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Abstract

Normalization procedures are widely used in high-throughput genomic data analyses to remove various technological noise
and variations. They are known to have profound impact to the subsequent gene differential expression analysis. Although
there has been some research in evaluating different normalization procedures, few attempts have been made to
systematically evaluate the gene detection performances of normalization procedures from the bias-variance trade-off point
of view, especially with strong gene differentiation effects and large sample size. In this paper, we conduct a thorough study
to evaluate the effects of normalization procedures combined with several commonly used statistical tests and MTPs under
different configurations of effect size and sample size. We conduct theoretical evaluation based on a random effect model,
as well as simulation and biological data analyses to verify the results. Based on our findings, we provide some practical
guidance for selecting a suitable normalization procedure under different scenarios.
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Introduction

High-throughput data such as microarray expression data and

RNA-seq data have become an indispensable tool for medical

research nowadays. Typically, a data pre-processing step called

normalization is conducted prior to the subsequent statistical

analyses in order to remove various systematic noise. Pertinent

statistical significance tests are applied to these normalized gene

expression levels. Parametric tests such as Student’s t-test and its

improvements such as the one used in SAM (Significance Analysis

of Microarray, [1]) are widely used. Non-parametric tests such as

Wilcoxon rank-sum test serve as distribution free alternatives. The

resulting p-values are adjusted by a multiple testing procedure

(MTP) in order to control certain quantity of per-family Type I

error, such as familywise error rate (FWER) [2–5] and false

discovery rate (FDR) [6]. Differentially expressed genes are

identified based on a pre-specified threshold of adjusted p-values.

More detailed introduction of statistical methods for detecting

differentially expressed genes can be found in [7–10].

There are different sources of technological noise in high-

throughput genomic data [11,12]. Over the past decade or so,

many normalization procedures have been proposed to remove

such noise, and they can be loosely categorized into within-array

normalizations and multiple-array normalizations. Within-array

normalizations remove noise by ‘‘borrowing information’’ from

gene expressions within a single array. A simple example is the

global normalization, which applies a constant adjustment to force

the distribution of gene expressions to have a common mean or

median within each array [13,14]. Another example is the rank

normalization which replaces each observation by its fractional

rank (the rank divided by the total number of genes) within array

[14,15]. This normalization procedure achieves more robustness

to non-additive noise compared with global normalization at the

expense of losing some parametric information of expressions.

Multiple-array normalizations adjust the scale across arrays to

avoid different arrays having undue weight. A typical example is

the quantile normalization. Motivated by quantile-quantile plot, it

makes the empirical distribution of gene expressions pooled from

each array to be the same [16]. In particular, quantile normalized

arrays must have the same sample mean/median. In this sense, it

is stronger than global normalization. On the other hand, it does not

change the rankings of genes and retains more parametric

information than the rank normalization. So it can be viewed as

a compromise between the global and rank normalization

procedures.

A data-driven variable transformation called the d-sequence

method [17,18] can serve as an alternative to the aforementioned

normalization procedures. In this procedure, essentially each gene

is normalized by another one with similar variance which acts as

the ‘‘reference gene’’. This normalization is local because only one

gene is needed to normalize a given gene. Interested readers are
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referred to [19,20] for background and more detailed reviews of

normalization procedures.

Surrogate variable analysis (SVA) [21] was designed to

overcome the problems caused by heterogeneity in expression

data. The rationale of this method is to remove the detrimental

effects due to unmodeled variables such as demographic,

environmental, and technical factors.

Although SVA was not originally designed as a normalization

procedure, it can serve this role as long as the array-specific

technical noise is considered as one of the unmodeled factors. To

some extend, SVA can be viewed as an extension of the global

normalization, which normalizes the the observed expression

levels by removing just one factor, per-array mean expressions.

Normalization procedures are designed to remove technological

noise and improve the detection of differentially expression genes.

However, the testing power improvement from normalization

procedures may also come with a price. The performance of a

particular normalization procedure in terms of gene selection

power and type I error control is heavily influenced by the sample

size and true effect size of gene differentiation. Some efforts have

been made to evaluate different normalization procedures [16,22–

25], but few attempts have been made to systematically evaluate

the impact of sample size and effect size on the gene detection

performances of normalization procedures.

In this paper, we conduct a thorough study to evaluate the

performance of gene selection strategies which consist of four

normalization procedures (plus the case without normalization)

combined with three statistical tests and two MTPs, with various

combinations of sample sizes and effect sizes. It is well-known that

variance reduction always comes with the price of bias. We use this

bias-variance trade-off principle to study the theoretical statistical

properties of normalization procedures. Simulation and biological

data analyses are conducted to support the theoretical results in

the biological application. Based on our study, we make several

concluding points in the Section Discussion. Whenever possible,

we provide theoretical explanations to support these conclusions

based on a random effect model [15]. We hope these findings can

provide biomedical researchers with some practical guidance for

selecting the best gene selection strategy.

The following supporting materials are presented in File S1: 1. a

brief introduction of the N-test; 2. theoretical derivations for the

main results in the Methods Section; 3. additional simulation

results; 4. additional results of biological data analyses.

Methods

Model for Gene Expression Data
In this paper, we assume all expression levels are log-

tranformed. Additive (non-additive) noise are thus multiplicative

(non-multiplicative) noise in terms of the original expression levels.

For convenience, the words ‘‘gene’’ and ‘‘gene expression’’ are

used interchangeably to refer to these log-transformed random

variables.

Let c~A,B be two different phenotypic groups, m be the total

number of genes, and n be the number of arrays sampled from

each phenotypic group. Without loss of generality, phenotypic

group A is set to represent the phenotype of interest (usually the

disease or the treatment group) and group B the normal

phenotype. So up (down) regulation of a gene refers to its over

(under) expression in group A. We denote by yc
ij the observed

expression level of the ith gene recorded on the jth array sampled

from the cth phenotypic group. Conceptually speaking, the

variation of the observed expression, yc
ij , can be decomposed into

two sources: a) the biological variation of the ith gene pertain to

the jth sample, denoted by xc
ij (unobservable); b) the array-specific

noise due to imperfect measurement technology, denoted by ac
j

(unobservable).

We denote E yc
ijð Þ~mc

i and var( yc
ij)~s2

ic. For a given gene, its

true effect size, or the expected (geometric) mean difference of

expressions between two phenotypes, is written as ei : ~mA
i {mB

i .

We also assume that the (unobservable) true correlation coefficient

between two noise-free expression levels is rc
ij~ corr xc

i:,x
c
j:) and

the correlation coefficient between observed gene expressions i

and j is ~rrc
ij~ corr yc

i:,y
c
j:). For the biological data (see Section

‘‘Biological Data’’ and [26]) without any normalization proce-

dures, ~rrc
ij is very high. The sample mean of Pearson correlation

coefficients of all gene pairs computed from all three sets of

biological data (see Section ‘‘Analyzing Biological Data’’ for more

details) are close to 0.9. A histogram of such correlation

coefficients is provided as Figure S1 in File S1.

This high correlation may come from two sources [27]: a) the

biological correlation of the ith and jth gene rc
ij ; b) the

technological noise ac
j .

We divide genes into three sets:

N G0, the set of non-differentially expressed genes (abbreviated as

NDEGs). For all i[G0, ei : ~mA
i {mB

i ~0;

N Gz
1 , the set of up-regulated genes. For all i[Gz

1 , eiw0;

N G{
1 , the set of down-regulated genes. For all i[G{

1 , eiv0.

The set of differentially expressed genes (abbreviated as DEGs)

is the union of both up-regulated and down-regulated genes,

which is denoted by G1~Gz
1 |G{

1 . We write the size of these

gene sets by m0~DG0D, mz
1 ~DGz

1 D, m{
1 ~DG{

1 D, and m1~DG1D.
Apparently m1~mz

1 zm{
1 and m0zm1~m.

Normalization Procedures
The following normalization procedures are studied in this

paper:

1. Global normalization (GLOBAL): Subtract each element of

the data matrix by the mean over all gene expression signals on the

array to which this element belongs [13,14]. The normalized gene

expressions are:

y�cij ~yc
ij{�yyc

:j , ð1Þ

where �yyc
:j~

1
m

Pm
k~1 yc

kj and j~1,2, . . . ,n.

2. Rank normalization (RANK): Replace every gene expression

in one array by its rank in the (ascendingly) ordered array divided

by the total number of genes. Denote rc
ij as the rank of yc

ij in the

array to which it belongs, the normalized gene expressions are.

y�cij ~
rc

ij

m
: ð2Þ

This method was proposed by [15] and discussed further in [14].

3. Quantile normalization (QUANT): First, a reference array of

empirical quantiles, denoted as q~(q1,q2, . . . ,qm), is computed by

taking the average across all ordered arrays. Let

yc
(1),jƒyc

(2),jƒ � � �ƒyc
(m),j denote the ordered gene expression

observations in the jth array (j~1,2, . . . ,n) of the cth (c~A,B)

group, the rth (r~1,2, . . . ,m) element of this reference array is.

Bias-Variance Trade-Off in Normalization Procs
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qr~
1

2n

Xn

k~1

yA
(r),kz

Xn

l~1

yB
(r),l

 !
: ð3Þ

Next, the original expressions are replaced by the entries of the

reference array with the same rank. The normalized gene

expressions are.

y�cij ~qrc
ij
~

1

2n

Xn

k~1

yA
(rc

ij
),kz

Xn

l~1

yB
(rc

ij
),l

 !
: ð4Þ

We refer the reader to [16] for more details.

4. d-sequence (DELTA): Sort all genes by their sample

variances and denote the sorted array by (yc
o1j ,y

c
o2j , � � � ,yc

omj),

where ŝs2(yc
o1j)ƒŝs2(yc

o2j)ƒ � � �ƒŝs2(yc
omj). This step is to ensure

similar variances between two consecutive genes. Starting with the

first gene in the given gene ordering, record the differences

between two successive genes:

d�ckj ~yc
o2k{1j{yc

o2kj , ð5Þ

where k~1,2, . . . , m
2
. Here m is assumed to be an even number for

simplicity. More technical details can be found in [17,18]. One

interpretation of this step is that each gene is normalized by a

‘‘reference gene’’ with similar variance. This normalization is local

because it only involves one gene to normalize another. Next,

select candidate gene pairs by applying an appropriate hypothesis

test and an MTP to d�ckj . In order to make the d-sequence method

directly comparable to other methods, the following ad hoc method

was proposed [17] to ‘‘break the pairs’’. Starting with the second

gene in the given gene ordering, record the differences between

two successive genes (the last gene is paired with the first one).

Select another set of candidate gene pairs based on these new

differences. Report the intersection of the two gene sets (unpaired

genes) as a final list of differentially expressed genes. More details

can be found in [17,18].

5. Surrogate variable analyses (SVA): in this approach, the

observed gene expression is modeled as

yc
ij ~mc

i z
PL
l~1

cligljze�ij , ð6Þ

where glj represents an arbitrary function of the lth unmodeled

factor on the jth array,
PL

l~1 cliglj represents dependent variation

across genes due to those unmodeled factors, and e�ij represents the

‘‘true’’ independent noise that are specific to the ith gene and jth
array. The designing goal of SVA is to estimate and removePL

l~1 cliglj from the observed expression levels, so that the

subsequent statistical analysis will not be influenced by those

unmodeled factors.

Since
PL

l~1 cliglj is typically not directly observable, SVA uses

the following alternative model to remove the effects of unmodeled

factors

yc
ij~mc

i z
XK

k~1

lkihkjze�ij , ð7Þ

where hkj , k~1, . . . ,K , KƒL, are orthogonal vectors that span

the same linear subspace as gljs do.

Gene differential analysis based on SVA is typically done in this

way. In the first step, expression levels are fitted by two linear

models. The first one is a null model which only includes the

surrogate variables; the second one is a full model which includes

both surrogate variables and group labels. Two choices are

available: a) ordinary linear regression based on least squares; b) a

modified linear regression method implemented in LIMMA. An

F -test can then be used to test whether the group labels are

significant. More technical details can be found in [21].

Due to the nature of the SVA method, a combination of SVA

with linear regression is comparable to the two-sample t-test

together with other normalization methods; SVA/LIMMA is

comparable to LIMMA with other normalization procedures.

Since the SVA method is strongly tied with linear regression

methods, we chose not to combine Wilcoxon rank-sum test and N-

test with it in this study.

6. As a comparison, we also study the properties of gene

selection procedures without normalization (NONE).

The Bias-variance Trade-off of Normalization Methods
The choice of normalization procedure has a profound impact

on the subsequent analyses. It can alter both the testing power and

type I error of the gene selection procedure. In this section, we

evaluate the impact of various normalization procedures on testing

power and type I error control from the view point of bias-

variance trade-off.

To simplify theoretical derivation, we assume that the mean

expression levels in the normal phenotype (group B) are zeros

(mB
i ~0). This assumption implies that mA

i ~mB
i zei~ei. This

simplification is reasonable because all three hypothesis testing

procedures studied in this paper (t-test, Wilcoxon rank-sum test,

and N-test) are invariant under shift transformation, so the mean

difference between two groups, ei, is much more important than

the normal level of gene expressions. For derivation simplicity, we

also assume that the effect sizes of all up(down)-regulated genes are

the same. In summary, we have

E yc
ij

� �
~

ez c~A, i[Gz
1 ,

e{ c~A, i[G{
1 ,

0 c~A, i[G0,

0 c~B,

8>>><
>>>:

ð8Þ

where ez
w0 and e{

v0 are the effect sizes of up- and down-

regulated genes.

Below we list the bias increase and variance reduction induced

by normalization procedures. Theoretical derivations of these

results can be found in Section 2 of File S1.

Global normalization. By computing the expectation of

global normalized expressions for both phenotypes, we find that

the global normalization introduces a small bias

{ E �yy:j
c ~{

mz
1

ezzm{
1

e{

m
. More specifically, the expected mean

group difference for global normalized data are

E y�Aij {y�Bij

� �
~

ez{
mz

1
ezzm{

1
e{

m
, i[Gz

1 ,

e{{
mz

1
ezzm{

1
e{

m
, i[G{

1 ,

{
mz

1
ezzm{

1
e{

m
, i[G0:

8>>>><
>>>>:

ð9Þ

This is because genes are normalized with respect to the array

means, which is computed from both DEGs and NDEGs.

Bias-Variance Trade-Off in Normalization Procs

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e99380



GLOBAL can reduce the variance of gene expression.

Specially, if s2
ic&s2 and ~rrc

ij&r for all genes, we have

var (y�cij )&
m{1

m
s2(1{r)vs2,

which shows that the global normalization can reduce the variance

of expressions, especially when r is close to 1.

This variance reduction is confirmed in both simulations and

biological data analyses. In SIMU3 (see Section Simulation

Studies for more details) with sample size 10 and effect size 1.8, the

average sample variance of expression levels is 0.1286 before

global normalization and 0.01367 after. For the biological data

HYPERDIP with sample size 10, the average sample variances

before and after global normalization are 0.1514 and 0.01395,

respectively.

When
mz

1
zm{

1

m
, the proportion of DEGs among all genes, is

sufficiently small, the bias introduced by the global normalization

is negligible because

D
mz

1 ezzm{
1 e{

m
Dƒ

mz
1 zm{

1

m
max (ez,{e{):

Alternatively, this bias can be negligible if a) the numbers of up

and down regulated genes are similar (mz
1 &m{

1 ); b) up and down

regulations induce similar differential expression (ez&{e{). We

call this case the balanced differential expression structure henceforth. In

either case, we predict that the testing power will be improved

because the induced bias is small and the variances of global

normalized genes are reduced.

The bias effect can be substantial if the differential expression

structure is highly unbalanced. For example if most DEGs are up-

regulated (mz
1 &m{

1 , mz
1 &m1), the mean expression difference

for an up-regulated gene is reduced by
mz

1 ezzm{
1 e{

m
&

m1ez

m
after the global normalization. Based on these considerations, we

predict that the testing power in the balanced structure case will be

better than that in the unbalanced structure case.

From Equation 9, a false effect size {
mz

1 ez
1 zm{

1 e{

m
is

introduced by GLOBAL for the NDEGs. This false effect size can

become substantial when the effect size or the sample size

increases. As a result, we predict that many NDEGs will be falsely

declared as DEGs. We also predict that the resulted false positives

are more pronounced in unbalanced structure than in balanced

structure.

Quantile normalization. Like the global normalization, the

quantile normalization can also increase bias and reduce variance

of the gene expressions simultaneously.

We conduct thorough investigation of this bias and discover that

it comes from two different sources, namely the rank skewing effect

and the averaging effect (see Section 2, File S1). Based on our

derivations, the expected group differences for quantile normal-

ized expressions are

E y�Ai: {y�Bi:
� �

&

ez

2
{

mz
1

ezzm{
1

e{

2m
z

d1
2

, i[Gz
1 ,

e{

2
{

mz
1

ezzm{
1

e{

2m
z

d2
2

, i[G{
1 ,

{
mz

1
d1zm{

1
d2

2m0
{

mz
1

ezzm{
1

e{

2m
, i[G0:

8>>>>><
>>>>>:

ð10Þ

where d1~
1

mz
1

Pm
r~m{

1
zm0z1 E (yB

(r),:) and

d2~
1

m{
1

Pm{
1

r~1 E (yB
(r),:).

The effect size of DEGs decreases if ez and De{D are

substantially larger than both d1 and d2. Such effect size decrease

is confirmed in our simulation. Take SIMU3 (see Section

Simulation Studies for more details) with sample size 10 and true

effect size 1.8 as an example, the average sample mean difference

i~�yy�Ai: {�yy�Bi: for up(down)-regulated DEGs is 1.803 (–1.7966)

before quantile normalization and 0.9901 (–1.0383) after. The

average sample mean differences for NDEGs before and after

quantile normalization are 0.0034 and 20.0198, respectively.

The variance of y�cij is complex and deserves further theoretical

investigation. Empirical evidence shows that the quantile normal-

ization has very good variance reduction capability. For example,

the average sample variances of SIMU3 with sample size 10 and

effect size 1.8 before and after quantile normalization are 0.1286

and 0.06378, respectively. Similarly, the average sample variances

of biological data (HYPERDIP, sample size 10) before and after

quantile normalization are 0.1514 and 0.0086, respectively. The

variance reduction of GLOBAL is better than that of QUANT in

SIMU3 since GLOBAL is designed for additive noise structure.

On the other hand, the variance reduction of QUANT is better

than that of GLOBAL in real biological data since QUANT is

robust to non-additive noise structure.

Like the global normalization, the benefit of variance reduction

induced by the quantile normalization outweighs the adverse effect

of bias introduced by this procedure when ez, {e{, and n are

small. This can be seen from simulation results in Figures 1, 2, and

3(a, c). Take Figure 1 (a, c) as an example, the testing power with

quantile normalization increases as the effect size increases given

that the sample size is small. However, gene selection strategies

based on the quantile normalization is outperformed by those

without normalization when effect size reaches a certain point

(around effect size 1.4).

According to Equation (6) in File S1 and Equation (10), the

effect size of DEGs is reduced for both balanced and unbalanced

differential structures. For DEGs, their effect size after quantile

normalization has three parts: a)
ez

2
(up-regulated) or

e{

2
(down-

regulated); b) {
mz

1 ezzm{
1 e{

2m
; c)

d1

2
(up-regulated) or

d2

2
(down-

regulated). The first part is clearly independent of the structure of

differential expression. The third part is small as compared to the

other two parts according to Equation (6) in File S1. The second

part is negligible for balanced differential structure but can be

substantial for unbalanced differential structure. For example, if

mz
1 &m{

1 , {
mz

1 ezzm{
1 e{

2m
&{

m1ez

2m
. Consequently, we pre-

dict that the testing power for data with balanced differential

structure is better than those with unbalanced differential

structure.

For NDEGs, the quantile normalization introduces a bias

E (y�Aij ){ E (y�Bij )&{
mz

1 d1zm{
1 d2

2m0
{

mz
1 ezzm{

1 e{

2m
based on

Equation (10). This bias is more pronounced in an unbalanced

structure. With large effect size or sample size, this bias can lead to

nontrivial false positives.

Rank normalization. Compared with the quantile normal-

ization, the rank normalization goes even further in the

nonparametric direction. Based on derivations in Section 2 of

File S1, the expected group expression differences for rank

normalized expressions have the following approximation

Bias-Variance Trade-Off in Normalization Procs
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E y�Ai: {y�Bi:
� �

&

1
2
{

mz
1

2m
i[Gz

1 ,
m{

1
2m

{ 1
2

i[G{
1 ,

{
mz

1
zm{

1
2m

i[G0:

8>>>><
>>>>:

ð11Þ

From Equation (11), RANK introduces a bias

E y�Aij ){ E( y�Bij )&{
mz

1 zm{
1

2m
. This small bias is nonzero in

an unbalanced structure, which can lead to nontrivial false

positives when the sample size is large.

In a highly unbalanced gene differential expression structure,

for example mz
1 &m{

1 , the expected difference for up-regulated

genes is approximately
m0

2m
which is smaller than the expected

difference in the balanced structure (
m0zm{

1

2m
). Therefore we

predict that the testing power in a balanced structure is higher

than that in an unbalanced structure.

The variance reduction effect of RANK comes from a very

different mechanism as compared to the other normalization

procedures. It removes the variance of noise by only preserving the

ordering of observations.

d-sequence method. The bias increasing effects of DELTA
comes from the imperfect ‘‘pair-breaking’’ method. Due to the

nature of DELTA, a pairing breaking method must be used to

produce list of individual DEGs. Specifically, a gene is labeled as

DEG only if it belongs to two significant gene pairs. On average,

the probability of a given NDEG to be paired with a DEG twice is

approximately
m2

1

m2
. When this relatively rare event happens, an

Figure 1. Number of true (a,c) and false (b,d) positives as functions of effect size (SIMU1). Total number of genes is m~1000. Total
number of truly differentially expressed genes is mz

1 zm{
1 ~100, where mz

1 and m{
1 are the numbers of up- and down-regulated genes, respectively.

The sample size is n~10. t-test and Bonferroni procedure are applied. Adjusted p-value threshold: 0.05.
doi:10.1371/journal.pone.0099380.g001
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artificial bias will very likely cause it to be mis-classified as DEG

[17,18]. This effect is confirmed in the simulation studies.

The variance reduction effects of DELTA come from the gene

pairing and subtraction. This variance reduction is confirmed in

both simulation studies and real data analyses. As an example, the

average sample variances of data SIMU3 with sample size 10 and

true effect size 1.8 before and after d-sequence procedure are

0.1224 and 0.0232, respectively. Similarly, the average sample

variances of biological data (HYPERDIP, sample size 10) before

and after d-sequence procedure are 0.1514 and 0.0237, respec-

tively. Figures 1 and 2 (a, c) show that the d-sequence method

improves the testing power compared with the non-normalized

case when the sample size and effect size are both small, but the

improvement is not as good as other normalization procedures. In

a balanced structure, the expected expression difference can be as

large as 2e compared to the maximum expected difference e in an

unbalanced structure. Thus the testing power in a balanced

structure is better than that in an unbalanced structure, ceteris

paribus. When the sample size or effect size becomes large, the

testing power of d-sequence method can only reach approximately

80%, which is determined by
mz

1 zm{
1

m
, the proportion of DEGs

among all genes. More details can be found in [17,18].

Unlike other normalization procedures (GLOBAL, QUANT,

and RANK), we predict that strategies based on DELTA produce

a stable number of false positives approximately equal to m0
m2

1

m2
,

which is independent of either the sample size or the effect size. This

property of DELTA can be attractive when the effect size or the

sample size is large.

Surrogate variable analysis method. Since the SVA

method is based on a complex linear model (Equation (7)), direct

Figure 2. Number of true (a,c) and false (b,d) positives as functions of sample size (SIMU2). Total number of genes is m~1000. Total
number of truly differentially expressed genes is mz

1 zm{
1 ~100, where mz

1 and m{
1 are the numbers of up- and down-regulated genes, respectively.

The effect size is e~0:2. t-test and Bonferroni procedure are applied. Adjusted p-value threshold: 0.05.
doi:10.1371/journal.pone.0099380.g002
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derivation of mathematical expectation and variance of normal-

ized expressions are difficult and deserve further investigation.

Empirical evidences show that when combined with differential

expression analysis, SVA increases statistical power while intro-

duce more false positives. This empirical finding is consistent with

the bias-variance trade-off effect of other normalization proce-

dures.

Hypothesis Testing Methods and Multiple Testing
Procedures

We apply the following tests to the normalized data to compute

unadjusted p-values (pi, 1ƒiƒm):

1. t-test (t).

2. A moderated F -test implemented in R/BioConductor package

LIMMA [28] (LIMMA).

3. Wilcoxon rank-sum test (Wilcox).

4. N-test, a permutation test based on N-statistics with Euclidean

kernel (Nstat).

The third test is a multivariate nonparametric test which has

been successfully used to select differentially expressed genes and

gene combinations [14,29–31], differentially associated genes

[32,33], and synergistic modulators [34]. A brief introduction of

the N-test can be found in Section 1 of File S1.

In order to control Type I errors, a suitable multiple testing

procedure (MTP) must be applied to pi to compute adjusted p-

values. The following two widely used MTPs are employed in this

paper:

Figure 3. Number of true (a,c) and false (b,d) positives as functions of sample size (SIMU3). Total number of genes is m~1000. Total
number of truly differentially expressed genes is mz

1 zm{
1 ~100, where mz

1 and m{
1 are the numbers of up- and down-regulated genes, respectively.

The effect size is e~1:8. t-test and Bonferroni procedure are applied. Adjusted p-value threshold: 0.05.
doi:10.1371/journal.pone.0099380.g003
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1. Bonferroni procedure (BONF): The adjusted p-values are

~ppi~ min (mpi,1): This procedure controls the familywise error

rate (FWER).

2. Benjamini-Hochberg procedure (BH): Let pr1
ƒpr2

ƒ � � �ƒprm

be the ordered raw p-values. The adjusted p-values are

~ppri
~ mink~i,...,m min

m

k
prk

,1
� �n o

: This procedure controls

FDR, the false discovery rate [6].

We present our results based on t-test and Bonferroni procedure

in the main text. The results of other hypothesis testings and MTPs

are similar and provided in Tables S1–S9 of File S1.

Biological Data
The biological dataset used in this study is the childhood

leukemia dataset from the St. Jude Children’s Research Hospital

database [26]. We select three groups of data: 88 patients (arrays)

with hyperdiploid acute lymphoblastic leukemia (HYPERDIP),

79 patients (arrays) with a special translocation type of acute

lymphoblastic leukemia(TEL) and 45 patients (arrays) with a T

lineage leukemia (TALL). Since the original probe set definitions

in Affymetrix GeneChip data are known to be inaccurate [35], we

update them by using a custom CDF file to produce values of gene

expressions. The CDF file was downloaded from http://

brainarray.mbni.med.umich.edu. Each array is represented by

an array reporting the logarithm (base 2) of expression level on the

set of 9005 genes.

Results

Simulation Studies
To match the statistical properties of real gene expression more

closely and mimic other noise sources such as non-additive noise,

we apply resampling method to the biological data to construct the

main simulated data, denoted by SIMU-BIO, as follows. We

apply t-test to HYPERDIP and TEL (79 slides chosen from each

set) without any normalization procedure or multiple testing

adjustment. Under the significance level 0.05, 734 genes are

declared to be DEGs with an unbalanced differential expression

structure (677 up-regulated and 57 down-regulated). We record

the mean difference across HYPERDIP and TEL for each DEG

as its effectwww.ixinyiwu.com size (ei). Then, we combine

HYPERDIP and TEL data and randomly permute the slides.

After that, we randomly choose 2n slides and divide them into two

groups A and B of n slides each, mimicking two biological

conditions without differentially expressed genes. Here the sample

size n takes value in 10,20,40,60,79f g. Finally, we add the

recorded effect sizes to 734 genes (identified earlier) in group A.

These 734 genes are defined as the DEGs in this simulation.

Similarly, we test phenotypic differences between TALL and TEL
(45 slides chosen from each set) and discover 546 DEGs with a

balanced differential expression structure (259 up-regulated and

287 down-regulated). We then apply the above resampling

procedure to create simulated data with sample size n takes value

in 10,20,30,40,45f g.
In addition, we conduct several simulation studies based on a

widely adopted random effect model used in [15,36–38]:

yc
ij~xc

ijzac
j , i~1,2, . . . ,m; j~1,2, . . . ,n, c~A,B: ð12Þ

In this model, aj represents variation that is the same for every

gene and specific to the jth array. While it is known that log

transformation stabilizes variance for microarray data, more

advanced variance stabilization transformation techniques

[39,40] can achieve better uniformity of gene-specific variation.

These simulated data can help us to gain better insight into the

performance of different normalization procedures. First, we

simulate several sets of data with additive noise based on a Each

set of data has two groups of n arrays representing gene

expressions under two phenotypic groups (group A and B). Each

array has m~1000 genes. For both groups, all genes are normally

distributed with standard deviation s~0:35 which is estimated

from the biological data. The number of NDEGs and DEGs are

set to be m0~900 and m1~100, respectively. The correlation

coefficient between every two distinct genes is set to be ~rr~0:9,

which is estimated from the biological data. For simplicity, we use

the same effect size for up and down regulation (ez~{e{~e).

We generate three sets of simulated data with the following

configurations.

N SIMU1: The expectations of DEGs in group A (xA
ij ,

i~1,2, . . . ,mz
1 zm{

1 , j~1,2, . . . ,n) are set to be a constant

e for over-expressed genes (i~1, . . . ,mz
1 ) and {e for under-

expressed genes (i~mz
1 z1, . . . ,100). Here the effect size e

takes value in 0:2,0:6,1:0,1:4,1:8f g. (mz
1 ,m{

1 ) is set to be

either (60,40) (balanced differential expression structure) or

(90,10) (unbalanced differential expression structure). The

lower and upper bounds 0:2 and 1:8 are both estimated from

the biological data, so are the proportions of over and under-

expressed genes. For all genes in group B and NDEGs in

group A, their expectations are set to be 0. We use SIMU1 to

study the impact of different effect sizes on gene normalization

procedures when the sample size is fixed and relatively small. e

is the tuning parameter of these data sets.

N SIMU2: The expectations of DEGs in group A are set to be

ez~e~0:2 and e{~{e~{0:2 for over and under-

expressed genes, respectively. (mz
1 ,m{

1 ) is set to be (60,40)

and (90,10). For all genes in group B and NDEGs in group A,

their expectations are set to be 0. The sample size n takes value

in 10,40,70,100,400f g. We use SIMU2 to study the impact of

different sample sizes on gene normalization procedures when

the effect size is fixed and relatively small. n is the tuning

parameter of these data sets.

N SIMU3: These datasets have the same configuration as

SIMU2 except that the expectations of DEGs in group A are

set to be 1:8 and {1:8 for over and under-expressed genes,

respectively. We use SIMU3 to study the impact of different

sample sizes on gene normalization procedures when the effect

size is fixed and relatively large. n is the tuning parameter of

these data sets.

We randomly generate 20 sets of data per tuning parameter for

SIMU-BIO, SIMU1, SIMU2, and SIMU3. We apply normal-

ization procedures first and then conduct hypothesis tests to obtain

raw p-values. After that, we apply multiple testing procedures to

get adjusted p-values. We declare a gene to be differentially

expressed if its adjusted p-value is less than a prespecified

significance level 0:05. The estimated average true/false positives

of each normalization procedure with t-test and BONF MTP are

presented in Figures 4, 1, 2, and 3. To better understand the trade-

off between true and false positives, receiver operating character-

istic (ROC) curves of gene selection strategies based on different

normalization methods are presented in Figure 5. More thorough

results are presented as Tables S1–S8 in File S1.
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Analyzing Biological Data
We apply the aforementioned gene selection strategies to detect

differentially expressed genes across three different microarray

datasets (HYPERDIP, TEL and TALL). The numbers of

positives with t-test and BONF are presented in Figure 6 and

Table S9 in File S1.

Most results agree with what we observe in the simulation

studies. The results are conspicuous in that the numbers of

detected DEGs become very large when n is large (n~45 or

n~79). Such a large number of positives may indicate the

associated strategies failed to control the familywise error rate at its

nominal level (a~0:05).

As observed in the simulation studies, gene selection strategies

with normalization procedures detect more DEGs than those

without normalization. For TALL vs. TEL, the strategies with

QUANT and RANK detect more DEGs than those with

GLOBAL. This observation suggests that the technical noise

may not be purely additive and is consistent with what we observe

in SIMU-BIO. Among four normalization procedures, SVA
produces the largest number of postives and DELTA is the most

conservative one. Based on our simulation results, we think it is

reasonable to believe that the d-sequence method has relatively

better control of type I errors.

Discussion

It is well known that many undesirable systematic variations are

observed in high-throughput genomic data. There are many

choices of normalization procedures to remove systematic noise.

The properties of these normalization procedures are closely

Figure 4. Number of true (a,c) and false (b,d) positives as functions of sample size (SIMU-BIO). Total number of genes is m~9005. Total
numbers of truly differentially expressed genes are mz

1 zm{
1 ~546 for balanced structure and mz

1 zm{
1 ~734 for unbalanced structure, where mz

1

and m{
1 are the numbers of up- and down-regulated genes, respectively. t-test and Bonferroni procedure are applied. Adjusted p-value threshold:

0.05.
doi:10.1371/journal.pone.0099380.g004
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related to the structure of differential gene expression and sample

size.

In this study, we find that all four normalization procedures can

reduce the variances and covariances of gene expressions so that

the statistical power of the subsequent gene selection procedures

may be improved. However, they also introduce certain biases

which may cause more Type I errors and/or reduce testing power

in certain situations. This bias-variance trade-off is common in

many different branches of statistics. We found that gene selection

strategies based on GLOBAL seem to have the best testing power

for data generated from a Gaussian model. However, when the

effect size is large, they produce far more false positives than which

are permitted by the nominal significance level of Type I errors,

especially when the gene differential expression structure is

unbalanced (mz
1 ~90, m{

1 ~10). Gene selection strategies based

on QUANT and RANK still have good control of Type I error

while retaining reasonable testing power. In addition, sometimes

they help detect more DEGs in SIMU-BIO, which suggests that

these two normalizations work better than GLOBAL when the

technical noise is not entirely additive (in the log-scale). Overall,

gene selection strategies based on NONE (without normalization)

have very good control of type I errors, but their statistical power

are poor and the variability of results (in terms of the standard

deviations of the true/false discoveries) are larger. One explana-

tion of this phenomenon is that all normalization procedures

reduce the variability caused by the ac
j term, which quantifies the

array-specific variation, from Model (12), thus increase the signal-

to-noise ratio of the normalized expressions. It is known [27] that

large ac
j term induces high intergene correlation. Consequently,

when the intergene correlation of non-normalized expressions is

low, NONE has better statistical power. As a comparison, we

reduced ~rr~0:9 to ~rr~0:75 in SIMU1 and applied the same gene

selection strategies as before. The true/false positives produced by

gene selection strategies based on normalized data are almost

identical to those produced from the original SIMU1 data; but

NONE has slightly better power. For example, with true effect size

1.0 and 60 up regulated genes, the mean number of true positives

detected by t-test and Bonferroni procedure increases from 84.15

to 86.95.

Figure 5. Comparing the performance of normalization procedures by receiver operating characteristic curves. Data used: SIM-BIO
with n~45 for (a) and n~79 for (b). Total number of genes is m~9005. Total numbers of truly differentially expressed genes are mz

1 zm{
1 ~546 for

balanced structure and mz
1 zm{

1 ~734 for unbalanced structure, where mz
1 and m{

1 are the numbers of up- and down-regulated genes,
respectively. t-test and Bonferroni procedure are applied.
doi:10.1371/journal.pone.0099380.g005

Figure 6. Number of detected DEGs as a function of sample size. (a): TALL versus TEL; (b) HYPERDIP versus TEL. Total number of genes is
m~9005. t-test and Bonferroni procedure are applied. Adjusted p-value threshold: 0.05.
doi:10.1371/journal.pone.0099380.g006
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Among all normalization procedures, we found that DELTA is

the most robust one. The numbers of false positives produced by

the d-sequence are very consistent for all sample sizes and effect

sizes. Its testing power never reaches 100%, however. As a

comparison, gene selection strategies without normalization have

better performance in terms of testing power and Type I error

control compared with their counterparts with normalization

when the sample size is large and/or the effect size is large.

Compared with other normalization procedures, SVA produces

very unstable results. Take Figure 4 (SIMU-BIO) as an example,

the testing power related with SVA is very good (especially for the

unbalanced data), but it produces far too many false positives in

several occasions. Similar unstable behavior of SVA can be

observed in Figures 1, 2, and 3.

Another notable result is that gene selection procedures based

on normalizations have better power while retaining less or

comparable false positives when the gene differential expression

structure is balanced.

We also compare the performance of different normalization

procedures by ROC curves. ROC curves represent the balance of

true and false positives detected at different significance level and is

most relevant if the primary goal of expression analysis is to select

a fixed number of ‘‘top genes’’ instead of using a formal MTP to

control type I error. In Figure 5, QUANT and RANK have the

best performance when the differential expression structure is

balanced; GLOBAL is the clear winner otherwise. NONE is more

attractive when the differential expression structure is unbalanced.

DELTA has poor performance compared with other options.

GLOBAL seems to have the best overall performance for both

cases.

Based on these results, our main conclusions can be summarized

as follows.

1. We recommend applying normalization when the sample size

is relatively small (nv10 per-group). Failing to do so may lead

to dismal statistical power and high variability of results.

Cautions still need to be used in this case because some

normalization procedures are more susceptible to large

phenotypic changes and/or non-additive noise. If unsure, we

recommend quantile or rank normalization because they are

more robust to these factors.

2. We only recommend global normalization if either a) the

statistical power is too low (too few DEGs are identified) and

the differential expression structure (in terms of up/down

regulated genes) is balanced; b) the goal is to select a fixed

number of ‘‘top genes’’.

3. For large sample data, we recommend conducting differential

expression analysis without normalization first. If the statistical

power is adequate and a reasonably high percentage (w5%) of

genes are selected as DEGs, we recommend no further

normalization. This is because if the power is adequate, the

advantage of variance-reduction provided by normalization

procedures could be out-weighted by the bias and thus the

inflation of false positives induced by these procedures. If the

statistical power is too low, a robust normalization such as rank

or d-sequence normalization is recommended.

4. The d-sequence method can serve as a robust normalization

candidate when either sample size is large or dramatic

phenotypic changes are expected.

We think similar analysis can be applied to models which

characterize systematic noise sources in other ways. Though we

choose to focus on the Affymetrix GeneChip platform throughout

this paper, our conclusions should be valid for other array

platforms which require/recommend normalization, such as

Affymetrix exon-arrays [41,42], Illumina BeadChip arrays [43–

45], Illumina transcriptome sequencing (mRNA-Seq) data [46],

Illumina Infinium whole genome genotyping (WGG) arrays [47],

Solexa/Illumina deep sequencing technology [48], and many

others.

In a sense, between-array variation can be considered as a

special form of batch-effect, in which one ‘‘batch’’ consists of just a

single array. In this way, several pre-processing procedures that

are designed to remove batch effects, such as RUV-2 [49],

ComBat [50], can be used in place of normalization procedures.

Further investigations are required to fully understand the utility of

these procedures when used for normalization, especially in large-

scale studies.

We focus on post-summarizing normalization procedures in this

study because it is easier to derive the asymptotic bias and variance

formula based on a random effect model. In practise, many

normalization procedures are applied before the summarization

step, which makes theoretical derivation of the bias-variance trade-

off difficult. Nevertheless, we think the same principle can be

applied to those normalization procedures and further investiga-

tions are warranted. We hope this study can help biological

researchers choose an appropriate gene selection procedure.

Understanding both advantages and disadvantages of different

gene selection strategies may also help the development of new

normalization procedures, hypothesis tests and MTPs.

Supporting Information

File S1 Supporting tables and figures. Table S1. The

impact of different effect sizes e on gene selection strategies when

the sample size n is fixed and relatively small. Mean (STD) of true
positives computed from SIMU1 with 20 repetitions are

reported. Sample size: n~10. Total number of genes: 1000.

Number of differentially expressed genes: 100. Number of

permutations for Nstat: 10000. The significance threshold: 0.05.

Table S2. The impact of different effect sizes e on gene selection

strategies when the sample size n is fixed and relatively small.

Mean (STD) of false positives computed from SIMU1 with 20

repetitions are reported. Sample size: n~10. Total number of

genes: 1000. Number of differentially expressed genes: 100.

Number of permutations for Nstat: 10000. The significance

threshold: 0.05. Table S3. The impact of different sample sizes n
on gene selection strategies when the effect size e is fixed and

relatively small. Mean (STD) of true positives computed from

SIMU2 with 20 repetitions are reported. Effect size: e~0:2. Total

number of genes: 1000. Number of differentially expressed genes:

100. Number of permutations for Nstat: 10000. The significance

threshold: 0.05. Table S4. The impact of different sample sizes n
on gene selection strategies when the effect size e is fixed and

relatively small. Mean (STD) of false positives computed from

SIMU2 with 20 repetitions are reported. Effect size: e~0:2. Total

number of genes: 1000. Number of differentially expressed genes:

100. Number of permutations for Nstat: 10000. The significance

threshold: 0.05. Table S5. The impact of different sample sizes n
on gene selection strategies when the effect size e is fixed and

relatively large. Mean (STD) of true positives computed from

SIMU2 with 20 repetitions are reported. Effect size: e~1:8. Total

number of genes: 1000. Number of differentially expressed genes:

100. Number of permutations for Nstat: 10000. The significance

threshold: 0.05. Table S6. The impact of different sample sizes n
on gene selection strategies when the effect size e is fixed and

relatively large. Mean (STD) of false positives computed from

SIMU2 with 20 repetitions are reported. Effect size: e~1:8. Total

Bias-Variance Trade-Off in Normalization Procs

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e99380



number of genes: 1000. Number of differentially expressed genes:

100. Number of permutations for Nstat: 10000. The significance

threshold: 0.05. Table S7. The impact of different sample sizes n
on gene selection strategies with simulation based on biological

data. Mean (STD) of true positives computed from SIMU-BIO
with 20 repetitions are reported. Total number of genes: 9005.

Number of permutations for Nstat: 100000. The significance

threshold: 0.05. Table S8. The impact of different sample sizes n
on gene selection strategies with simulation based on biological

data. Mean (STD) of false positives computed from SIMU-
BIO with 20 repetitions are reported. Total number of genes:

9005. Number of permutations for Nstat: 100000. The signifi-

cance threshold: 0.05. Table S9. The numbers of differentially

expressed genes detected by different selection strategies. Total

number of genes: 9005. Number of permutations for Nstat:

100000. The significance threshold: 0.05. Figure S1. Histogram

of pairwise Pearson correlation coefficients between genes

computed from HYPERDIP without normalization. Number of

genes: 9005. Number of arrays: 88.

(PDF)

Acknowledgments

We thank Dr. Hulin Wu for his invaluable suggestions. We appreciate Ms.

Christine Brower’s technical assistance with computing. In addition, we

would like to thank Ms. Malora Zavaglia and Ms. Jing Che for their

proofreading effort.

Author Contributions

Conceived and designed the experiments: XQ. Performed the experiments:

XQ RH. Analyzed the data: XQ RH. Wrote the paper: XQ RH ZW.

Contributed equally to the theoretical derivations of the large-sample

properties of normalization procedures: XQ RH ZW.

References

1. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays

applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–

5121.

2. Sidak Z (1967) Rectangular confidence regions for the means of multivariate

normal distributions. Journal of the American Statistical Association 62: 626–

633.

3. Holm S (1979) A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics 6: 65–70.

4. Simes R (1986) An improved bonferroni procedure for multiple tests of

significance. Biometrika 73: 751.

5. Westfall PH, Young SS (1993) Resampling-Based Multiple Testing. Wiley, New

York.

6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical

Society: Series B 57: 289–300.

7. Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for

identifying differentially expressed genes in replicated cdna microarray

experiments. Statistica Sinica 12: 111–139.

8. Lee MLT (2004) Analysis of Microarray Gene Expression Data. Springer, New

York.

9. Bremer M, Himelblau E, Madlung A (2010) Introduction to the statistical

analysis of two-color microarray data. Methods Mol Biol 620: 287–313.

10. Yakovlev AY, Klebanov L, Gaile D (2010) Statistical Methods for Microarray

Data Analysis. Springer, New York.

11. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA (2001) Maximum

likelihood estimation of optimal scaling factors for expression array normaliza-

tion. SPIE BIOS.

12. Scherer A (2009) Batch Effects and Noise in Microarray Experiments: Sources

and Solutions. Wiley.

13. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, et al. (2002) Normalization for

cdna microarray data: a robust composite method addressing single and multiple

slide systematic variation. Nucleic Acids Res 30: e15.

14. Szabo A, Boucher K, Carroll W, Klebanov L, Tsodikov A, et al. (2002) Variable

selection and pattern recognition with gene expression data generated by the

microarray technology. Mathematical Biosciences 176: 71–98.

15. Tsodikov A, Szabo A, Jones D (2002) Adjustments and measures of differential

expression for microarray data. Bioinformatics 18: 251–260.

16. Bolstad B, Irizarry R, Astrand M, Speed T (2003) A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

17. Klebanov L, Qiu X, Yakovlev A (2008) Testing differential expression in non-

overlapping gene pairs: A new perspective for the empirical Bayes method.

Journal of Bioinformatics and Computational Biology 6: 301–316.

18. Klebanov L, Yakovlev A (2008) Diverse correlation structures in gene expression

data and their utility in improving statistical inference. Annals of Applied

Statistics 1: 538–559.

19. Quackenbush J (2002) Microarray data normalization and transformation. Nat

Genet 32 Suppl: 496–501.

20. Bilban M, Buehler LK, Head S, Desoye G, Quaranta V (2002) Normalizing dna

microarray data. Curr Issues Mol Biol 4: 57–64.

21. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by

surrogate variable analysis. PLoS Genetics 3: e161.

22. Park T, Yi S, Kang S, Lee S, Lee Y, et al. (2003) Evaluation of normalization

methods for microarray data. BMC Bioinformatics : 4: 33.

23. Rao Y, Lee Y, Jarjoura D, Ruppert AS, Liu CG, et al. (2008) A comparison of

normalization techniques for microrna microarray data. Stat Appl Genet Mol

Biol 7: Article22.

24. Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, et al. (2009) Impact of

normalization on mirna microarray expression profiling. RNA 15: 493–501.

25. Qiu X, Wu H, Hu R (2013) The impact of quantile and rank normalization

procedures on the testing power of gene differential expression analysis. BMC

bioinformatics 14: 124.

26. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, et al. (2002)

Classification, subtype discovery, and prediction of outcome in pediatric acute

lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

27. Qiu X, Brooks AI, Klebanov L, Yakovlev A (2005) The effects of normalization

on the correlation structure of microarray data. BMC Bioinformatics 6: 120.

28. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R,

Carey V, Dudoit S, Irizarry R, Huber W, editors, Bioinformatics and

Computational Biology Solutions Using R and Bioconductor, New York:

Springer. 397–420.

29. Szabo A, Boucher K, Jones D, Tsodikov AD, Klebanov LB, et al. (2003)

Multivariate exploratory tools for microarray data analysis. Biostatistics 4: 555–

567.

30. Xiao Y, Frisina R, Gordon A, Klebanov L, Yakovlev A (2004) Multivariate

search for differentially expressed gene combinations. BMC Bioinformatics 5:

164.

31. Klebanov L, Gordon A, Xiao Y, Land H, Yakovlev A (2005) A permutation test

motivated by microarray data analysis. Computational Statistics and Data

Analysis.

32. Hu R, Qiu X, Glazko G, Klebanov L, Yakovlev A (2009) Detecting intergene

correlation changes in microarray analysis: a new approach to gene selection.

BMC Bioinformatics 10: 20.

33. Hu R, Qiu X, Glazko G (2010) A new gene selection procedure based on the

covariance distance. Bioinformatics 26: 348–354.

34. McMurray HR, Sampson ER, Compitello G, Kinsey C, Newman L, et al.

(2008) Synergistic response to oncogenic mutations defines gene class critical to

cancer phenotype. Nature 453: 1112–1116.

35. Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/

transcript definitions significantly alter the interpretation of GeneChip data.

Nucleic Acids Res 33: e175.

36. Ni TT, Lemon WJ, Shyr Y, Zhong TP (2008) Use of normalization methods for

analysis of microarrays containing a high degree of gene effects. BMC

Bioinformatics 9: 505.

37. Qin LX, Satagopan JM (2009) Normalization method for transcriptional studies

of heterogeneous samples–simultaneous array normalization and identification

of equivalent expression. Stat Appl Genet Mol Biol 8: Article 10.

38. Ogunnaike BA, Gelmi CA, Edwards JS (2010) A probabilistic framework for

microarray data analysis: fundamental probability models and statistical

inference. J Theor Biol 264: 211–222.
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