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Abstract: Municipal solid waste (MSW) must be managed to reduce its impact on environmental
matrices and population health as much as possible. In particular, the variables that influence the
production, separate waste collection, and costs of MSW must be understood. Although many
studies have shown that such factors are specific to an area, the awareness of these factors has created
opportunities to implement operations to enable more effective and efficient MSW management
services, and to specifically respond to the variables that have the most impact. The deep learning
approaches used in this study are effective in achieving this goal and can be used in any other
territorial context to ensure that the organizations that deal with these issues are more aware and
create useful plans to promote the circular economy. Our findings indicate the important influence
of number of rooms in a residential buildings and construction years on MSW production, the
combination of services such as municipal collection centers and door-to-door service for separate
MSW collection and the characteristics of the residential buildings in the municipalities on MSW
management costs.

Keywords: municipal solid waste; deep learning; municipal collection centers; door to door service;
separate collection; waste management

1. Introduction

Waste management, in particular municipal solid waste (MSW), is one of the most
important problems faced by modern society. As declared by The 7th Environment Action
Programme (EAP), it is necessary to create a circular economy based both on the reduction
MSW production and to increase reuse and/or recycling as much as possible [1,2]. Separate
collection is one of the most important instruments that can be used to reduce residual
waste streams and the landfilling of waste [3], and, consequently, land consumption and
landfill gas emissions [4]. Source separation can lead to regional economic benefits using
locally recycled materials instead of imported raw materials [5].

Many studies showed that many factors (for example, geographical location, collection
repetition, standard of living, economic condition, laws on waste management, local culture
and beliefs, population growth, and size of households) affect the production, efficiency
of separate collection, and management costs of waste [6–8]. As many factors as possible
should be considered in a multivariate analysis approach to understand not only the factors
influencing MSW but also the degree of importance of each factor. Multivariate analysis
on MSW management in some studies [6–13] was performed with a machine learning
approach, which are computer algorithms that improve automatically through experience.
Machine learning algorithms build a mathematical model based on sample data, known as
training data, to make predictions or decisions without being explicitly programmed to do
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so [14]. The availability of large data sets and their processing using graphics processing
units (GPUs) have promoted the development of new modeling approaches such as deep
learning, which is an evolution of machine learning approach that enabled the construction
of nets with many hidden layers. This resulted in a new theory and caught the attention of
many researchers [15–17].

The innovation of this study is in our approach multivariate analysis with this new
type of model and our consideration of a large number varied factors (102 factors) that
could influence per capita production, separate collection, and cost of MSWs (infrastruc-
ture, organizational, demographic, social, and economic factors including organizational
and economic services of treatment, waste disposal, and separate collection). The aim
was to understand in depth the objects of study as well as to plan interventions for the
most influential factors that favor the circular economy, reduce MSW production and the
associated management costs, and increase separate collection. Apulia Region—Waste
Management Section and Apulian Waste Regional Observatory (AWRO) regulations were
made also these studies [18]. AWRO is a technical-administrative structure that aims
to monitoring the Apulian integrated waste cycle and to support the Apulian region in
terms of its environmental policy on waste management by collecting and elaborating data
on urban solid waste and special/hazardous waste production, recovery, and disposal,
publishing the results.

2. Background of Multivariate Analysis on MSW Management in Europe and in Italy

Methods dealing with only one variable are called univariate methods. Methods
dealing with more than one variable at once are called multivariate methods. Natural
systems cannot be described satisfactorily using univariate methods because any particular
phenomenon studied in detail usually depends on several factors. If these factors are
collected every day a multivariate data matrix is generated. For interpretation of such data
sets multivariate data analysis is useful. Multivariate data analysis can be used to process
information in a meaningful fashion. These methods can afford hidden data structures.
On the one hand the elements of measurements often do not contribute to the relevant
property and on the other hand hidden phenomena are unwittingly recorded. Multivariate
data analysis allows us to handle huge data sets in order to discover such hidden data
structures which contributes to a better understanding and easier interpretation. There
are many multivariate data analysis techniques available [19] ranging from the classic
inferential statistical method regression model (Poisson) [20–22] to new models based
ANN machine learning algorithms as deep learning or random forest [16,23,24]. Most of
the studies on MSW management in Europe are concentrated on the cities areas and used
every type of methods to predict MSW generation. MSW generation was predicted using
regression and trend analysis in Romania [25] for example. In this case population aged
15–59 years strongly influences the results. A regression model was also used in Turkey
where it resulted that GDP has a high impact on the MSW generation as it is directly related
to consumption [13]. An ANN model was used, for example, in Serbia to determine future
waste characteristics [26], showing an interesting relation between MSW and average
incomes of municipality, level of employment, age structure, educational level and housing
condition. Other studies developed a general regression neural network (GRNN) model for
the prediction of annual municipal solid waste (MSW) generation at the national level for
44 countries of different size, population and economic development level [9]. In the Italian
context there are not many papers about multivariate analysis on MSW management. An
interesting paper studied to what extent income and municipal waste generation are linked
and at what level of income they become delinked using data sets from Italian provinces
that include rich northern and poorer southern regions [27].

3. Deep Learning Theory

Since the 1950s, a small subset of artificial intelligence (AI) methods, called machine
learning (ML), has revolutionized several fields in the last few decades. Neural networks
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(NN) in turn is a subfield of ML, and it was this subfield that spawned deep learning (DL).
Since its inception DL has been creating ever larger disruptions, showing outstanding
success in almost every application domain. DL which uses either deep architectures of
learning or hierarchical learning approaches), is a class of ML developed largely from 2006
onward. Learning is a procedure consisting of estimating the model parameters so that
the learned model (algorithm) can perform a specific task. For example, in artificial neural
networks (ANN), the parameters are the weight matrices. The recent literature states that
DL-based representation learning involves a hierarchy of features or concepts, where the
high-level concepts can be defined from the low-level ones and low-level concepts can
be defined from high-level ones. In some articles, DL has been described as a universal
learning approach that is able to solve almost all kinds of problems in different application
domains [16,28–31].

The DL approach is sometimes called universal learning because it can be applied
to almost any application domain. It is a robust approach because it does not require
precisely designed features. Instead, optimal features are automatically learned for the task
at hand. As a result, the robustness to natural variations of the input data is achieved. The
same DL approach can be used in different applications or with different data types. This
approach is often called transfer learning. In addition, this approach is helpful where the
problem does not have sufficient available data. In addition, The DL approach is highly
scalable [16,28–31].

Deep Learning approach can be supervised, semi-supervised, and unsupervised.
Supervised learning is a learning technique that uses labeled data. In the case of super-
vised DL approaches, the environment has a set of inputs and corresponding outputs.
Semi-supervised learning is learning that occurs based on partially labeled datasets. Un-
supervised learning systems are ones that can without the presence of data labels. Deep
learning approaches can be used to solve forecasting problem of classification or regres-
sion [16,28–31]. In particular deep-learning structures for nonlinear classification and
regression are the most frequently used for modeling and forecasting [32] and was used
in this study. Neurons, which are placed in the layers, are the basic processing elements
of deep learning models. The layers between the first layer (inputs) and the last layer
(outputs) are called hidden layers. Neurons on each layer sum the weighted inputs, add a
bias to the sum, and then apply an activation function to process the sum and compute the
outputs. The signal processing of neurons can be mathematically expressed as:

Yi =
∫ ( M

∑
j=1

(
WijXj + βij

))

where Yi is the output to the ith neuron in the current layer; wij and βij are the weight and
bias of the j-th input on the i-th neuron, respectively; M is the number of inputs; Xj is the
j-th output from the previous layer; and f is the activation function, which is in this study,
is the most frequently used [16,17], called rectified linear input (ReLU; Figure 1).
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4. Integrated Waste Management Theory

In Italian and European law [35], integrated management is a system aimed at manag-
ing the entire waste process (including production, collection, transport, treatment, and
final destination) with the aim of energy and raw materials recovery, and, therefore, to
minimize the fraction destined to the landfill, and whose activities, even the realization and
management of the plants, are entrusted to a single subject. The law addresses the issue of
waste by outlining a number of priorities and actions within the integrated problem man-
agement logic. Specifically, the priorities are: development of clean technologies, design
and placing on the market of products that do not contribute or make a minimum contri-
bution to the generation of waste and pollution, technological improvements to eliminate
the presence of hazardous substances in waste, and active role of public administrations in
the recycling of waste and its use as an energy source. The actions mention:

Waste prevention:

• Correct assessment of the environmental impact of each product during its entire
life cycle;

• Procurement specifications considering the ability to prevent production;
• Promote experimental agreements and programs to prevent and reduce the quantity

and danger of waste;
• Implement integrated pollution reduction and prevention actions.

Waste recovery:

• Reuse and recycling;
• Production of secondary raw material by treating the waste;
• Favoring the market in re-used products via economic measures and specifications

in tenders;
• Use of waste to produce energy (energy recovery (cold biological oxidation, gasifica-

tion, and incineration).

Therefore, if the first level of attention is focused on the need to prevent the formation
of waste and reduce its dangerousness, the transition to a circular economy shifts the
focus to the reuse, fixing, renewal, and recycling of materials and products existing in Italy.
What is normally considered waste can be turned into a resource. Products are specifically
tailored to material cycles: consequently, these create a flow that maintains added value
for as long as possible. The residual waste is close to zero. A circular type project is the
starting point for taking any new product or service in the circular economy. Considering
the durability, reuse, repair, reconstruction, and recycling, cars, computers, appliances,
packaging, and many other products can be designed. Greater cooperation within supply
chains can reduce costs, waste and damage to the environment.

Advances in eco-innovation offer new products, processes, technologies, and orga-
nizational structures. Some companies have the opportunity to discover new markets
by moving from selling products to selling services and developing business models
based on renting, sharing, repairing, updating, or recycling individual components. This
new approach yields many business opportunities for small- and medium-sized enter-
prises (SMEs).

Recycling is a fundamental step for the circular economy because it means transform-
ing waste into a resource (raw material, substance, or product). To recycle, however, it is
necessary to know when, under what conditions, and for what purpose waste ceases to
be a resource (end of waste). However, the end of the waste cannot be decided by the
recycler, but must be determined by the authority. To date, European or national standards
have only been decided for glass, metals, waste fuels, ground asphalt, door-to-door service,
and vulcanized rubber, which allow the transformation from waste to resource. For the
non-reusable and then recycled material (such as paper napkins) and the sub-items (i.e.,
the indistinguishable and therefore non-recyclable fraction of waste), there are two solu-
tions for energy recovery through cold or hot systems, such as biooxidation (aerobic or
anaerobic), gasification, pyrolysis and incineration, or landfill disposal. Therefore, even
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in an ideal situation of complete recycling and recovery, a percentage of residual waste is
disposed of in landfills or oxidized to eliminate it and recover energy. Ideally, for the Italian
and European Law [35], use of incineration and unsorted landfills should be limited to the
minimum necessary. Although landfilling proves to be the better financial option, it is for
the shorter term. The landfill option would require the need of a replacement landfill much
sooner [36]. Instead, recycling saves more energy than is generated by incinerating mixed
solid waste in an energy-from-waste facility [37–39].

5. Materials and Methods
5.1. Study Design

The sequential steps used in the development of the study design of the three variables,
Annual per capita waste production, MSW separate collection and MSW management
costs were:

(1) Data Collection. This step was about searching and collecting all the data available for
develop Multivariate analysis. Annual data from 2008 to 2018 on each municipali-
ties were collected. In this way, the analyses included the different socio-economic
characteristics of producers and their evolution.

(2) Choice of possible influential factors to be analyzed. From the data collected, in this
step were identified factors for the study of the three dependents variables. Some
independent factors can be excluded due to a lack of a possible influence on the
analyzed dependent variable.

(3) Treatment of Descriptive Indicator and Missing Data. Same factor collected can be de-
scriptive. These factors must be converted into a numerical format to be applied to
Multivariate analysis. The techniques used for this purpose was “ordinal coding” [40].
If the data were found to be inconsistent or untreatable, they were excluded from
the analysis

(4) Development of Deep Learning Models. To understand which variables most affected
the dependent variables (per capita production of MSW, separate waste collection,
and costs for waste collection and disposal), numerous models with a deep learning
approach must be developed and tested, changing both the number of hidden layers
and the number of neurons within these layers and learning epochs. The steps for the
model standard development were:

(a) Data were randomized.
(b) Independent parameters were normalized to a single comparable unit of mea-

surement (with values ranging from 0 to 1, using the following formula [41]:

Xn = (Xnn−Min(X))/Max(X)−Min(X)

where Xn is the normalized value of each variable for record n, Xnn is the
non-normalized value of each variable for record n, Max(X) is the maximum
value of each variable, and Min(X) is the minimum value of each variable.

(c) All datasets must be divided into two parts, the first part containing 70% of
the data to train the model, and the second, containing 30% of the data, were
subsequently used to evaluate the quality of the model (testing phase) [42].
With the first part, the developed models adapt their algorithms to become
increasingly precise on the basis of a series of learning epochs defined by the
builder of the model.

Each model is supervised and solves regression problems. For each layer of the
models, a bias neuron was provided to strengthen its effectiveness. ReLU is used for
each model [33,34]. All models was developed using the R 3.6.3 program (Keras).

(5) Choice of the most effective model. The accuracy of all developed models was evaluated
by using the trained model on the testing data and comparing predicted values with
actual testing values. Two measures were used to evaluate Model Quality: root mean
square error (RMSE) and mean absolute error (MAE) [43]. Low values of each type of
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error correspond to better model performance. The R 3.6.3 program (Keras) was used
to calculate these values.

(6) Identification of factors most influenced each of the three independent variables within each
model. To assess which factors most influenced each of the three independent vari-
ables within each model, was used the R package “vip” (permutation-based VI scores
method) developed in 2018 [44]. The individual conditional expectation (ICE) curves
were subsequently constructed to underline the relationship between the most impor-
tant variables in the models and the output of the model. The ICE curves represent
the output values resulting from the model for each value that can be taken from each
dataset record (gray lines) [45]. The red lines of each figures represent average output
values as the value of each variable changes. Individual conditional expectation (ICE)
plots, is a tool for visualizing the model estimated by any supervised learning algo-
rithm developed in 2015 [45]. From the variation in this red line, we determined the
range of increase or decrease in the average output to increase of the unit of measure
of each variable. In this calculation, the highest error of each model between RMSE
and MAE was considered, using following equations: Maximum range value:

Max(X0 ± (Max(RMSE: MAE))) − (X1 ± (Max(RMSE: MAE)))/|Y0 − Y1|

Mean range value:
(X0− X1)/|Y0−Y1|

Minimum range value:

Min(X0 ± (Max(RMSE: MAE))) − (X1 ± (Max(RMSE: MAE)))/|Y0 − Y1|

where X0 is the output value at v normalized input value of 0, X1 is the output value
at a normalized input value of 1, Y0 is the non-normalized input value = 0, and Y1 is
the non-normalized input value = 1.

(7) Inferential statistics analyses to confirm the results of the models. Cronbach’s α, Pearson’s
correlation coefficient, Shapiro–Wilk normality test, Kruskal–Wallis test, and Dunn’s
post-hoc test) were conducted with R.3.6.3 software, considering a p-value < 0.05 as a
statistically significant difference to confirm the results of the model.

5.2. Geographical Study Area

Apulia, which is a region of south-eastern Italy with 257 municipalities, a land surface
area of 19,347 km2, 800 km of coastline and four million inhabitants was selected as the
area for this study [20]. MSW management services are organized in 38 homogenous areas.
Every area have an homogeneous territorial or population characteristics. For example
there are areas characterized by hilly territory and with greater rural economic activity,
while there are coastal and flat areas with greater commercial activities [46] (Figure 2).

Apulia has the highest MSW per capita production in southern Italy (467 kg/ inhab-
itant/year vs. 499.7 kg/inhabitant/year in Italy in 2018) and is the fourth last region in
terms of percentage of separate collection (47.3% vs. 58.1% in Italy in 2018) [48].

5.3. Details about Step 1—Data Collection

Data were collected from different sources of each municipality for the period 2008–2018:

5.3.1. Population, Demographic Indicators, Land Area, Residential Buildings, Local Units
of Active Businesses

Data were collected from http://dati.istat.it [49]. websites regarding: resident pop-
ulation (total, by age, by sex, by marital status); density (inhabitant per km2); number of
components per family; demographic indicators (mortality rate, birth rate, natural balance,
migration balances, total balance); land area; number of residential buildings by period of
construction, by number of rooms, and by number of floors; and number of local units of
active businesses by type.

http://dati.istat.it
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  Figure 2. Homogenous areas of municipal solid waste (MSW) management services in Apulia [47].

5.3.2. MSW Production and Separate Collection Data

MSW production data included waste type consisting of everyday items that are
discarded by the public. Although the waste may originate from a number of sources that
has nothing to do with a municipality, the traditional role of municipalities in collecting and
managing these kinds of waste have produced the particular etymology “municipal”. These
data are transmitted monthly by the Apulian municipalities on regional environmental
portal [50] and are available.

The percentage of separate collection was calculated based on guidelines introduced
by the Italian Environmental Decree of 26 May 2016 and implemented by the Apulia
region [51]. These data, which are classified by European Waste Codes (ECW), are grouped
by main fractions of separate collection (paper, plastic, glass, organic, multi-material, green,
and metals).

5.3.3. Tax Returns

Data regarding tax returns (number of taxpayers, and total income = EUR 0, 0 to
10,000, 10,000 to 15,000, 15,000 to 26,000, 26,000 to 55,000, 55,000 to 75,000, 75,000 to 120,000,
and >120,000) is available on the website of the Italian Ministry of Finance [52].

5.3.4. Land Use

Data about areas for industrial agriculture, traffic (road building) and especially urban
human settlements percentage on the total land extension per Municipalities can be found
on the ISPRA website [53].

5.3.5. Municipalities’ Budget and MSW Management Services

The budget data concerning the expenses for the collection and disposal of waste
were provided by the Italian Ministry of the Interior from 2008 to 2018. In particular
about purchases of goods and services, personnel costs and investment expenditure. These
data included information about MSW management services from 2008 to 2015 (type of
administrative management of MSW collection, transportation and treatment services. For
example managed directly by Municipalities or contracted to private company).

5.3.6. Municipal Waste Collection Centers and Door-to-Door Collection

A survey was addressed to all Apulian municipalities, using the Google Forms (Google
LLC, Mountain View, CA, USA). Data collected for each municipality by this survey
included: presence of waste collection centers (residential drop-off facility for recycling
and trash disposal)., kilograms of MSW separate fraction collected in waste collection
centers from 2008 to 2018, Door-to-door services implementation date (During door to
door collections, recyclable materials or food waste are collected directly from residents’
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doorsteps in communal corridors) and MSW management services from 2016 to 2018.
Before submitting the questionnaire to all municipalities, a sample of 15 municipalities
was involved. Based on the replies, we calculated Cronbach’s α to measures reliability or
the internal consistency of the survey [54]. The same test was subsequently applied to all
questionnaire replies. The Cronbach’s α of the sample of 15 municipalities was 0.97. This
indicator was subsequently calculated as 0.92 on all respondents (231/257, 89.9%).

5.3.7. Tourist Arrivals and Presences

The Apulian data of tourist arrivals (number of tourists who visited the Apulia region)
and tourist presence (tourist arrivals multiplied by the days of stay) were obtained through
the website of the Regional Agency Puglia Promozione [55].

5.3.8. Coastal or Rural Municipalities

Data from cartographic analysis were obtained using the QGIS 3.10 program (QGIS.org,
2020. QGIS Geographic Information System. QGIS Association. http://www.qgis.org,
OSGeo, Chicago, IL, USA).

5.4. Details about Step 2—Choice of Possible Influential Factors to be Analyzed

From the data collected, we identified 102 factors for the study of the three dependents
variables. Some independent factors were excluded due to a lack of a possible influence on
the analyzed dependent variable.

(1) We chose 88 independent factors for the dependent variable “Annual per capita waste
production (kg)”. These data were corrected considering number of tourists and
tourist arrivals

(2) We chose 99 independent factors for the dependent variable “Percentage of separate
collection”.

(3) We chose 101 independent factors for the dependent variable “MSW management
costs (Euros per inhabitant per year)”.

5.5. Details about Step 3—Treatment of Descriptive Indicator and Missing Data

Of the 102 factors collected, 4 were descriptive. These factors were converted into a
numerical format using the techniques of ordinal coding [40] as follows:

1. MSW management Apulian homogenous areas: Each of the 38 homogeneous areas
was separately assigned a code from 1 to 38;

2. Coastal or rural municipalities: Coastal municipalities were coded 2; rural areas were
coded 1;

3. MSW management services: The same numerical classification used by the Italian
Ministry of the Interior was used:

(1) Service managed in economy (directly by the municipality)
(2) Service managed with municipal company (by company controlled by the mu-

nicipality)
(3) Service managed with provincial company (by company controlled by provin-

cial public authority)
(4) Service managed with a consortium (created by the union of two or more

municipalities but does not include the municipality in question)
(5) Service managed with a private company
(6) Service managed with a public company (but not controlled by the municipality)
(7) Consortium management service, consortium head (created by the union of

two or more municipalities, including the municipality in question as head of
the consortium)

(8) Consortium management service, consortium body (created by the union of
two or more municipalities, including the municipality in question as body of
the consortium)

(9) Service with other type of management

http://www.qgis.org
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4. Door-to-door service: If present all year, a value of 1 was assigned; otherwise, 0.
If services started during the course of the year, the numerical classification depended
on the following formula:

Months of active door-to-door service in a year/Number of months in the year

1.7% of the data collected were found to be inconsistent or untreatable and were
excluded from the analysis. Some studies asserted that a missing rate of 5% or less is
inconsequential, others maintained that statistical analysis is likely to be biased when more
than 10% of data are missing [56,57]. In any case, our study had a lower value of data
inconsistent or untreatable.

6. Results

This section presents the results of the deep learning models chosen according to the
methods described in Section 5 with respect to each of the three variables considered in
the study.

6.1. Annual Per Capita Waste Production

Annual per capita waste production (kg inhabitant + tourists per year) in Apulia
decreased by 24.3% from 2008 to 2018 from 516.9 to 467.2 kg per capita. The dataset with
all complete input data contained 2730 records (96.6%, 2730/2827. This number is above
the 2417 records that were needed to have a 99% confidence level and a 1% confidence
interval). The best performing model had three hidden layers of 60, 20, and 10 neurons
each (Figure 3).
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Figure 3. Deep learning model architecture for annual per capita waste production. We used 800 learning epochs were used
to train the model.

The correlation between the real values in the testing dataset (30% of the data) and
those predicted from the model was 94.6% (MAE = 30.8 kg and RMSE = 40.2 kg).

The most important variables influencing annual per capita waste production per
the model (Figure 4, are mainly related to the rooms in a residential building (1 room—
X29, 2 rooms—X30, 5–8 rooms—X32, 3–4 rooms—X31, and 9–15 rooms—X33), residential
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building construction years, and, in particular, to the frequency of the oldest residential
buildings (buildings built <1918—X20, buildings built between 1919 and 1945—X21, and
buildings built between 1946 and 1960—X22), the type of municipality (coastal or rural—
X6), and the frequency of the declared incomes on the total of the declared incomes, and,
in particular, to the lower bands of income (EUR 26,000–55,000—X67, 0–10,000—X64,
15,000–26,000—X66, and 10,000–15,000—X65).
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Figure 4. The 15 independent variables most influencing the annual per capita waste production
(variable = X4).

Figure 5 shows the ICE curves of the 15 variables most influencing annual per capita
waste production derived by the model.
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Table 1 shows the range of the average increase/decrease per unit of measurement
for each of the 15 variables shown in Figure 5 using the calculation method described in
Section 5.1.—Step 6.

Table 1. Annual per capita waste production: Range of the average increase/decrease per unit of measurement of each of
the 15 variables shown in Figure 5.

Cod.Var. Variable Measurement Unit

Maximum
Increase/Decrease in
Annual Production

MSW at Variation of
1 Unit of

Measurement (kg)

Medium
Increase/Decrease in
Annual Production

MSW at Variation of
1 Unit of

Measurement (kg)

Minimum
Increase/Decrease in
Annual Production

MSW at Variation of
1 Unit of

Measurement (kg)

X29 % residential buildings with 1
room/Tot. residential buildings % −7.1 −6.2 −5.3

X20 % residential buildings built
<1918/Tot. residential buildings % −6.0 −5.0 −4.0

X6 Coastal or Rural Municipalities Coastal/Rural +160.4 +80.0 −0.4

X30 % residential buildings with 2
rooms/Tot. residential buildings % −6.3 −5.2 −4.2

X32 % residential buildings with 5–8
rooms/Tot. residential buildings % −14.7 −12.1 −9.5

X31 % residential buildings with 3–4
rooms/Tot. residential buildings % −8.1 −6.0 −3.9

X21
% residential buildings built
1918–1949/Tot. residential

buildings
% −6.8 −4.9 −2.9

X67 Annual income EUR
26,000–55,000/Total Income % +9.1 +6.8 +4.7

X64 Annual income EUR
0–10,000/Total Income % +9.3 +7.0 +4.7

X22
% residential buildings built
1946–1960/Tot. residential

buildings
% −5.8 −3.8% −1.9

X66 Annual income EUR
15,000—26,000/Total Income % +13.3 +10.5 +7.7

X65 Annual income EUR
10,000–15,000/Total Income % +11.4 +7.8 +4.2

X33 % residential buildings with 9–15
rooms/Tot. residential buildings % +9.3 +5.2 +1.0

X38 % residential buildings >4
rooms/Tot. residential buildings % +4.2 +2.1 0.0

X25
% residential buildings built
1981–1990/Tot. residential

buildings
% −7.5 −5.7 −3.9

Figure 5 and Table 1 show that trend in the number of rooms variables in residential
buildings was inversely proportional to the annual per capita waste production. The
variable that had the greatest impact on annual per capita waste production was X29
(percentage of residential buildings with 1 room) showed a marked and linear downward
trend in the ICE curve.

If the percentage of this type of building in all municipalities was equal to the min-
imum in the dataset (11.2% of total buildings), the average annual per capita waste pro-
duction in Apulia would be almost double compared to the current (800 kg/year). With
each percentage point increase in these buildings, annual per capita waste production is
reduced by an average of 5.3 to 7.1 kg.

Only the buildings with more rooms (X33) showed a trend directly proportional with
per capita waste production. With each percentage point increase in these buildings, annual
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waste production increased by an average range of 1 to 9.3 kg. A higher percentage of older
residential buildings (X20, X21, and X22) seemed to favor a lower annual waste production.
If all Apulian municipalities (X6) were coastal, the per capita waste production would be
higher. The average of the variable is 80 kg (range from 0.4 to 160.4 kg). The income of the
population influences MSW production (in particular, low- and medium-income classes).
The increase in the percentages of these classes led to an increase in MSW production
per capita.

6.2. Percentage of Separate Collection

The percentage of separate waste collection in Apulia has quadrupled from 12.4% in
2008 to 51.4% in 2019. The dataset with all complete input data contained 2623 records
(92.8%, 2623/2827. This number is above the 2417 records needed to have a 99% confidence
level and a 1% confidence interval). The best-performing model had four hidden layers
with 90, 70, 20, and 10 neurons each (Figure 6).
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Figure 6. Deep learning model architecture for the percentage of separate collection, using 100 learning epochs to train
the model.

The correlation between the real values in the testing dataset (30% of the data) and
those predicted from the model was 94.8% (MAE = 2.9% and RMSE = 3.9%).

The most important variables influencing the percentage of separate waste collection
per the model (Figure 7) are related to door-to-door service (X94) and the main waste
fraction of separate collection. In order of importance, they are: organic fraction, paper,
multimaterial fraction, and glass (X96, X99, X102, and X100, respectively). Annual MSW per
capita production is important for the percentage of separate collection (X4). Among the
most important variables and least discounted were some of the infrastructural features of
residential buildings such as structures with larger rooms (>16 rooms (X34) and 9–15 rooms
(X33)) or residential buildings with one floor (X35) and four floors (X38). Municipal
collection centers (X95) and their percentage of collected waste compared to the total
of separate collection were found to play an important role in influencing the separate
collection (16th variable in order of importance, affecting 1.3% of the model, which is
the same value obtained for X20 (percentage of residential buildings built <1918/total
residential buildings).
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Figure 7. The 16 independent variables most influencing the percentage of separate collection
(variable = X3).

Figure 8 shows the ICE curves of the 16 variables most influencing percentage of
separate waste collection derived by the model.
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Figure 8. ICE curves of the 16 variables most influencing percentage of separate waste collection
(X3)*; *X20 and X95 have the same percentage of influence.

Table 2 shows the range of the average increase/decrease per unit of measurement
of each of the 16 variables shown in Figure 8 using calculation method described in
Section 5.1.—Step 6.
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Table 2. Percentage of separate collection: Range of the average increase/decrease per unit of measurement of each of the
16 variables shown in Figure 9.

Cod. Var. Variable Measurement Unit

Maximum
Increase/Decrease in % of

Separate Collection at
Variation of 1 Unit of

Measurement

Medium
Increase/Decrease in % of

Separate Collection at
Variation of 1 Unit of

Measurement

Minimum
Increase/Decrease in % of

Separate Collection at
Variation of 1 Unit of

Measurement

X94 Door to Door Service 0 = No
1 = Yes all year round +3.2% +11.0% +18.8%

X96 % Organic Fraction/Total
separate collection % +0.16% +0.08% +0.002%

X99 % Paper Fraction/Total
separate collection % −0.33% −0.25% −0.17%

X4 Annual per capita waste
production Kg −0.022% −0.016% −0.011%

X102 % Multimaterial Fraction/Total
separate collection % −0.26% −0.14% −0.03%

X34
% residential buildings with
>16 rooms/Tot. residential

buildings
% −1.2% −0.83% −0.46%

X98 % Glass fraction/Total separate
collection % −0.29% −0.20% −0.11%

X35 % residential buildings with 1
floor/Tot. residential buildings % +0.05 −0.05% −0.15%

X38
% residential buildings > 4

floors/Tot. residential
buildings

% −0.43% −0.22% −0.02%

X6 Coastal or rural municipalities Coastal/Rural +5.8 −2.0% −9.8%

X36
% residential buildings with >2

floors/Tot. residential
buildings

% +0.08% −0.08% −0.23%

X33
% residential buildings with
9–15 rooms/Tot. residential

buildings
% +1.05% +0.64% +0.24%

X46 % Land consumption/total
land extension % +0.39% +0.20% 0.0%

X20
% residential buildings built

<1918/Tot. residential
buildings

% +0.19% +0.09% 0.0%

X95

% separate waste collection
gathered by municipal waste

collection center /total
separate collection

% +0.18% +0.1 +0.02%

Figure 8 and Table 2 show that door-to-door service led to an increase in the percentage
of separate collection from 3.2% to 18.8%, with a mean of 11%. With the increasing
percentage of separate collection, the percentage of organic fraction in total separate
collection increased, while the other fractions tended to decrease proportionally (paper,
multimaterial fraction, and glass).

Annual MSW production was found to have an inversely proportional effect on the
percentage of separate collection. With each 1 kg decrease in waste production, the separate
collection increased in the range of 0.011% to 0.022%. Separate collection tended to decrease
with the increase in the size of residential buildings (over 16 rooms and over four floors).

Municipal waste collection centers influenced separate collection. For each increase
in percentage of separate collection gathered by the municipal waste collection centers,
separate collection increased in the range of 0.02% to 0.18%

An inferential statistical analysis was conducted to confirm the model results. In par-
ticular, the separate collection data were compared between the municipalities and the
different type of MSW services. The distribution of the separate collection percentages of
the available dataset was not normal (Shapiro–Wilk W-test = 0.87552, p-value < 0.0001). The
nonparametric Kruskal–Wallis test was used for comparison (Kruskal–Wallis chi-squared
= 1250.7, degree of freedom (df) = 3, p-value < 0.0001), showing a difference between the
medians of the percentage of separate collection of the groups.
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Dunn’s post-hoc test showed there was statistically significant differences for each
comparison (all p-values < 0.0001 excluding municipalities with municipal waste collection
centers (MWCC) vs. municipalities with neither of the two services (p = 0.004)). The
percentage of separate collection was higher in the municipalities with door- to-door
service (DtD) or with municipal waste collection centers (MWCC) and even more if they
had both (MWCC+DtD) (Figure 9).
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6.3. MSW Management Costs (EUR Per Inhabitant Per Year)

In 2018, the municipalities spent EUR 716,744,600 on MSW management in the Apulia
region. Since 2008, expenditure has grown by 39.7%. Most costs in this area were used for
the purchase of goods and services (over 96%)

The dataset with all complete input data included 2618 records (92.6%, 2618/2827.
This number is above the 2417 records needed to have a 99% confidence level and a 1%
confidence interval). The best performing model had three hidden layers of 80, 40, and
20 neurons separately (Figure 10).
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The correlation between the real values in the training dataset (30% of the data) and
those predicted from the model was 86.2% (MAE = EUR 24.2 and RMSE = EUR 32.1).

The most important variables influencing MSW management costs (Figure 11) were
found to be related to the characteristics of the residential buildings in the municipalities
X35 (residential buildings with one floor), X20 (residential buildings built <1918), X21
(residential buildings built from 1919 to 1945, X37 (residential buildings with three floors),
X29 (residential buildings with one room), and X23 (residential buildings built from 1961 to
1970)). Among the top 10 variables were the type of municipality (coastal or rural (X6)), the
presence of door-to-door service (X94), and tourist arrivals (X16). The divorced population
(X43) also seemed to have an influence. Among the separate collection fractions collected,
organic appeared to have the greatest influence (X96).
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Figure 11. The 15 independent variables most influencing waste collection and disposal costs
(variable = X1).

Figure 12 shows the ICE curves of the 15 most influential variables affecting MSW
management costs derived by the model.

Table 3 shows the range of the average increase/decrease per unit of measurement
of each of the 15 variables shown in Figure 12 using the calculation method described in
Section 5.1.—Step 6.

Table 3. MSW management costs: Range of the average increase/decrease per unit of measurement of each of the 15
variables shown in Figure 13.

Cod.Var. Variable Measurement Unit

Maximum
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

Medium
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

Minimum
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

X35 % residential buildings with 1
floor/Tot. residential buildings % −1.72 −0.87 −0.02

X20 % residential buildings built <1918/Tot.
residential buildings % −2.24 −1.43 −0.64

X6 Coastal or Rural Municipalities Coastal/Rural +74.2 +10.0 −54.2

X43 % divorced population/Tot.
Inhabitants % +44.52 +27.6 +10.73

X21 % residential buildings built
1919–1945/Tot. residential buildings % −2.39 −0.84 +0.70

X37 % residential buildings with 3
floors/Tot. residential buildings % −2.60 −1.31 −0.01

X29 % residential buildings with 1
room/Tot. residential buildings % −1.40 −0.67 +0.05
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Table 3. Cont.

Cod.Var. Variable Measurement Unit

Maximum
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

Medium
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

Minimum
Increase/Decrease in
Waste Collection and

Disposal Costs at
Variation of 1 Unit of
Measurement (EUR)

X23 % residential buildings built
1961–1970/Tot. residential buildings % −3.63 −1.83 −0.02

X16 Tourist arrivals N +0.0003 +0.0002 +0.00005

X94 Door-to-door service 0 = No
1 = Yes all year round +69.2 +5.0 −59.2

X88
I—Accommodation and catering

services—local units of active
enterprises per km2

N +9.26 +4.82 +0.4

X25 % residential buildings built
1981–1990/Tot. residential buildings % −2.82 −1.36 +0.09

X34 % residential buildings >16 rooms/Tot.
residential buildings % −7.78 −4.74 −1.70

X96 % Organic Fraction/Total separate
collection % −1.04 −0.40 +0.24

X22 % residential buildings built
1946–1960/Tot. residential buildings % −2.97 −1.44 +0.58
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Figure 12. ICE curves of the 15 variables most influencing MSW management costs (X1).

Figure 12 and Table 3 show that municipal costs lowered as residential buildings with
one floor and older than 1918 increased. The coastal municipalities, as a model, seem to
have a slight tendency to have higher costs. The increase in one percentage point of the
divorced population in relation to the total population increased in costs from EUR 10.73
to 44.52.



Int. J. Environ. Res. Public Health 2021, 18, 752 18 of 22

For every increase in tourists arriving in the Apulian municipalities, costs increased
from EUR 0.0003 to 0.00005. For each increase in one unit per km2 of catering activity, the
average costs increased from EUR 0.4 to 9.26.

Inferential statistical analysis was conducted to compare the waste collection and
disposal costs compared to the activation of door-to-door service with the municipal waste
collection centers.

The distribution of these costs was not normal. (Shapiro–Wilk W-test = 0.78685,
p-value < 0.0001). The nonparametric Kruskal–Wallis test was used, highlighting a dif-
ference between groups (Kruskal–Wallis chi-squared = 194.36, df = 3, p-value < 0.0001).
Dunn’s post-hoc test subsequently highlighted no statistically significant difference be-
tween per capita costs of municipalities with a municipal waste collection center (MWCC)
and without any service (p = 0.089) but costs were higher in municipalities with both
door-to-door service and a municipal waste collection center (MWCC+DtD) compared
to the municipalities with only a municipal waste collection center (MWCC) or to the
municipalities with neither of two services (both p < 0.0001), and between those who have
both door-to-door service and a municipal waste collection center (MWCC+DtD) and the
municipalities with only door-to-door service (DtD) (p = 0.0057) (Figure 13).
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7. Discussion

Numerous studies have tried to identify the factors influencing MSW production,
separate collection, and management costs. Most of the studies on MSW management
in Europe are concentrated on the cities areas and used every type of methods to predict
MSW generation. MSW generation was predicted using regression and trend analysis in
Romania [25] for example. A regression model was also used in Turkey [13]. An ANN
model was used for example in Serbia [26]. Other studies developed a general regres-
sion neural network (GRNN) model for the prediction of annual municipal solid waste
(MSW) generation at the national level for 44 countries of different size, population and
economic development level [9]. Deep learning model combined with permutation-based
VI scores method (R package “vip”) [44] and individual conditional expectation (ICE)
plots method [45] was the very innovative and modern approach of the study of this
paper to forecast MSW independent variables, to determine the factors that most influence
the variables and to estimate how much they affect them. In addition, MSW production,
separate collection, and MSW management costs with the same database were considered
in this study. No literature paper was found considering these three variables at the same
time. Deep learning models have proven very effective in predicting all three variables,
with correlation between the real values in the testing dataset (30% of the data) and those
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predicted from the model between 86.2% and 94.8%. Statistical inference tests were used to
reinforce the results of deep learning models on some important influencing factors.

In particular, many studies have shown that the factors are specific to the area of study.
Each area has different local conditions such as climate, lifestyle, technological aspects,
economy, and culture [58].

We highlighted that the type of residential structures is an important influencing factor
for all three independents variables (production of waste, MSW separate collection and
management costs). In particular, where the number of rooms in a residential building is
low and medium (up to eight rooms), waste generation tends to be lower. If this number
is exceeded, production of waste tends to be higher. These findings are consistent with
some studies that have reported a directly proportional relationship between the size of
buildings and the generation of waste [26–59].

In municipalities with a high percentage of larger buildings (larger than 16 rooms
and with more than four floors), separate waste collection tends to be lower. This factor
requires more in-depth studies. There can be many possible explanations for this finding:
difficulties in organizing an efficient collection system and/or aspects more related to the
prevailing socio-economic characteristics of the inhabitants of such buildings.

A further element to be explored is the importance of age factors in residential build-
ings. Where there are many older buildings, production of waste and costs for transport
and disposal of waste tend to be lower. One of the possible explanations is linked to the
abandonment rate of buildings.

Consistent with many studies [13,26,27,58–60] an important factor influencing MSW
production is the annual income of the population (in particular, low- and medium-income
classes up to EUR 55,000 per year). The environmental Kuznets curve theorized that at
an initial increase in pollution (in this case the production of waste) is linked to increases
in per capita income, but the curve has a climax, thereafter turning downward due to a
greater willingness to pay for having a higher environmental quality [61]. In the Lombardia
region, a study showed that the climax of the curve is between EUR 23,500 and 28,000 [62].
In Apulia region, we found production of waste increased as income class increase from
EUR 0–10,000 (+7% of production for each percentage increase in this income range),
EUR 10,000–15,000 (+7.8%), and EUR 15,000–26,000 (+10.5%), and then the curve began to
flattening from EUR 26,000–55.000 (+6.8%) upward.

Some studies reported that in urban and tourist areas, waste production is greater
than in rural areas [63]. The same finding is here reported for Apulia, where higher MSW
amount and management costs were higher in coastal municipalities. In Apulia, the largest
and tourist attraction urban centers are coastal. Tourist arrivals had an important impact
both on separate MSW collection (among the top 20 influential factors) and especially on the
costs of the collection and disposal of waste (directly proportional trend with this variable).

As expected, the factors that most influenced the separate collection were door-to-door
services [64] and the collection of organic fraction. In particular, a high organic fraction had
a strong impact on separate MSW collection due to the characteristics of MSW in Apulia.
Consistent with other parts of the world [59,65,66], the organic fraction is one of the main
product fractions of MSW (about 19% in Apulia per 2018 Waste Observatory data).

Municipal collection centers were found to have an important impact on increasing
the percentage of separate collection, but did not significantly affect the individual costs of
waste collection and disposal. This cost became significant when associated with door-to-
door service.

8. Conclusions

We wanted to approach the problem of the production, separate collection, and
management costs of MSW developing a multivariate analysis based on a new type of
predictive model (deep learning approach) and considering a large number of factors
(102 factors including, for example, infrastructure, organizational, demographic, social,
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and economic factors including organizational and economic services of treatment, waste
disposal, and separate waste collection).

Deep learning model combined with permutation-based VI scores method (R package
“vip”) and individual conditional expectation (ICE) plots method was the very innovative
and modern approach of the study of this paper to forecast MSW independent variables,
to determine the factors that most influence the variables and to estimate how much
they affect them. This approach has proved particularly effective and reproducible in
other territory.

Knowledge of the factors affect the three variables and how much they affect is an
extremely valuable element to understand what would happen if you activate incident
actions on these influencing factors (for example, we demonstrated the importance of
combining services such as municipal collection centers and door-to-door waste collection
service. This combination significantly increases separate collection, having associated
benefits for both environmental and health. We can estimate how much differentiated col-
lection could be increased and how much management costs could be increased, applying
our model). So, many possibilities for cost-benefit analyses to evaluate policy to plan more
effective and efficient MSW management services, to reduce waste generation, to increase
MSW separate collection or to optimisation MSW management costs could be developed.

Future developments could refine these models and increase the accuracy of the
resulting information. For example our model had a lack of information and data about
educational qualifications and unemployment rates of the population.
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