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Abstract

Aim

Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) is a

modification of two-stage hepatectomy profitable for patients with inoperable hepatic tumors

by standard techniques. Unfortunately, initially poor postoperative outcome was associated

with ALPPS, in which mitochondrial dysfunction played an essential role. Inhibition of cyclo-

philins has been already proposed to be efficient as a mitochondrial therapy in liver dis-

eases. To investigate the effect of Cyclophilin D (CypD) depletion on mitochondrial function,

biogenesis and liver regeneration following ALPPS a CypD knockout (KO) mice model was

created.

Methods

Male wild type (WT) (n = 30) and CypD KO (n = 30) mice underwent ALPPS procedure. Ani-

mals were terminated pre-operatively and 24, 48, 72 or 168 h after the operation. Mitochon-

drial functional studies and proteomic analysis were performed. Regeneration rate and

mitotic activity were assessed.

Results

The CypD KO group displayed improved mitochondrial function, as both ATP production (P

< 0.001) and oxygen consumption (P < 0.05) were increased compared to the WT group.

The level of mitochondrial biogenesis coordinator peroxisome proliferator-activated receptor

γ co-activator 1-α (PGC1-α) was also elevated in the CypD KO group (P < 0.001), which

resulted in the induction of the mitochondrial oxidative phosphorylation system. Liver growth

increased in the CypD KO group compared to the WT group (P < 0.001).
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Conclusions

Our study demonstrates the beneficial effect of CypD depletion on the mitochondrial vulner-

ability following ALPPS. Based on our results we propose that CypD inhibition should be fur-

ther investigated as a possible mitochondrial therapy following ALPPS.

1. Introduction

For patients with liver cancer the main restricting factor of curative resection is currently the

insufficient volume of future liver remnant (FLR) following surgery, which could lead to fatal

outcome by inducing post-hepatectomy liver failure [1]. Associating Liver Partition and Portal

vein ligation for Staged hepatectomy (ALPPS) is a modification of two-stage hepatectomy,

which could enhance a robust and rapid liver growth, offering the possibility of curative ther-

apy for patients that are considered inoperable by conventional two-stage hepatectomy. Apart

from the remarkable advantages, initially high morbidity (up to 80.6 percent) and mortality

rates (up to 28.7 percent) were associated with ALPPS [2]. Since then, due to better patient

selection and technical modifications these rates decreased [3], however the underlying patho-

mechanism is still unclear.

Besides of the rapid increase of the liver volume, there may be a lagging functional recovery

following ALPPS [4]. According to our previous studies [5,6], impaired mitochondrial func-

tion and biogenesis could explain the inadequate functional regeneration. Comparing ALPPS

to conventional two-stage hepatectomy, we found that while mitochondrial function and

mitochondrial biogenesis pathway coordinator peroxisome proliferator-activated receptor γ
co-activator 1-α (PGC1-α) along with its transcription factor Nuclear Respiratory Factor

(NRF) 1 were preserved after conventional two-stage hepatectomy, they decreased and

remained impaired after ALPPS. This, along with the robust energy-demanding regeneration

led to an energetic imbalance [5]. Proceeding with our studies on mitochondrial function after

ALPPS, we demonstrated that preoperative exercise applied as physical prehabilitation could

significantly enhance mitochondrial function and biogenesis along with an even more power-

ful regeneration [6].

According to the above, improving mitochondrial dysfunction could help achieve better

outcomes following ALPPS. The inhibition of Cyclophilin D (CypD) has recently been intro-

duced as a mitochondrial therapy in liver diseases [7]. CypD protein (encoded by the Peptidyl-
prolyl cis-trans isomerase F gene (Ppif)) is located in the matrix of the mitochondria, acting as a

key regulator in the opening of the mitochondrial permeability transition pore (mPTP) [8,9].

mPTP is a mitochondrial calcium efflux channel and its persistent opening results in deregu-

lated release of calcium and pro-apoptotic factors (i.e. cytochrome c) from the mitochondria

triggering the activation of caspases and leading to apoptotic cell death [7,10]. As apoptosis

plays a vital part in liver regeneration after two-stage hepatectomies [11], we hypothesized that

the modification of mPTP opening could have a considerable effect on the induced hepatic

regeneration. An additional consequence of the non-regulated opening of mPTP is the non-

specific transport of aqueous solutes up to a molecular weight of 1500 Da, which results in the

depolarization of mitochondria and consequently to the failure of the oxidative phosphoryla-

tion [9]. It was already demonstrated that the inhibition of CypD with cyclosporine derivatives

could reduce hepatic ischemic injury [12,13], moreover it is important in ischemic-precondi-

tioning [14]. Clinical evidence was also obtained that CypD inhibition could reduce liver cell

damage following hepatitis-C infection [15], and quarter-size liver transplantation [16]. These

investigations advocate that CypD inhibition could be a therapeutic approach in cell-death-
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associated diseases. However, to our knowledge there is no literature data on the effect of

CypD inhibition following ALPPS. Therefore, we used a CypD knockout (Ppif -/-) mice model

to investigate how it affects liver regeneration and mitochondrial function following ALPPS.

2. Materials and methods

All experiments were reported in accordance with the ARRIVE criteria and were approved by

the Scientific Ethical Committee on Animal Experimentation of the National Department of

Food Chain Safety (approval number: PEI/001/1732-6/2015). Mice heterozygous for the gene

encoding CypD (originating from the C57Bl6/J strain) were obtained from the Dana-Faber

Cancer Institute. CypD -/- knockout mice were achieved by mating with C57Bl6/F mice in our

facilities and afterwards backcrossing with C57Bl6/J mice for at least eight generations to

ensure homologous genetic background. The animals were provided ad libitum access to stan-

dard chow (Toxicoop, Hungary) with a temperature (20–22˚C) and humidity (40–70%) con-

trolled environment and were kept on a 12-hour day-night cycle.

2.1. Operative procedure

Male wild type (WT) BL6/jk (n = 30) and CypD knockout (KO) (n = 30) mice weighing 22–26

g underwent ALPPS procedure. Following 2.5 v/v% with 1 L/min flow isoflurane anaesthesia

operation was performed as previously described [5]. Briefly, portal branches leading to the

the right lateral, left part of the median, left lateral, and caudate lobes were ligated. Next, along-

side the transition line of the median lobe transection was performed with profound electro-

cauterization of the liver wounds.

2.2. Sample extraction

Following 2.5 v/v% with 1 L/min flow isoflurane anaesthesia animals were exsanguinated by

cardiopuncture at 24h, 48h, 72h, 168h after surgery. The preoperative group was sacrificed

without operation at baseline (N = 6 per group). Body weight was measured before termina-

tion (model SCL-1053, Kent Scientific, Torrington, CT, USA).

Tissue from the non-ligated right median lobe (RML) was snap frozen in liquid nitrogen

and stored at -80˚C until further use or fixed in 4% buffered formaldehyde for histology.

For the isolation of mitochondria from fresh RML samples discontinuous Percoll gradient

was used as described earlier [17]. Samples were homogenized in isolation buffer A (S1 Table),

then centrifuged (3 min x 1300g). Supernatant was removed and centrifuged again (10 min x

20000g) then pellet was suspended in 15% Percoll and layered on a discontinuous gradient

consisting of 40 and 23% Percoll layers, which was then centrifuged (8 min x 30700g). The

lowermost fraction of isolation buffer was resuspended, centrifuged (10 x 16,600g), and the

pellet was resuspended and centrifuged again (10 x 6300g). Afterwards the supernatant was

discharged, then the pellet was resuspended in isolation buffer B (S1 Table).

The retrieved pellet containing isolated mitochondria was resuspended in 200 μl isolation

medium (S1 Table). Mitochondrial protein content was determined using Pierce™ Coomassie

Plus (Bradford) Assay Kit (Thermo Scientific, Waltham, MA). 0.1 mg/ml mitochondrial pro-

tein concentration was used throughout the experiments.

2.3. Assessment of mitochondrial function

As mitochondrial function is characterized by oxidative phosphorylation and the intactness of

the respiratory chain, adenosine 50-triphosphate (ATP) synthesis and oxygen consumption

was assessed.
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2.3.1. Mitochondrial ATP production. Mitochondrial ATP synthesis was investigated as

previously described [6]. Incubation medium was supplemented with NADP+ (1.5 mM), hexoki-

nase (2 U/ml), glucose 6-phosphate dehydrogen- ase (3.84 U/ml), 2.5 mM glucose, and 50 μM P1,

P5-di(adenosine-5’) pentaphosphate (inhibitor of adenylate kinase). Following coupled enzyme

reaction, the absorbance of the reduced nicotinamide adenine dinucleotide phosphate was mea-

sured at 340nm (V650 UV/VIS double-beam spectrophotometer, ABL&E Jasco, Tokyo, Japan).

ATP production indicating the endogenous substrate supply was assessed in the presence of mito-

chondria and 2 mM ADP. Stimulated ATP production was evaluated in 5 mM glutamate-malate

(GM) (in case of complex I) or 5 mM succinate (in case of complex II) medium.

2.3.2. Mitochondrial oxygen consumption. As previously reported [5,6], oxygen con-

sumption was assessed with an Oxygraph-2K1 high resolution respirometry system (Oro-

boros Instruments, Innsbruck, Austria) by measuring reduced nicotinamide adenine

dinucleotide dehydrogenase (I complex) and succinate dehydrogenase (II complex). Basal

function (state 4) and induced function stimulated by adenosine 50-diphosphate (ADP) were

measured in GM (complex I) and succinate medium (complex II). Oxygen consumption was

adjusted to mitochondrial protein content.

2.4. Assessment of intramitochondrial NADP(H)

Intramitochondrial NADP(H) was measured by the autofluorescence of reduced nicotinamide

adenine dinucleotide (phosphate) (NAD(P)H) with PTI Deltascan1 fluorescence spectropho-

tometer (Photon Technology International, Lawrenceville, New Jersey, USA) at 37˚C, at

344nm excitation and 460nm emission wavelengths. Basal NAD(P)H levels were measured

when only mitochondria had been added to the incubation medium. GM or succinate were

added for the measurement of induced production [5,6].

2.5. Proteomic analysis of mitochondrial biogenesis, oxidative

phosphorylation and apoptosis

35 mg of liver tissue was homogenized in RIPA buffer (Sigma-Aldrich, St. Louis, MO) by a Bead

Beater tissue homogenizer (Next Advance, Inc, Troy, NY). The electrophoresis of samples (20 μg

protein/lane) was performed on 8–12 per cent (v/v) sodium dodecyl sulphate–polyacrylamide

gels. Protein concentration was measured using Pierce™ Coomassie Plus (Bradford) Assay Kit

(Thermo Scientific, Waltham, MA). After transferring proteins on to polyvinylidene difluoride

membranes samples were incubated with primary antibodies (S2 Table). Primary antibodies were

detected using secondary antibodies (Jackson ImmunoResearch, West Grove, Pennsylvania,

USA) and Clarity ECL reagent (Bio-Rad, Hercules, California, USA). Visualization was carried

out on Syngene G:Box imager (Syngene, Cambridge, UK) and quantified with FIJI software [18].

Total protein load of the lane served as internal control. For images of western blots see S1 File.

2.6. Quantification of liver mass increase

Liver lobes were weighed separately by an analytical scale (AG245, Mettler Toledo, Greifensee,

Switzerland). The following formula was used to calculate increase in liver mass of the non-

ligated lobes: (lobe weight/bodyweight at time of death) / (mean lobe weight at preoperative

time point/bodyweight at preoperative time point) × 100 (%).

2.7. Histology

Tissue samples were embedded in paraffin after they were fixated in 4% paraformaldehyde for

24h, from which liver tissue specimens were made (4-micron-thick histological sections).
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Specimens were deparaffinized in xylol baths (2x10 min) and rehydrated in graded alcohol

series stained with hematoxilin-eosine. Mitotic rate was defined by counting clearly identifi-

able cromatine divisions/mm2. Ki67 index was assessed as previously described [6]. Antigen

was retrieved at pH = 6.0 (S2031, Agilent, Santa Clara, CA,USA). Anti-Ki67 antibodies

(ab15580, Abcam, Cambridge, UK) were used to perform Ki67 immunohistochemistry, after-

wise with hematoxylin counterstaining was performed. The histological slides were scanned

with a Pannoramic P1000 slide scanner system (3DHistech, Budapest, Hungary). Analyzation

was performed with QuPath software [19]. The Ki67 index was calculated on the whole slide as

the number of Ki67-positive cells per total number of cells [6].

2.8. Statistical analysis

Results are presented in mean (s.d.). Normality and homoscedasticity of the data was analyzed

with diagnostic tests. Statistical analysis was performed in GraphPad Prism (GraphPad Soft-

ware, La Jolla, CA, USA). Data was analyzed with a two-way ANOVA with Tukey’s test for

post-hoc analysis. A P-value of< 0.05 was considered statistically significant.

3. Results

3.1. Depletion of Cyclophilin D improves mitochondrial function following

ALPPS

Although mitochondrial function showed a significant decrease in the WT group following

ALPPS in the first 24–48 h, which is in accordance with our previous results [5,6], it remained

preserved overall in the CypD KO group during this time interval. Mitochondrial function

was investigated using the parameters described below.

3.1.1. Preserved ATP production in the CypD KO group. As presented in Fig 1A and

1B, ALPPS resulted in a decrease of ATP production of endogenous substrates from 24 h until

168 h in the WT group, while it was preserved in the CypD KO group at 24 hour and decreased

only after from 48 h to 168 h, marking a significant difference between the groups. Stimulated

ATP production of complex I showed conjointly a drop at 24 h in the WT group in opposition

with preserved value s in the CypD KO group (Fig 1C and 1D).

3.1.2. Enhanced oxygen consumption in the CypD KO group. Basal oxygen consump-

tion remained similar to the preoperative value in the WT group, with a temporary increase of

complex I at 48 h. In contrast, CypD KO group peaked at 24 h gradually normalizing by the

end of the experiment (Fig 2A and 2B). This resulted in a notably higher oxygen consumption

at 24 h in the CypD KO group compared to the WT group. Induced oxygen consumption

increased in complex I at 48 and 168 h, while in complex II from 48 h to 168 h in the WT

group.

In the CypD KO group complex II showed an earlier increase from 24 h to 72 h, which is

line with the energy demanding processes following ALPPS [5]. This resulted in a significantly

increased induced oxygen consumption in the CypD KO group compared to the WT group at

24–48 h, in the most energy-consuming phase of liver regeneration following ALPPS (29).

3.2. CypD depletion did not alter mitochondrial NAD(P)H content

Our previous results revealed that following ALPPS NAD(P)H content decreases [5]. In line

with this, basal concentration of NAD(P)H in the WT group decreased at 24 h in complex I

and from 24 h to 168 h in complex II. Corresponding changes could be observed in the CypD

KO group, as basal concentration decreased at 24 h and 168 h in complex I and at 168 h in

complex II. Therefore, there was no significant difference between the two groups regarding
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basal NAD(P)H concentration (Fig 3A and 3B). Induced NAD(P)H concentration changed

similarly to the basal concentration. A decrease could be observed in the WT group at 24 h in

complex I, with no change in complex II. Induced concentration also decreased in the CypD

group 24, 72, and 168 h following surgery in complex I, while remained unchanged in complex

II. Likewise, there was no difference between the induced NAD(P)H concentration of the two

groups (Fig 3C and 3D).

3.3. CypD depletion increases mitochondrial biogenesis coordinator PGC1-

α level

ALPPS caused the decrease of the mitochondrial biogenesis coordinator PGC1-α at 72 and

168 h in the WT group, which is in accordance with our previous results [5]. On the other

hand, CypD depletion increased the level of PGC1-α, as it was found elevated in the CypD KO

group from 48h until the end of the experiment. This resulted in a notable difference between

the groups from 48 h to 168 h (Fig 4A). Despite of the changes in PGC1-α, NRF 1 level did not

change significantly neither in the WT, nor in the CypD KO group (Fig 4B).

3.4. CypD depletion increases the production of oxidative phosphorylation

system (OXPHOS) proteins

In the WT group OXPHOS complex I-III levels did not change significantly throughout the

experiment, while in case of complex IV a temporary increase could be observed at 72 h. Simi-

larly, OXPHOS complex I-IV levels in the CypD KO group did not change during the

Fig 1. Alterations of adenosine 50 -triphosphate (ATP) production. Endogenous (A) and exogenous substrate

(complex I: Glutamate-malate complex II: Succinate) stimulated (B and C) ATP production preoperatively (preop., 0

h), and at 24 h, 48 h, 72 h, and 168 h after Associating Liver Partition and Portal vein ligation for Staged hepatectomy

(ALPPS) (N = 6 per time point per group). � P< 0.050, �� P< 0.0010 versus wild type (WT); # P< 0.050, ## P< 0.001

WT versus corresponding controls (preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus corresponding controls

(preop.). Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g001
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experiment. However, due to an initially higher level at the baseline, level of OXPHOS com-

plex I the CypD KO group was higher compared to the WT group preoperatively and at 24 h,

in case of complex II the same disparity could be observed at 48 h, at the most vulnerable time

points following ALPPS (Fig 5A–5D).

3.5. Altered activation of apoptotic caspase-3 in the CypD KO group

The level of uncleaved proenzyme form of caspase-3 did not change in the WT group, while a

significant increase could be observed from 48 h until the end of the experiment in the CypD

KO group (Fig 6A). The level of the activated cleaved form of caspase-3 was elevated at 24 h in

the WT group and remained increased by the end of the experiment, which is in line with pre-

vious results on apoptotic activity following ALPPS. In contrast, active caspase-3 level in the

CypD KO group increased significantly only from 72 h to168 h, in the remodeling period of

ALPPS (Fig 6B).

3.6. CypD depletion accelerates liver growth and cell proliferation

Both in the WT and CypD KO groups, liver mass gradually increased. However, while liver

growth achieved only about 100% growth in the WT group, the CypD KO group displayed a

150% growth, resulting significantly higher liver mass in the CypD KO group at 168 h com-

pared to the WT group (Fig 7A). Mitotic rate and ki67 index in both WT and CypD KO group

increased until 48 h, after which the cell division gradually normalized by the end of the exper-

iment. No difference could be observed nor between the mitotic rates either the ki67 index of

the groups (Fig 7B–7D).

Fig 2. Changes in oxygen consumption levels. Basal (A and B) and substrate (complex I: Glutamate-malate complex

II: Succinate) induced (C and D) oxygen consumption preoperatively (preop., 0 h), and at 24 h, 48 h, 72 h, and 168 h

after Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) (N = 6 per time point per

group). � P< 0.050, �� P< 0.0010 versus WT; # P< 0.050, ## P< 0.001 wild type (WT) versus corresponding controls

(preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus corresponding controls (preop.). Statistical analysis was

performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g002
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4. Discussion

ALPPS is a novel modification of the classic two-stage hepatectomy, allowing for the extended

resection of liver tumors considered inoperable by standard procedures. By propagating a

robust and rapid regeneration ALPPS can eliminate the disadvantages of classic portal vein

occlusional techniques [2]. However, the initially high morbidity and mortality rates experi-

enced after the operation raised skepticism [2]. These phenomena could be explained by the

Fig 3. Changes in reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) content. Basal (A and B)

and substrate (complex I: Glutamate-malate complex II: Succinate) induced (C and D) NAD(P)H preoperatively

(preop., 0 h), and at 24 h, 48 h, 72 h, and 168 h after Associating Liver Partition and Portal vein ligation for Staged

hepatectomy (ALPPS) (N = 6 per time point per group). � P< 0.050, �� P< 0.0010 versus wild type (WT); # P< 0.050,

## P< 0.001 WT versus corresponding controls (preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus corresponding

controls (preop.). Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g003

Fig 4. Expression of gene regulatory proteins participating in mitochodrial biogenesis. Peroxisome proliferator-

activated receptor γ coactivator (PGC) 1-α (A), nuclear respiratory factor 1 (B) preoperatively (preop., 0 h), and at 24

h, 48 h, 72 h, and 168 h after Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS)

(N = 6 per time point per group). � P< 0.050, �� P< 0.0010 versus wild type (WT); # P< 0.050, ## P< 0.001 WT

versus corresponding controls (preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus corresponding controls (preop.).

Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g004

PLOS ONE The beneficial effect of mitochondrial therapy after ALPPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0271606 July 14, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0271606.g003
https://doi.org/10.1371/journal.pone.0271606.g004
https://doi.org/10.1371/journal.pone.0271606


delayed functional recovery of hepatocytes appertaining to the non-ligated regenerating lobes

[4]. As previously shown in our study, a key component of this might be the energetic disba-

lance caused by the insufficiency of mitochondria [5]. Therefore, we hypothesized that the

Fig 5. Changes in the expression of the respiratory chain complexes. Complex I (A), complex II (B), complex III (C), complex IV (D)

total cell lysate protein concentrations preoperatively (preop., 0 h), and at 24 h, 48 h, 72 h, and 168 h after Associating Liver Partition and

Portal vein ligation for Staged hepatectomy (ALPPS) (N = 6 per time point per group). � P< 0.050, �� P< 0.0010 versus wild type (WT);

# P< 0.050, ## P< 0.001 WT versus corresponding controls (preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus corresponding

controls (preop.). Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g005

Fig 6. Expression of caspase-3. Uncleaved (A) and cleaved (B) caspase-3 total cell lysate protein concentrations preoperatively (preop., 0 h), and at 24 h, 48 h,

72 h, and 168 h after Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) (N = 6 per time point per group). � P< 0.050, ��

P< 0.0010 versus wild type (WT); # P< 0.050, ## P< 0.001 WT versus corresponding controls (preop.); § P< 0.050, §§ P< 0.0010 CypD KO versus

corresponding controls (preop.). Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g006
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disadvantageous aspects of ALPPS could be countered with mitochondrial therapy. As a first

step to verify our hypothesis, our aim was to explore possible therapeutic approaches to boost

mitochondrial function following ALPPS. Although in our previous study we found that pre-

operative exercise could greatly enhance mitochondrial function and substantiate even more

powerful regeneration [6], we aimed to seek for pharmacological therapeutic options to com-

plement and support physical prehabilitation. As CypD inhibition has been previously proven

an effective mitochondrial therapy in a variety of pathophysiological conditions [7], here we

investigated the effect of CypD depletion on mitochondrial function, biogenesis and liver

regeneration in CypD KO mice undergoing ALPPS.

With this approach we found in the CypD KO mice (a) improved mitochondrial function;

(b) an elevated level of mitochondrial biogenesis coordinator PGC1-α and increased produc-

tion of OXPHOS proteins; (c) a delay in the activation of caspase-3, which resulted in apopto-

tic activity only in the late, remodeling period of ALPPS-induced liver regeneration; and (d)

accelerated liver growth.

ALPPS is associated with increased morbidity and mortality rate along with a delayed func-

tional recovery of the regenerating liver [3,4]. Following hepatectomy, an increased energy

Fig 7. Liver regeneration following Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) in the ligated right medial lobe.

Increase in liver mass of non-ligated lobe (A) and mitotic rate (B) and ki67 index (C) preoperatively (preop., 0 h), and at 24 h, 48 h, 72 h, and 168 h after ALPPS

(N = 6 per time point per group). Histological structure on the left (hematoxylin and eosin stain; original magnification: ×150) and ki67 immunohistochemistry (on

the right) of the regenerating right median (RM) lobe (D) preoperatively (preop.) and at 24 h, 48 h, 72 h, and 168 h after ALPPS in the Cyclopihilin D knockout

(CypD KO) and wild type (WT) group. � P< 0.050, �� P< 0.0010 versus wild type (WT); # P< 0.050, ## P< 0.001 WT versus corresponding controls (preop.); §

P< 0.050, §§ P< 0.0010 CypD KO versus corresponding controls (preop.). Statistical analysis was performed with a two-way ANOVA and Tukey’s post hoc test.

https://doi.org/10.1371/journal.pone.0271606.g007
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supply is necessary for cell division [10]. Considering that ALPPS forces even more hepato-

cytes into proliferation [2], there is no doubt that it is a highly energy-dependent process.

However, our previous study showed impaired mitochondrial function and biogenesis follow-

ing ALLPS [5], which together with the increased energy demand could be the underlying rea-

son behind the unfavorable morbidity and mortality rates. Supporting our previous data,

mitochondria, isolated from WT mice exhibited decreased oxygen consumption and

decreased ATP production demonstrating the impairment of mitochondria after ALLPS. On

the other hand, mitochondrial functions were better preserved in the CypD KO mice as indi-

cated by the increased ATP production and oxygen consumption. Our results are supported

by the putative framework about the effects of CypD inhibition on mitochondrial function

and cell energy supply [9,16,20]. As CypD facilitates the opening of mPTP, it contributes to a

striking increase in the permeability of the inner membrane, dissipation of the mitochondrial

membrane potential and interruption of ATP production [21]. Therefore, as also shown by

our results, inhibition of CypD could indeed serve as a pharmacological target to improve

mitochondrial function following ALPPS.

In order to explore the wider effects of CypD depletion on the process of energy produc-

tion, we have also investigated the intramitochondrial NAD(P)H content. Our previous study

showed a decrease in NAD(P)H steady state following ALPPS [5]. According to this, NAD(P)

H concentration decreased in WT mice following surgery. A similar decrease could also be

observed in CypD KO mice, which suggests that NAD(P)H content was not influenced, only

the process of the terminal oxidation. However, considering that during liver proliferation the

primary energy source of hepatocytes is oxidative phosphorylation [10], which was improved

in the CypD KO group, CypD depletion seems beneficial on the cell energy supply.

ALPPS also deteriorates mitochondrial biogenesis and protein production by a prolonged

and overwhelming inflammatory response. In the course of this, tumor necrosis factor (TNF)-

alpha reduces the level of PGC-1alpha directly by nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-κB) resulting in mitochondrial dysfunction [5,6]. It has been also

shown that CypD depletion attenuates inflammatory response by reducing TNF-alpha and

NF-κB [22]. Therefore, we hypothesized that CypD depletion has an impact on the PGC1-α
mitochondrial biogenesis pathway and the transcription of mitochondrial proteins following

the operation. In accordance with our previous results [5], PGC1-α level was strongly

supressed in the WT group after ALPPS, indicating damaged mitochondrial biogenesis. By

contrary, the CypD KO group displayed an increased level of PGC1-α compared both to the

WT group and the preoperative state. However, the increase of PGC1-α was not followed by

NRF1, which is a major transcriptional factor of mitochondrial respiratory complexes [23].

Therefore, it was also a compelling question whether the protein complexes of the OXPHOS

system were affected by CypD depletion. While numerous studies demonstrate that CypD

appears to regulate the OXPHOS system by various kinds of mechanisms [24], currently to

our knowledge there is no literature data about the transcriptional effects of CypD inhibition

on the OXPHOS system. Our results showed increased protein levels in case of complex I and

II in the CypD KO group while no change could be detected in case of complex III-IV.

The opening of the mPTP, controlled by CypD, could lead to cell death in two major ways.

First, failing of the oxidative phosphorylation via the depolarization of the mitochondrial

membrane leads to necrosis [25]. Second, the opening causes the swelling of the mitochondria

contributing to the rupture of the outer membrane and the release of cytochrome c from the

inner space, which activates caspases and apoptosis through the inhibition of PARP activity

[7,26]. As we have demonstrated that CypD depletion improves oxidative phosphorylation, we

also aimed to investigate how it affects mitochondrial apoptosis. Strikingly, a lagging activation

of caspase-3 could be observed in the CypD KO group, which resulted in apoptotic activity
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only from 72 h to 168 h. In contrast, the WT group displayed an increase in activated caspase-

3 level already after 24 h. To understand the importance of this, it is very vital for the reader to

contextualize the two important phases of regeneration through which the non-ligated liver

lobe undergoes after ALPPS. (1) The initial phase starts right after the surgery and lasts

48 h, when increased portal pressure and microcirculation along with cytokines activate the

regeneration cascade, making this phase the most vulnerable one after surgery; (2) the remod-

elling period takes place from 72 h to 168 h, when apoptotic cell death is necessary for the

removal of redundant hepatocytes together with the reconstruction of hepatic cords [11].

Although further investigations are needed, our results suggest that by stabilizing the mito-

chondria CypD depletion could also influence apoptosis following ALPPS eventuating in the

delay of apoptotic activation until the favourable remodelling period instead of the initial, vul-

nerable phase.

Our last compelling question was whether liver regeneration was affected in the CypD KO

group, as literature data points to a correlation between mitochondrial functioning and regen-

eration. By buffering mitochondrial Ca2+, augmented liver regeneration can be achieved via

inhibited apoptosis and a direct effect on cell proliferation controlled by the shift in B-cell lym-

phoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 after partial hepatectomy [27]. In an experi-

mental model of quarter-size liver transplantation liver regeneration was stimulated with a

CypD inhibitor (NIM811) [16]. Following ALPPS, when already deteriorated mitochondrial

function is entailed [5], toxin-induced fibrosis results in an even more explicit mitochondrial

dysfunction, which attenuates the rapid regenerative capacity of ALPPS [28]. Adding to this,

our previous investigation revealed improved mitochondrial function and strongly induced

regeneration after ALPPS as an effect of preoperative exercise [6]. Considering the above, we

hypothesized that CypD depletion could also have a positive effect on liver regeneration fol-

lowing ALPPS. In line with the above, our results demonstrated increased liver growth in the

CypD KO group compared to the WT mice. However, in the extent of cell division no substan-

tive difference could be observed. The discrepancy between the liver growth and the cell divi-

sion could be explained by a decreased apoptosis in the CypD KO group.

The limitations of the study must be acknowledged, as physiological differences between

rodents and humans might affect this model. However, energy production, mitochondrial

structure and biogenesis are extremely conserved in mammals [29], as well as the PPIF gene

encoding CypD in vertebrates [30], therefore data gained from rodents could be appropriately

translated to humans.

In conclusion, our study proved that mitochondrial function could be stabilized by the

depletion of CypD, which could contribute to the mitigation of the vulnerability following

ALPPS. To our best knowledge, the effect of mitochondrial treatment has not yet been investi-

gated in rapport with ALPPS. Although further analysis regarding the pharmacological inhibi-

tion of CypD are essential, so far our previous [5,6] and present results underline the relevance

of mitochondrial therapy after ALPPS. Therefore, we propose that CypD inhibition should be

further investigated as a potential pharmacological target to enhance the post-operative out-

comes following ALPPS.
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