodothyronine (T3) and tetraiodothyronine
(T4) are the two principal thyroid hormones secreted from

the thyroid gland, a butterfly-shaped organ located in the
neck. The hormonal output of thyroid gland is regulated
by thyroid stimulating hormone (TSH) secreted from APG,
which itself is controlled by thyroid releasing hormone (TRH)
from hypothalamus [106]. The main function of thyroid
system is to regulate the metabolism, growth, and develop-
ment of an individual. On the other hand, the amounts of
thyroid hormones secreted are known to affect the release of
reproductive hormones such as LH, FSH, and several steroid
hormones, thus being consistent with the crosstalk concept
between HPT and HPG [107–110] (Figure 1).

As the reproductive system is tightly regulated by HPT,
several reproduction disorder symptoms will be displayed
when the axis is disrupted [111–113]. With the excessive
secretion of thyroid hormones from thyroid gland, or oth-
erwise known as hyperthyroidism, women often experience
menstrual disturbance and anovulatory cycles. In terms of
menstrual disorder, amenorrhea and oligomenorrhea have
been often reported, as well as a changes in the amount
of menstrual flow such as hypomenorrhea and hyperme-
norrhea [114, 115]. On the other hand, semen quality is
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Figure 2: Crosstalk between HPG and HPT in zebrafish. Together with GTH-I, T3 elevates the expression of ar and cyp17a1, leading to
increased 11-KT production and sensitivity in zebrafish testicular tissues. Meanwhile, T3 alone plays stimulatory role in the proliferation
of Sertoli cells and type A undifferentiated spermatogonia. However, concentrations of thyroid hormones were negatively correlated with
amount of GTH-I and GTH-II (blue arrow: HPG; pink arrow: HPT).

adversely affected in hyperthyroidism men [112, 116]. While
for hypothyroidism, delayed puberty can be detected among
teenagers and mature women tend to suffer from abnormal
menstrual cycles and increased risk of fetal wastage [111,
113]. Following the decrease in the amount of LH, FSH, sex
hormone binding protein, and serum testosterone level in
hypothyroidism men, increased testicular size and decreased
sperms qualities in terms of sperm morphology and motility
and semen volume have been elucidated in several studies
[117, 118].

In many aspects, thyroid system in teleost, particularly
zebrafish, is similar to the mammalian system. Zebrafish
apparently have thyroidal tissues with the same origin as
those of mammals. Genes responsible for thyroid devel-
opment such as pax2a and pax8 and nkx2.1a and hhex
are conserved between zebrafish and mammals [119, 120].
Meanwhile, release of TSH from APG followed by synthesis
of T3 from thyroid glands is observed in both organisms
[121]. The fundamental roles of thyroid hormones in regu-
lating metabolism, early development, and differentiation of
zebrafish correspond closely to thyroidal hormones functions

in mammals. Additionally, alteration in the amount of thy-
roidal hormones secreted in zebrafish affects the regulation
of reproduction system too (Figure 2). In male zebrafish,
T3 stimulates mitotic activities in Sertoli cells as well as
proliferation of type A undifferentiated spermatocytes [40].
The recent studies have also shown that the change in
concentrations of T3 and T4 may affect the levels of GTH-
I and GTH-II, which are known to play important roles in
stimulation of steroidogenesis and gametogenesis [52, 75].
Additionally, hyperthyroidism in larval zebrafish is shown to
result in decreased aromatase activity along with estrogen
synthesis, leading to testicular formation and skewed sex
ratio in favor of males [122]. The observed reproductive
physiological changes under hyperthyroid condition are
consistent across a range of animal models which includes
mammals and reptiles, thus lending support to the statement
regarding themasculinizing effect of thyroid hormones [123–
125]. The combined potentiation effect of T3 and GTH-I on
the androgen biosynthesis and sensitivity of testes further
suggested the crosstalk between HPT and HPG in zebrafish
[126]. Altogether, the findings obtained on the components
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and reproductive functions of HPT axis reveal many parallel
between zebrafish and human and this further delineates the
remarkable potential of zebrafish as the animal model in
infertility studies.

3.3.Hypothalamic-Pituitary-Adrenal (HPA)Axis. HPAaxis is
the complex set of interaction between three—hypothalamus,
pituitary gland, and adrenal gland [127]. It is the major
constituent of neuroendocrine system which produces stress
and mood responses and involves in the regulation of
immune and reproductive system [128]. Under stress condi-
tion, neuroendocrine neurons in the paraventricular nucleus
of hypothalamus are stimulated to produce corticotrophin-
releasing hormone (CRH) and vasopressin [129]. These two
hormone peptides in turn lead to the secretion of adreno-
corticotropic (ACTH) hormones from APG. Biosynthesis of
several corticosteroids such as cortisol can be observed fol-
lowing blood transportation of ACTH from APG to adrenal
cortex [130]. Cortisol is the steroid hormone produced from
the zone fasciculate of the adrenal cortex in response to stress
and low sugar level condition. Under stressful condition,
the physiological demands for energy can be met through
increased gluconeogenesis process stimulated by cortisol
[130]. At the meantime, cortisol prevents overactivation of
immune system and inflammation during stress by allowing
the shift towards type 2 helper T cells (Th2) immune response
[130].

In zebrafish, stress axis is known as hypothalamus-
pituitary-interrenal (HPI) axis [131]. The anatomy and physi-
ology of the pituitary are highly conserved between zebrafish
and mammals. Similar to mammals, pituitary in zebrafish
appears in two different parts with distinct functions. The
hormones produced by pituitary glands under stress are the
same as mammals [132, 133]. The pituitary-secreted stress
hormones, ACTH, will then bind to type 2 melanocortin
receptor (MC2R) located in the interrenal gland of zebrafish,
the homolog of mammalian adrenal gland [134]. Mean-
while, evolutionary conservation of MC2R trafficking and
signaling was observed in zebrafish, particularly in terms
of the presence of three forms of melanocortin 2 receptor
accessory proteins (MRAP) and their structural features and
the critical roles of MRAP 1 in MC2R signaling following
ACTH stimulation and MRAP 1 or MRAP 2a in localization
ofMC2R to plasmamembrane [135–137]. Across both species,
cortisol is the main corticosteroid produced under stress
condition. Cortisol stress signaling is primarily mediated by
glucocorticoid receptor (GR), a ligand-activated transcrip-
tion factor. In this context, studies suggested the presence
of single GR gene with two splicing variants, termed GR𝛼
and GR𝛽 in zebrafish, which shows high similarity level to its
human equivalent [134, 138–140].

4. Infertility

Infertility is defined as the incapability of an individual to
achieve clinical pregnancy despite having regular unpro-
tected sexual intercourse for more than 12 months. Epi-
demiology study showed that approximately 20% couples

worldwide are suffering from infertility [13]. In general,
infertility is caused by male factors such as poor sperm
qualities and quantities [141], female factors such as abnormal
ovulation and tubal pathology [142, 143], combined male and
female factors, and unexplained infertility factors [144]. Hor-
monal imbalance, particularly due to unhealthy and stressful
lifestyles [145, 146], and prolonged exposure to harmful
chemicals and unfavorable environmental conditions [147–
149] are some of the suggested underlying pathogenic mech-
anisms in infertility.

4.1. Stress-Induced Infertility. When zebrafish are exposed to
stressor, nucleus preopticus (NPO), a region homologous to
paraventricular nucleus (PVN) in hypothalamus of mam-
mals, will secrete CRH. In response to CRH, corticotrophs in
APG will release ACTH, the hormones which further stim-
ulate cortisol biosynthesis in interrenal gland [132, 133]. The
influence of HPI on reproductive axis in zebrafish is similar
to that of mammals. The secretions of biological hormones
such as CRF, ACTH, and cortisol under stress generally
lead to impaired reproductive system through inhibition of
the release of reproductive hormones and gametogenesis
(Table 1) [150]. In female zebrafish, the disruptive effects
of ACTH and cortisol on gametogenesis and fertilization
success have been illustrated through the identification of
oocytes with DNA damage as well as reduced nucleic acid
via disruption of protein synthesis [151]. Additionally, ACTH
induces strong vacuolization in zebrafish ooplasmand similar
condition was also observed in mammalian adrenal gland
cells following exposure to ACTH [151, 152]. On top of that,
ACTH suppresses gonadotropin-stimulated estradiol release
from ovarian follicles [150]. This stress-induced inhibition of
steroidogenesis may be related to the binding of ACTH to
melanocortin 2 receptor (MC2R), a specific ACTH receptor
identified in zebrafish ovary along with the presence of
inhibitory G protein in MC2R signaling [150]. To the best of
our knowledge, currently there is no study identified on the
effect of ACTH on male reproductive system. Nevertheless,
MC2R receptors have been identified in male gonads and
hence leading to the hypothesis that ACTH may involve in
male gonadal steroid modulation too.

Following the high similarities identified in zebrafish
HPG and HPA regulatory axis as compared to human,
the reproductive health status of zebrafish under stress is
highly predictive of mammalian responses and hence further
strengthen the potential of zebrafish as research model in
infertility studies (Figure 3).

4.2. Chemical-Induced Infertility. Since the beginning of
industrial era in around 1750, a sharp increase in the amount
of chemicals produced and released in the surrounding
environment has been observed [153]. At the same time, there
is significant increase in the health threat following chemical
exposure, leading to the increasing demand for robust and
cost effective methods to assess the chemical effects in
human health, particularly growth and development along
with reproductive system [154, 155]. As aforementioned,
mammals such as rat and mice have been normally used to
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Table 1: The inhibitory effects of stress hormones (CRH, ACTH, and cortisol) on mammalian and zebrafish HPG axis.

Stress hormones Inhibitory effects on HPG References
Mammal

CRH
(i) Inhibitory action on GnRH and testosterone release from rat hypothalamus and
male Rhesus macaque
(ii) CRH suppresses LH secretion in females and has dose-dependent inhibition
effect on androgen production from human ovarian thecal cells as well

[226–228]

ACTH
(i) The dampening effect of ACTH on the responsiveness of the pituitary gland to
GnRH and delayed estradiol-induced LH surge
(ii) Direct actions of stress hormones on testosterone biosynthesis in Leydig cells

[229–231]

Cortisol

(i) Glucocorticoid inhibits the release of GnRH as well as LH and FSH via
glucocorticoid-gonadotropin inhibitory hormone interaction in males
(ii) Suppression of testosterone release from male rats under stress
(iii) In females, cortisol acts on the HPG axis by inhibiting the release of GnRH,
LH, and steroid hormones (estradiol and progesterone)

[232–234]

Zebrafish

ACTH

(i) Reduced estradiol synthesis from zebrafish ovarian follicles
(ii) Causes DNA damage, reduced amount of autophagosomes, and vacuolization of
zebrafish follicles
(iii) Elevated ACTH and cortisol following estradiol treatment are most likely
contributed to low fertilization success

[150–152]

Cortisol (i) Similar to ACTH, cortisol has adverse effects on female gametogenesis by
causing DNA damage [151]

Chemical-induced infertility

Stress-induced infertility
(i) ACTH

(ii) Cortisol

Environmental-induced infertility
(i) Oxygen availability

(ii) Exposure to exogenous heat

(i) Herbicide residues 
(ii) Pesticide

(iii) 2,3,7,8-Tetrachlorodibenzo-p-dioxin

(iv) Di(2-Ethylhexyl) phthalate (DEHP)
(v) Other environmental chemicals 

(TCDD)

Figure 3: Infertility factors in zebrafish.

assess the reproductive toxicity of chemicals. Unfortunately,
mammals-based assays to assess reproductive toxicity are
time-consuming, complex, and expensive to have large-
scale experimental analysis [156]. Moreover, high dosages are
often required for mammal experimentation, thus leading to
unpredictable toxicity levels of the environmental chemicals
as the concentration levels of chemicals in the environment
are often low [157]. Hence, zebrafish are recommended as
the model system in this research field, particularly for

water-soluble pollutants following the ease of chemical intro-
duction into zebrafish [158, 159] and increased throughput
within a shorter research period (Figure 3).

4.2.1. Herbicide Residues (Glyphosate). Focusing on glypho-
sate, or commercially known as Roundup, it is a chemical
formulation in herbicide that has been used extensively in
agricultural field worldwide and emerged in the topping list
of herbicide usage in Western countries since 1974 [160].



BioMed Research International 9

It controls the plants population by acting as an inhibitor
for enzyme 5-enolpyruvylshikimate-3-phosphate synthase,
an enzyme which catalyzes the production of intermediate
in the plant biosynthesis of aromatic amino acids process
[161]. Although this biosynthesis pathway is absent in ani-
mals, studies have shown the reproductive adverse effects
of glyphosate in a range of organisms, particularly aquatic
organisms [162–164]. This water-soluble pollutant eventually
affects human health, especially the sexual and reproductive
development via consumption of contaminated food and
drink [165–167].

Viewing the high structural similarities in the reproduc-
tive axis of zebrafish as compared to humans, zebrafish are
often utilized as the model in the assessment of reproductive
toxicity of environmental chemicals, including herbicides.
Following exposure to high concentration of glyphosate,
significant increase in expression of cyp19a1 gene, aromatase
activity, and the predominant estrogen receptor in ovary, esr1,
was identified, thus revealing the potential steroidogenesis
disruption effect of glyphosate in zebrafish [164]. It is hypoth-
esized that the increased cyp19a1 and esr1 expression are
compensatory mechanisms in ovary to restore the balance of
estrogen hormone level [164]. Similarly, a number of in vitro
studies have revealed the potential of glyphosate as endocrine
disruptor via inhibition of aromatase activities in human cell
lines [168, 169]. The disruption of steroidogenic biosynthesis
pathway was hypothesized as one of the major underlying
factors which contributed to reduced egg productions along
with histological evidence of ovarian follicle atresia in adult
female zebrafish [164]. Meanwhile, steroid hormone biosyn-
thesis in testes was also affected. Upregulation of antioxidant
genes and presence of sperms with lowered membrane and
DNA integrity andmotility were also observed in glyphosate-
exposed adult male zebrafish, suggesting the potential of
glyphosate in inducing oxidative stress in the testis [161]. High
parental exposure to glyphosate eventually caused increase in
mortality rate of embryo during early development and this
finding is generally in accordance with evidence from other
species such as mammals [170] and amphibians [171].

4.2.2. Pesticides (Endosulfan). Besides herbicide, aquatic
environments are facing persistent pesticide pollution. A
mixture of endosulfan I and II is often included in the
pesticide formulation [172]. Once it is released into the
aquatic environment through field runoff and atmosphere
transport, it exists in the form of endosulfan sulfate and
diol in aquatic sediments and water, respectively [173, 174].
All these compounds are further broken down into alcohol,
hydroxyl, ether, hydroxyl ether, and lactone [175]. Endosul-
fan sulfate is the only toxic breakdown product and has
longer half life up to years. Endosulfan is proven to be
bioaccumulative and has potential effect on the reproductive
performance, primarily via disruption of endocrine functions
[175].

Ova-testes status, testicular damage, and sperms necrosis
were observed among exposed adult male zebrafish at a
very low concentration of endosulfan (10 ng/L) [176]. The
pathological changes in testes were highly correlated with

the decreased hatching rate [176, 177]. Additionally, studies
have proposed the binding ability of endosulfan to estradiol
receptors found on liver, thus leading to increased vitel-
logenin level in male zebrafish [176]. At the mean time,
degenerative changes such as increased sizes of follicular cells,
oocyte membrane folding, and reduced vitellogenesis can be
observed on atretic follicles in female zebrafish [176]. Besides,
delayed sexual maturity and reduced spawning frequency
were also observed [178]. Altogether, reproductive toxicities
of endosulfan, which include DNA damage and induction of
oxidative stress [179, 180], developmental abnormalities [181],
and histopathological changes of organs [182, 183], have been
successfully illustrated by using zebrafish animal models.

4.2.3. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD). 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aro-
matic hydrocarbon compound and is normally released into
the environment via organic synthesis and burning of organic
materials [184]. It is a potent developmental toxicant and
endocrine disruptor [185]. Studies have shown its reproduc-
tive toxicity manifested by altered gonad development [186],
reduced egg production and survival rate of eggs and fry
[187], and decreased serum estradiol and vitellogenin level
[188].

Several estradiol-biosynthesis genes such as cyp19a1a,
cyp11a1, and star have been pointed out as the potential gene
suppression targets of TCDD [189]. Meanwhile, downregula-
tion of gonadotropin receptors and three estrogen receptors
(esr1, esr2a, and esr2b) in the ovaries of adult zebrafish was
observed [189]. On the other hand, aryl hydrocarbon receptor
(AHR) signaling cascade appears as one of the major gene
suppression pathways induced by TCDD [189].The steroido-
genesis disruption potential of TCDD is expressed by first
binding to the AHR. The resulting AHR complex dimerizes
with aromatic hydrocarbon receptor nuclear translocator
(ARNT) protein in nucleus.Gene suppression in ovary is then
observed following binding of the heterodimer complex to
the aryl hydrocarbon-response element (AHRE) on genes,
leading to disruption of estradiol biosynthesis in adult female
ovaries [189]. Depressed gonadotropin responsiveness and
estradiol biosynthesis have resulted in damaged ovaries with
retarded follicular maturation and ovarian functions, which
further results in reduction of egg released and spawning
activities [190, 191].

Despite the absence of testicular lesion in TCDD-exposed
male zebrafish, males seem to have contributed more to
TCDD-induced reproductive toxicity, which aremainlyman-
ifested by reduced number of eggs spawned and amount
of fertilized eggs [185, 192]. On top of that, it is important
to note that offspring from fish exposed to TCDD experi-
ence reduced reproductive capacity too [185]. Conclusively,
exposure to TCDD, especially during early life stages,
brings adverse reproductive effects to both male and female
zebrafish. It is important to note that the reproductive
responses of zebrafish to TCDD are highly relevant to human
following the high structural and functional similarities of the
estrogen receptors in both zebrafish and humans and eluci-
dation of perturbation of steroidogenesis regulation through
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Table 2: The reproductive effect of chemicals in zebrafish.

Chemicals Chemical toxicity effect References
Ammonium perchlorate Reduced spawn volume [235, 236]

Bisphenols
Skewed sex ratio in favor of females, imbalance of steroid hormones,
reduced germ cell count, decreased hatching rates, and embryonic
malformation

[203, 237]

Brominated flame retardants (e.g.,
2,4,6-tribromophenol and
2,4-dibromophenol)

Skewed sex ratio, decreased fecundity, altered transcription of steroid
genes and plasma concentration of sex hormones, disturbed gonad
morphology, and complete hatching failure at high chemical dosage

[53, 238, 239]

Cobalt Sperms with damaged DNA and reduced fertilization and embryo
survival rates [240]

2,4-Dichlorophenol Altered steroid gene expression and plasma sex hormone level and
reduced number of eggs released and hatching rate [201]

Ethinyl estradiol

Reduced or complete failure of fertilization, reduced adult fecundity
and vitellogenic response, abnormal vitellogenin induction,
discernible effects on secondary sexual characteristics, altered sexual
differentiation process, and degenerative sign of reproductive organs

[241–243]

Fluorotelomer alcohols
Reduced eggs and sperms production, affected steroidogenesis along
with altered plasma reproductive hormones level, and reduced
hatching rates

[202, 244]

Pharmaceutical drugs

Negative impacts on several reproductive parameters: courtship
behaviour, number of egg spawned, hatching success, HPG gene
transcription and hormone level, and gonad histological changes
along with germ cells qualities

[245–248]

Polychlorinated biphenyls Reduced number of eggs released and fertilized, altered ovary
histology, and skewed sex ratio [204, 249, 250]

Polycyclic musks Antiestrogenic effect [251]

AHR-dependent manner in TCDD-treated mammals [193–
195].

4.2.4. Di(2-Ethylhexyl) Phthalate (DEHP). Di(2-Ethylhexyl)
phthalate (DEHP) is a commonly used plasticizer. Although it
can be readily degraded bymicroorganism, continual releases
of large chemical volume into atmosphere following plastic
manufacture, burning activities, and waste water effluents
have led to substantial concentration in aquatic system [196,
197]. Recently, its abilities to bind to estrogen receptor and
contributions to reproductive toxicity in aquatic life and
mammals have been discovered. Several studies were carried
out on zebrafish to further evaluate the reproductive effect of
DEHP [159, 198, 199].

In adult male zebrafish which received intraperitoneal
injection of DEHP, impaired spermatogenesis with accumu-
lation of spermatogonia in testes were observed [198, 199].
Additionally, DEHP is capable of inducing oxidative stress in
testes with consequent increase in spermatozoa DNA frag-
mentation [198, 199]. Sharp decline in embryo production
was also observed following the blockage of male hormone
synthesis by DEHP. With the absence of male pheromones
in water, female egg depositions followed by sperm release
are inhibited [199].While for adult female zebrafish, impaired
oocyte maturation and ovulation were the main toxicological
effects of DEHP identified [159]. Dose-related effects were
observed on both of the defects with maturation signals from
membrane progestin receptors 𝛽 (mPR𝛽) and lhr greatly

affected by lowdose and ovulation signal fromprostaglandin-
endoperoxide synthase 2 (ptgs2) following high dose expo-
sure [159]. Increased circulating level of bone morphogenetic
protein-15 (BMP15), a hormone regulator which prevents
precocious oocyte maturation, was suggested as one of the
factors which contributes to disrupted oocyte maturation
[159]. At the same time, suppressed expression of mPR𝛽
following increased level of BMP15 contributed to the lack of
egg production in DEHP-exposed zebrafish [159, 200].

4.2.5. Other Environmental Chemicals. In fact, zebrafish are
increasingly used as powerful alternative model for assessing
reproductive toxicity of a wide range of environmental chem-
icals as listed in Table 2. Most of the chemicals are industrial
wastes and display high bioaccumulation factor. Disrupted
gonad functions, altered steroidogenesis [75, 201, 202], and
reduced quantities and qualities of germ cells along with low
fertilization rate [201, 203, 204] are some of the reproductive
toxicity effects observed in zebrafish chemical exposures (see
Table 2).

As a whole, these findings provide strong rationales
for conducting assessment on the reproductive toxicity of
chemicals by using zebrafish. It was observed that most of the
environmental chemicals disrupt the sexual functioning via
perturbation of normal hormonal regulation of reproductive
system. In view of the striking homologies in the endocrine
regulation of reproduction as mentioned, there will be
high relevance and predictability of chemical reproductive
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response between zebrafish and humans. The reproductive
toxicity profile of the environmental chemicals established by
using zebrafish animal model will be robust for uncovering
the chemical-induced effects as well as appropriate protective
approaches against chemical toxicity in human.

4.3. Environmental Induced Infertility. In the past few
decades, effects of several environmental factors such as
oxygen availability and exposure to exogenous heat on
reproductive function have become of interest following the
increase in the number of men who work in high altitude as
well as in working areas with high heat exposure [205–207].
The reproductive effects of low oxygen availability in aquatic
system, which are mainly due to eutrophication and organic
pollution, have been extensively investigated in a range of fish,
including zebrafish [28, 208–211]. Instead of causing direct
cell damages in the reproductive organs, studies have dis-
covered the negative indirect reproductive effect of hypoxia
through alteration of circulating plasma sex steroid levels,
notably testosterone and estradiol with underlying genetic
andmolecularmechanisms involving the expression ofHPG-
related genes [212], hypoxia-inducible factor 1 (HIF-1) [211,
212], cellular lipids and steroid hormones [210, 212], and
leptin [211]. Hormonal imbalance eventually leads to a lag
in gonadal growth, masculinization of the ovary, sex ratio
distortion in favor of males, and arrest in gametogenesis [28,
211]. Prominent reduction or complete absence of ovulating
females observed under hypoxic condition correlates with
both of the changes in steroid and contractile gene expression.
On top of that, fertility defects caused by hypoxia are further
implicated by aberrant primordial germ cell (PGC)migration
[213]. Collectively, despite the need for further elucidation
of mechanisms underlying hypoxia-induced reproductive
defect, the potential reproductive impairment of hypoxia
in terms of abnormal gonadal development, reduced germ
cell quantities and qualities, fertilization and hatching suc-
cess, and larval and juvenile viability has been successfully
revealed through the utilization of zebrafish as the animal
model.

On the other hand, temperature of testicles is one of
the critical factors which determines the sperms’ quality
and quantity in humans and mammals [214, 215]. Testic-
ular temperature of approximately 2 to 4∘C lower than
body temperature is required for normal testicular function.
Basically, the temperature is regulated via two mechanisms:
the dissipation of heat through the surface of scrotum and
the heat lost from incoming arterial blood to outgoing
venous blood [216]. Through zebrafish study, anomalies in
chromosomal number of the spermswere observed following
the increase in water temperature [217]. The germ cell
aneuploidy is mainly due to mutation of monopolar spindle
1 (Mps1), the critical mitotic checkpoint kinase factor [217].
As mentioned, sexual differentiation in some teleost can
also be overridden by water temperature. Meanwhile, the
influence of surrounding temperature on gonadal fate is also
quite common among reptiles [218]. Masculinizing effect of
high water temperature often related to the induced oocyte
apoptosis and differentiation of spermatogonia as well as

suppressed activity of gonadal aromatase [27, 219]. More-
over, hatching rhythm is temperature-sensitive, with shorter
hatching rate observed at constant water temperature of 28∘C
as compared to lower temperature of 24∘C and thermocycles
[220].

5. Overall Limitations

Zebrafish has only emerged over the past decade as a research
model in reproductive field [79, 221]. As a result, there is
a definite lack of detailed information on its reproductive
system as compared to other well-developed higher verte-
brate model organisms. For instance, there is still significant
gap in our understanding of the underlying mechanisms in
stress-mediated infertility, especially on male reproductive
system [150]. Additionally, more efforts are also needed to
clarify the molecular genetic basis involved in zebrafish sex
determination [222].

Additionally, zebrafish practice external insemination [1].
One of the major shortcomings of this reproduction mode is
the dilution of gametes concentration required for successful
fertilization [223, 224]. However, zebrafish display evolu-
tionary development in their mechanism of sperm releases.
Instead of staying close to the females and directly releasing
sperms into thewater column as described in other fishes that
display external insemination [225], sperm trails are first laid
bymale zebrafish onto the substrates’ surfaces [41].Mucosub-
stances secreted by seminal vesicles are probably acting as the
adhesive material in which the sperms are embedded in [41].
The production of sperm trails allows the release of active
sperms over prolonged period of time, even after the males
leave the spawning area, thus promoting egg insemination
[41].

6. Conclusion

Despite the small size of zebrafish, the high similarities in
reproductive functions and regulations between this small
fish species and mammals have promoted them as the
promising model in infertility research. Together with their
biological advantages such as optical transparency during
embryonic stage and rapid development, the utilization of
zebrafish asmodel systemhas enabled us to delvemore deeply
and broadly into the reproductive functions. Additionally,
our knowledge on the factors of infertility has been enriched
by the researches of zebrafish. Human reproductive health
risk assessment can thus be derived from the demonstration
of underlying mechanisms associating infertility that are
commonbetweenmammals and zebrafish.Most importantly,
in-depth understanding about the underlying mechanisms
leading to infertility contributes to the discovery anddevelop-
ment of more effective fertility medications and technologies.
Taken together, this review has highlighted the potential
of zebrafish as valuable and reliable alternative model for
studies aimed at answering questions concerning the repro-
ductive functions as well as mechanisms of infertility in
vertebrates.
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[243] C. Schäfers, M. Teigeler, A. Wenzel, G. Maack, M. Fenske,
and H. Segner, “Concentration- and time-dependent effects of
the synthetic estrogen, 17𝛼-ethinylestradiol, on reproductive
capabilities of the zebrafish, Danio rerio,” Journal of Toxicology



20 BioMed Research International

and Environmental Health, Part A: Current Issues, vol. 70, no. 9,
pp. 768–779, 2007.

[244] C. Liu, J. Deng, L. Yu,M. Ramesh, and B. Zhou, “Endocrine dis-
ruption and reproductive impairment in zebrafish by exposure
to 8:2 fluorotelomer alcohol,” Aquatic Toxicology, vol. 96, no. 1,
pp. 70–76, 2010.

[245] M. Galus, J. Jeyaranjaan, E. Smith, H. Li, C. Metcalfe, and J. Y.
Wilson, “Chronic effects of exposure to a pharmaceutical mix-
ture andmunicipal wastewater in zebrafish,”Aquatic Toxicology,
vol. 132-133, pp. 212–222, 2013.

[246] M. Galus, N. Kirischian, S. Higgins et al., “Chronic, low
concentration exposure to pharmaceuticals impacts multiple
organ systems in zebrafish,”Aquatic Toxicology, vol. 132-133, pp.
200–211, 2013.

[247] K. Ji, X. Liu, S. Lee et al., “Effects of non-steroidal anti-inflamm-
atory drugs on hormones and genes of the hypothalamic-
pituitary-gonad axis, and reproduction of zebrafish,” Journal of
Hazardous Materials, vol. 254-255, no. 1, pp. 242–251, 2013.

[248] M. Galus, S. Rangarajan, A. Lai, L. Shaya, S. Balshine, and J. Y.
Wilson, “Effects of chronic, parental pharmaceutical exposure
on zebrafish (Danio rerio) offspring,” Aquatic Toxicology, vol.
151, pp. 124–134, 2014.

[249] R. Nourizadeh-Lillabadi, J. L. Lyche, C. Almaas et al., “Tran-
scriptional regulation in liver and testis associated with devel-
opmental and reproductive effects in male zebrafish exposed
to natural mixtures of persistent organic pollutants (POP),”
Journal of Toxicology and Environmental Health, Part A: Current
Issues, vol. 72, no. 3-4, pp. 112–130, 2009.

[250] T. Daouk, T. Larcher, F. Roupsard et al., “Long-term food-
exposure of zebrafish to PCB mixtures mimicking some envi-
ronmental situations induces ovary pathology and impairs
reproduction ability,” Aquatic Toxicology, vol. 105, no. 3-4, pp.
270–278, 2011.

[251] R. H. M. M. Schreurs, J. Legler, E. Artola-Garicano et al., “In
vitro and in vivo antiestrogenic effects of polycyclic musks in
zebrafish,” Environmental Science & Technology, vol. 38, no. 4,
pp. 997–1002, 2004.


