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Abstract

Promoters are DNA sequences located upstream of the gene region and play a central role in gene expression.
Computational techniques show good accuracy in gene prediction but are less successful in predicting promoters,
primarily because of the high number of false positives that reflect characteristics of the promoter sequences. Many
machine learning methods have been used to address this issue. Neural Networks (NN) have been successfully
used in this field because of their ability to recognize imprecise and incomplete patterns characteristic of promoter
sequences. In this paper, NN was used to predict and recognize promoter sequences in two data sets: (i) one based
on nucleotide sequence information and (ii) another based on stability sequence information. The accuracy was ap-
proximately 80% for simulation (i) and 68% for simulation (ii). In the rules extracted, biological consensus motifs were
important parts of the NN learning process in both simulations.
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Introduction

The determination of how and when genes are turned

on and off is a challenge in the post-genomic era. Differ-

ences between two species are often more related to gene

expression and regulation than to their structures (Howard

and Benson, 2002). An adequate comprehension of the

complex metabolic networks present in various organisms,

including cellular differentiation and cellular responses to

environmental change, can be facilitated by studying of

promoter sequences, i.e., short sequences located before the

transcription start site (TSS) of a gene (Jáuregui et al.,

2003; Pandey and Krishnamachari, 2006).

Promoters act as gene expression regulators through

their ability to interact with the enzyme RNA polymerase,

thereby initiating transcription. The � factor moiety of the

RNA polymerase, of which there are several types, are in-

volved in the recognition and primary interaction with the

promoters. Various bacterial � factors interact with differ-

ent promoter sequences that are characterized by particular

consensus motifs and properties. Most prokaryotic promot-

ers have two consensus hexameric (six nucleotides) motifs:

one centered at position -35 and another centered at posi-

tion -10 relative to the TSS. For factor �
70, the pattern se-

quences for these motifs are ‘TTGACA’ and TATAAT’ for

positions -35 and -10, respectively, and are separated by

~17 non-conserved nucleotides (Lewin, 2008).

As an analogy, the downstream sequences (genes)

represent the “computer memory” while the upstream se-

quences (promoters) represent the “computer program”

that acts on this memory. The study of promoters can pro-

vide new models for developing computer programs and

for explaining how they operate (Howard and Benson,

2002). Despite the importance of promoters in gene expres-

sion, the shortness of their sequences, many of which are

not highly conserved, makes them difficult to detect when

compared to genes sequences. This characteristic limits the

accuracy of in silico methods because many nucleotide al-

terations may not be significant in terms of promoter func-

tionality (Howard and Benson, 2002; Burden et al., 2005;

Kanhere and Bansal, 2005b).

There are many machine learning approaches for pro-

moter recognition and prediction, including Hidden Mar-

kov Models – HMM (Pedersen et al., 1996), Support

Vector Machines – SVM (Gordon et al., 2003) and Neural

Networks – NN. The earliest NN used for promoter predic-

tion had a simple architecture (Demeler and Zhou, 1991;

O’Neill, 1991). In these papers, the prediction had good ac-

curacy but the number of false positives was high. Maha-

devan and Ghosh (1994) used two NN: one to predict

motifs and another to recognize the complete sequence.

The Neural Networks Promoter Prediction (NNPP) pro-

gram was implemented by Oppon (2000) and improved by

Burden et al. (2005), who included information about the
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distance between TSS and the first nucleotide translated,

thereby decreasing the number of false positives.

Apart from consensus motifs, promoters have certain

physical features, such as stability, curvature and benda-

bility, that make them different from gene sequences, i.e.,

they are less stable, more curved and more bendable (Ka-

nhere and Bansal, 2005a). The latter authors subsequently

used promoter stability information to develop a procedure

that recognizes promoters in whole sequences (Kanhere

and Bansal, 2005b). However, despite the importance of

these physical features, they have not been widely used in

NN promoter prediction.

Neural networks are suitable for promoter prediction

and recognition because of their ability to identify degener-

ated, imprecise and incomplete patterns present in these se-

quences. In addition, NNs perform well when processing

large genome sequences (Kalate et al., 2003; Cotik et al.,

2005). A further feature is that there is no need for prior

knowledge when building a suitable model. An important

procedure in NN methods is rule extraction from trained

networks that can assist the user in identifying biological

rules from the input data (Andrews et al., 1995). In this pa-

per, we describe the use of a NN to predict and recognize

prokaryotic promoters by comparing two data sets: (i) nu-

cleotide sequence information and (ii) stability sequence

information of E. coli promoters, regardless of the � factor

that recognizes the sequence.

Material and Methods

The promoter sequences used were obtained from the

January 2006 version of the RegulonDB database (Gama-

Castro et al., 2008). Nine hundred and forty promoters and

940 random sequences were used to train and test the NN.

The promoters and sequences represented positive and neg-

ative examples, respectively. The random sequences were

generated with a probability of 0.22 for guanine (G) or cy-

tosine (C) nucleotides and 0.28 for adenine (A) or thymine

(T) nucleotides, based on the distribution of these nucleo-

tides in real promoter sequences (Kanhere and Bansal,

2005a). The examples were shuffled and allocated to one of

ten files in order to generate the train and test set. Two sim-

ulations were done, one based on nucleotide sequences and

the other on stability information. The procedures are de-

scribed below.

Simulation based on nucleotide sequences

In the simulation using nucleotide sequences (re-

ferred to as the sequence-based simulation) the promoters

and random sequences were initially aligned with the soft-

ware ClustalW (Thompson et al., 1994) to accommodate

the variable sequence length between the motifs. Without

this initial alignment, the NN does not provide good accu-

racy. The alignment introduced gaps in the sequences, rep-

resented by a short line (-). The gaps were inserted where

necessary (at the beginning, middle or end of a sequence)

(Figure 1). The short line (-) was removed from the begin-

ning and end of the sequence to avoid incorrect learning by

the NN. Consequently, the resulting promoter sequences

contained 72 nucleotides. After alignment, the nucleotides

and gaps were encoded using a set of four binary digits as

described by Demeler and Zhou (1991): A = 0100,

T = 1000, C = 0001, G = 0010 and “-” = 0000.

The architecture used to classify the sequences had

288 input neurons (72 bp x four digits for each nucleotide),

two neurons in the hidden layer and one neuron in the out-

put layer (Figure 2a). The presence of a large number of

neurons in the hidden layer or in the output layer did not in-

crease the accuracy of the procedure.

Simulation using promoter sequence stability

The stability of DNA molecules can be expressed in

terms of their free energy (�G), which in turn depends on

the mononucleotide and dinucleotide composition (San-

taLucia and Hicks, 2004). The stability of a DNA duplex

can be predicted from its sequence based on the contribu-

tion of each nearest-neighbor interaction (SantaLucia and

Hicks, 2004; Kanhere and Bansal, 2005a). The contribution

of each dinucleotide is described in SantaLucia and Hicks

(2004).

To do the simulation using the free energy informa-

tion, denoted as the stability-based simulation, �G was cal-

culated using the following formula, described in SantaLu-

cia and Hicks (2004) and Kanhere and Bansal (2005a):

�G0 = �Gij (1)

where �G0
ij is the standard free energy change for

dinucleotides of type ij. The original formula described in

Kanhere and Bansal (2005a) was modified to adjust its ade-

quacy to the goals of this paper. The best architecture ob-
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Figure 1 - Examples of promoter sequences aligned by ClustalW software.



tained to classify the sequences had 81 neurons in the input

layer, four hidden neurons and one output neuron (Figu-

re 2b).

Training and analysis procedures

Both simulations were done in the R Environment (R

Development Core Team, 2005). The algorithm back-pro-

pagation (BP) was chosen because it is the most popular al-

gorithm for training feedfoward networks (Kalate et al.,

2003). NNs based on the BP training algorithm have been

successfully used for various applications in biology in-

volving non-linear input-output modeling and classifica-

tion (Mahadevan and Gosh, 1994; Kalate et al., 2003;

Burden et al., 2005). The ten-fold cross-validation method

was used to obtain statistically valid results. The k-fold

cross-validation (k-FCV) technique consists in randomly

sharing the examples’ archive in k equal portions. The train

and validation were repeated k times, using k-1 archives to

train and kth archives for validation. In each interaction, the

validation archive had a different k (Polate and Günes,

2007).

The accuracy (A), specificity (S) and sensitivity (SN)

were calculated from the number of true positives (TP), true

negatives (TN), false positives (FP) and false negatives

(FN). The TP were promoter sequences classified as pro-

moters, TN were random sequences recognized as

non-promoters, FP were random sequences classified as

promoters and FN, promoters classified as non-promoter

sequences. The formulas used are given below:

A
TP TN

TN TP FN FP
�

�

� � �
(2)

S
TN

TN FP
�

�
(3)

SN
TP

TP FN
�

�
(4)

An input sequence was classified as a promoter if its

output lay between 0.5 and 1.0. Otherwise, it was consid-

ered as a non-promoter (Kalate et al., 2003).

Rule extraction

Neural networks are applicable to many different

problems, but the learning process is complex (Andrews et

al., 1995). How a NN classifies a given sequence as pro-

moter or non-promoter can be understood based on rule ex-

traction. Here, we extracted rules using two approaches:

(1) Rules based on hidden neurons: The sigmoid

function was divided into three regions (Figure 3). For each

input, the region of the sigmoid function corresponding to

the best fit of the activation function of the hidden neurons

was identified. The maximum number of combinations was

3n, where n is the number of neurons in the hidden layer.

However, all of the possible combinations do not occur,

and only the more frequent combinations were considered
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Figure 2 - (a) Architecture of the best NN used to classify promoter sequences in the sequence-based simulation. There were 288 neurons in the input

layer, two neurons in the hidden layer and one neuron in the output layer. (b) Architecture of the best NN used to classify promoters in the stability-based

simulation. There were 81 neurons in the input layer, four neurons in the hidden layer and one neuron in the output layer.



since they best represented the input data. The result of this

approach was a rule prototype, which we defined as the in-

put data set average. The rule can be written as a linear

equation: “If x � prototype then y = constant of a linear

equation + (coefficients of the linear equation)”. Here, x is

an input example, y corresponds to the NN output and the

coefficients of the linear equation are the nucleotides of the

sequence. This approach is referred to as FAGNIS, accord-

ing to Cechin (1998). Rule extraction was done in the R En-

vironment (R Developed Core Team, 2005).

(2) Rules by a decision tree: These rules were ob-

tained using the software Weka with the algorithm J-48

(Witten and Frank, 2005). The decision tree is an analytical

tool to find rules and relations by subdividing information

in the data analyzed. The tree consists of nodes that repre-

sent attributes and arches from the nodes that were assigned

possible values for these attributes. The first node corre-

sponds to the root from which the other nodes were derived.

These derived nodes are referred to as leaf-nodes and repre-

sent the distinct classes of each training set. The possible

ways of running the tree can be written in an if-then rule for-

mat.

Results and Discussion

Classification analysis

Analysis of the results initially involved a root mean

square (RMS) evaluation. Figure 5 shows the RMS plot of

the best NN architecture for both simulations. In the se-

quence-based simulation, the lowest RMS was achieved

with 30 train epochs, i.e., this number of epochs yielded the

best accuracy, which was 0.8 (80%) with a standard devia-

tion of 0.04 (4%). For the stability-based simulation, the

best NN yielded an RMS with 40 train epochs (Figure 3), an

accuracy of 0.68 (68%) and a standard deviation of 0.023

(2.3%).

The quality of the classification is shown by the con-

fusion matrix for both simulations (Table 1). The specific-

ity and sensitivity of the results for the sequence-based

simulation was 0.9 (90%) and 0.65 (65%), respectively. For

the stability-based simulation, the values for these two pa-

rameters were 0.7 (70%) and 0.67 (67%), respectively.

The box plot (Figure 4) shows the distribution of the

values for accuracy, specificity and sensitivity in the ten-

fold cross-validation. The central line represents the me-

dian, the base of the rectangle is proportional to the number

of cases, and the lower and upper boundaries of the box

show the lower and upper quartiles, respectively. The

length of the box therefore corresponds to the inter-quartile

range, which is a convenient and popular measure of the

spread. For both simulations, the small length of the boxes

indicated low variation in accuracy and sensitivity; speci-

ficity showed the greatest variation.
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Figure 3 - The three regions defined in the sigmoid function to analyze the

input data and to extract rules from the trained NN.

Figure 4 - Box plot for accuracy, specificity and sensitivity in the ten-fold

cross-validation for both simulations.

Figure 5 - Plot of the RMS for 300 train epochs. The RMS train showed a

slow decrease in both simulations. In this test, the lowest RMS value was

observed at epoch 30 in the sequence-based simulation and epoch 40 in the

stability-based simulation.



The classification results showed that the NN pro-

vided a good generalization for the input data in the se-

quence-based simulation. The NN classified random se-

quences more correctly than it did promoter sequences

(Table 1). This fact probably reflected the incomplete con-

servation of the consensus hexameric sequence of the pro-

moters and the presence of several consensus promoter se-

quences for each � factor (Lewin, 2008). The NN was

unable to learn a single pattern for the input data because of

different motifs present in the � factor family, e.g., the con-

sensus sequences for �24 are ‘CTAAA’ for the -35 region

and ‘GCCGATAA’ for the -10 region. Consequently, the

NN created a general classification rule based on similar

features for all promoter sequences. For this reason, the

sensitivity observed here was lower than that observed in

other papers. This finding was reflected in the low number

of epochs necessary for learning, an indication that the in-

put data had noise typical of biological data (Losa et al.,

1998). In contrast, the results from the stability-based simu-

lation showed that the NN was unable to correctly classify

the random sequences (Table 1). This finding can be ex-

plained by the lack of data synchronization since it was not

possible to pre-align the sequences. Sequence alignment

was not feasible because it was impossible to obtain stabil-

ity values for the gaps inserted during alignment.

The results for the sequence-based simulation were

very similar to those reported by others (Table 2). Burden et

al. (2005) reported a specificity of 0.6 (60%) and sensitivity

of 0.5 (50%) for their NN-based analysis. The usefulness of

this tool (referred to as NNPP) was improved when the esti-

mated probability that a given sequence was a true pro-

moter was reduced by 60%. Gordon et al. (2003) developed

an SVM-based approach using a sequence alignment kernel

and reported an accuracy of 0.84 (84%), a specificity of

0.84 (84%) and a sensitivity of 0.82 (82%). Web tools such

as BPROM claim an accuracy of 0.8 (80%). The papers or

web tools described are only for �
70 promoter sequences

whereas our NN used all known promoter sequences. In ad-

dition, in most previous studies the number of sequences

used was lower than that used here. The results of the stabil-

ity-based simulation were poor, but this simulation can be

useful for subsequent predictions and can expand the range

of tools for promoter prediction.

Rule extraction in the sequence-based simulation

In this simulation, five rules were extracted by the

FAGNIS method. The decision tree was obtained by using

the J-48 algorithm (Figure 7). To facilitate comprehension,

only promoter rules will be discussed. The rules from

FAGNIS yielded the promoter prototype shown in Figure 6

and identified the nucleotides that were most important in

the learning process.

All of the nucleotides underlined in Figure 6 were the

most important for the learning process. The nucleotides lo-

cated in regions -35 and -10 (read left to right) are indicated

in bold. The similarity of the nucleotides identified by the

prototype with the consensus biological sequence was clear

since most of the sequences belonging to the data set were

recognized by �
70. In addition to these consensus nucleo-

tides, there are other nucleotides that are crucial for NN but

they are not located in regions of known biological impor-

tance. The nucleotides in parentheses all have equal impor-

tance for NN. The pattern shown here was also observed

with the decision tree discussed below.

The ten-fold-cross-validation method was used to ob-

tain statistically valid results for the extraction rule based

on the decision tree. The resulting tree had 31 nodes and 25

leaves (Figure 7a). The frequency of correctly classified se-

quences was 63% and the promoter precision was 68%. The

trees showed nucleotide 25 (located in the -35 region) as the
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Table 1 - Confusion matrix for the NN architecture described in the text. The sequences were classified as promoters and non-promoter (random) se-

quences.

Sequence-based simulation Stability-based simulation

Classified as promoter Classified as non-promoter Classified as promoter Classified as non-promoter

Promoter 66 28 63 31

Non-promoter 9 85 28 66

Table 2 - Comparison of different methods used to calculate accuracy, specificity and sensitivity.

Procedure Accuracy Specificity Sensitivity Author

Sequence-based simulation 0.8 0.9 0.65 This paper

Stability-based simulation 0.68 0.7 0.67 This paper

Sequence alignment kernel 0.84 0.84 0.82 Gordon et al. (2003)

NNPP N.I 0.6 0.5 Oppon (2000)

NNPP 2.2 0.49 N.I N.I Burden et. al (2005)

The numbers in bold indicate the highest scores for each parameter. N.I. = no information.



root. The presence of guanine at this position was sufficient

to identify a given sequence as a non-promoter. The other

nucleotides present in the rules were located in the -10 re-

gion that included nucleotides 46 to 54, approximately.

Some of the rules identified by this approach included:

a) If Promoter then nucleotide_25 = A, nucleotide_45

= T and nucleotide_46 = A or G

b) If Promoter then nucleotide_25 = T and nucleo-

tide_47 = A or T

c) If Promoter then nucleotide_25 = T and nucleo-

tide_47 = C and nucleotide_50 = A or T

d) If Promoter then nucleotide_25 = C and nucleo-

tide_45 = T

These rules shared many similarities with the proto-

type obtained with the trained NN. Clearly there is a strong

relationship among the nucleotides located in the biological

motifs. Despite the incomplete conservation of these

motifs, they are still an important feature used by NN for

learning. The rules generally agreed with current biological

knowledge.

Rule extraction in stability-based simulations

For this simulation, rule extraction using FAGNIS

generated seven rules, of which only one classified se-

quences as a non-promoter (rule 1). The prototypes of the

rules are shown as plots for better comprehension (Figu-

re 8). In four promoter prototypes (rules 4 to 7) there was a

decrease in the �G values in the -10 region (located be-

tween nucleotides 45 and 52). These rules were valid for

135 promoter sequences, which were classified based on

these rules. The two promoter prototypes that accounted for

the majority of promoter sequences (total of 533) showed
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Figure 7 - Decision tree based on the J-48 algorithm. (a) Decision tree for the sequence-based simulation data. (b) Decision tree for the stability-based

simulation data.

Figure 6 - Rule prototype for promoter sequence obtained from NN learning.



no evident decrease in this region. Four patterns of promot-

ers were identified in the plots, in contrast to NN learning,

and this explains the poor rate of correct sequence classifi-

cation.

The rules obtained using the J-48 algorithm were ex-

tracted from the decision tree shown in Figure 7b. The

ten-fold cross-validation method was also used. The result-

ing tree had 21 nodes and 11 leaves. The success rate for

correctly classified sequences was 66.8% and the promoter

precision was 68%. The rules that classified a sequence as a

promoter are shown in Figure 7b. These rules showed that

there was a relationship between the two consensus motifs

of promoters. The root of the tree was nucleotide 49 (lo-

cated in the -10 region), but there were other important nu-

cleotides in the -10 and -35 regions. Some nucleotides (7,

13, 16, 17 and 32) occurred at positions with no known bio-

logical function. This analysis also revealed the stability

low value of the nucleotides and the absence of guanine at

position 49. This fact can explain the high �G value that

this nucleotide has when it occurs as a neighbor of another

nucleotide.

In conclusion, the usefulness of NN for promoter pre-

diction and recognition was assessed using two data sets.

The accuracy of the sequence-based simulation was

0.80 � 0.04 while that of the stability-based simulation was

0.68 � 0.02. These results were comparable to those re-

ported in the literature. The rules extracted from NN learn-

ing can help to identify the most important nucleotide pro-

moter patterns. The pattern obtained is representative of all

sequences, despite the � factor that recognizes each pro-

moter. The data obtained by this approach can help in pro-

moter prediction and increase our knowledge of the biolog-

ical role of promoters. Generally, NN-based methods and

machine learning techniques for promoter prediction rely

on the stability of promoter sequences less frequently than

on nucleotide sequence information. The confusion matrix

showed that NN could differentiate promoters and random

sequences based on nucleotide information, but this was

not the case when stability information alone was used. The

results of this study indicate that the use of nucleotide se-

quence and structural characteristics as input data may help

to improve the prediction of bacterial promoters. This find-

ing should provide a stimulus for developing more efficient

algorithms for predicting such promoters.

Acknowledgments

We are grateful to Universidade de Caxias do Sul

(UCS) for financial support.

References

Andrews R, Diederich J and Tickle AB (1995) A survey and cri-

tique of techniques for extracting rules from trained artificial

neural networks. Knowledge-Based Syst 6:373-389.

Burden S, Lin Y-X and Zhang R (2005) Improving promoter pre-

diction for the NNPP2.2 algorithm: A case study using Esch-

erichia coli DNA sequences. Bioinformatics 21:601-607.

Cechin AL (1998) The Extraction of Fuzzy Rules from Neural

Networks. Shaker Verlag, Aachen, 149 pp.

Cotik V, Zaliz RR and Zwir I (2005) A hybrid promoter analysis

methodology for prokaryotic genomes. Fuzzy Sets Syst

1:83-102.

Demeler B and Zhou G (1991) Neural network optimization for E.

coli promoter prediction. Nucleic Acids Res 19:1593-1599.

Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M, Santos-Zava-

leta A, Peñaloza-Spinola MI, Contreras-Moreira B, Segu-

ra-Salazar J, Muñiz-Rascado L, Martinez-Flores I, Salgado

H, et al. (2008) RegulonDB (v. 6.0): Gene regulation model

Prokaryotic promoter prediction 359

Figure 8 - Plot for the stability-based simulation data. This plot represents the rule prototype obtained with the FAGNIS method for rule extraction. Only

rule 1 is for non-promoter sequences; the other rules are for prototype promoter sequences.



of Escherichia coli K-12 beyond transcription, active (ex-

perimental) annotated promoters and text press navigation.

Nucleic Acids Res 36:D120-D124.

Gordon L, Chervonenkis A, Gammerman AJ, Shahmuradov IA

and Solovyev VV (2003) Sequence alignment for recogni-

tion of promoter regions. Bioinformatics 19:1964-1971.

Howard D and Benson K (2002) Evolutionary computation me-

thod for pattern recognition of cis-acting sites. BioSystems

72:19-27.

Jáuregui R, Abreu-Goodger C, Moreno-Hagelsieb G, Collado-

Vides J and Merino E (2003) Conservation of DNA curva-

ture signals in regulatory regions of prokaryotic genes. Nu-

cleic Acids Res 31:6770-6777.

Kalate R, Tambe SS and Kulkarni B (2003) Artificial neural net-

works for prediction of mycobacterial promoter sequences.

Comput Biol Chem 27:555-564.

Kanhere A and Bansal M (2005a) Structural properties of promot-

ers: Similarities and differences between prokaryotes and

eukaryotes. Nucleic Acids Res 33:3165-3175.

Kanhere A and Bansal M (2005b) A novel method for prokaryotic

promoter prediction based on DNA stability. BMC Bioin-

formatics 6:1471-2105.

Lewin B (2008) Genes IX. Artmed, Porto Alegre, 955 pp.

Losa GA, Merlini D, Nonnenmacher TF and Weibel ER (1998)

Fractals in Biology and Medicine. Vol. II, Mathematics and

Bioscience in Interaction. Birkhäuser, Basel, 321 pp.

Mahadevan I and Ghosh I (1994) Analysis of E. coli promoter

structures using neural networks. Nucleic Acids Res

22:2158-2165.

O’Neill, MC (1991) Training back-propagation neural networks

to define and detect DNA-binding sites. Nucleic Acids Res

19:313-318.

Oppon EC (2000) Synergistic Use of Promoter Prediction Algo-

rithms: A Choice for a Small Training Dataset? Doctorate in

Computational Science, South African National Bioinfor-

matics Institute, 238 pp.

Pandey SP and Krishnamachari A (2006) Computational analysis

of plant RNA Pol-II promoters. Biosystems 83:38-50.

Pedersen AG, Baldi P, Brunak S and Chauvin Y (1996) Character-

ization of prokaryotic and eukaryotic promoters using hid-

den Markov models. In: Proceedings of the Fourth Interna-

tional Conference on Intelligent Systems for Molecular

Biology, St. Louis, pp 182-191.

Polate K and Günes S (2007) A novel approach to estimation of E.

coli promoter gene sequences: Combining feature selection

and least square support vector machine (FS_LSSVN). Appl

Math Comput 190:1574-1582.

SantaLucia J and Hicks D (2004) The thermodynamics of DNA

structural motifs. Annu Rev Biophys Biomol Struct

33:415-440.

Thompson JD, Higgins DD and Gibson TJ (1994) Clustal W: Im-

proving the sensitivity of progressive multiple sequence

alignment through sequence weighting position-specific gap

penalties and weight matrix choice. Nucleic Acids Res

22:4673-4680.

Witten IH and Frank E (2005) Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufman, San

Francisco, 560 pp.

Internet Resources
R Development Core Team (2005) R: A language and environ-

ment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. http://www.R-project.org

(November 20, 2005).

Associate Editor: Luciano da Fontoura Costa

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

360 Avila-Silva et al.


