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It is now well accepted that plasma cells can become long-lived (memory) plasma cells

and secrete antibodies for months, years or a lifetime. However, themechanisms involved

in this process of humoral memory, which is crucial for both protective immunity and

autoimmunity, still are not fully understood. This article will address a number of open

questions. For example: Is longevity of plasma cells due to their intrinsic competence,

extrinsic factors, or a combination of both? Which internal signals are involved in this

process? What factors provide external support? What survival factors play a part in

inflammation and autoreactive disease? Internal and external factors that contribute

to the maintenance of memory long-lived plasma cells will be discussed. The aim

is to provide useful additional information about the maintenance of protective and

autoreactive memory plasma cells that will help researchers design effective vaccines for

the induction of life-long protection against infectious diseases and to efficiently target

pathogenic memory plasma cells.

Keywords: plasma cells, memory plasma cells, long-lived plasma cells, maintenance, survival, bone marrow,

inflammation, autoreactivity

HISTORICAL ASPECTS OF MEMORY PLASMA CELLS

The term “plasma cell” (PC) was introduced by the anatomist Wilhelm Waldeyer in 1875, but it
is doubtful whether he was actually referring to the same cells now known as antibody-secreting
plasma cells. In 1895, Marshalko described oval cells with a strong basophilic cytoplasm and an
eccentric nucleus containing coarse heterochromatin, which indeed corresponds to the current
morphological definition of plasma cell (1). Its role as an antibody-secreting cell (ASC) was first
demonstrated by Astrid Fagraeus in 1947 (2). Max Cooper and Robert Good identified lymphocytes
(later termed as B lymphocytes) in the bursa of Fabricius of chickens, which is equivalent to the
human bone marrow as the precursor of plasma cells (3). The phenotype and isotype of plasma
cells can differ based on the type of activated B cells (naïve or memory, lymph nodes or spleen, and
B1 or B2) and stimuli (T-independent or T-dependent antigens) (4). Bone marrow (BM) plasma
cells are the main source of circulating antibodies (5–8). Plasma cells are specialized to secrete large
amounts of antibodies (about 103 per second) (9, 10). For many years, the general opinion was
that plasma cells are short-lived since they can only survive a few days under in vitro conditions
Therefore, it was postulated that plasma cells are replenished via the constant activation of memory
B lymphocytes (3, 11).
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In 1997, Andreas Radbruch’s group showed that antigen-
specific plasma cells generated in ovalbumin (OVA)-immunized
mice were maintained in the bone marrow for up to 120
days without proliferation (12, 13). At about the same time,
Slifka et al., using an entirely different technical approach,
demonstrated that plasma cells can persist in murine bone
marrow for more than 1 year, even if their precursors were
blocked (6). Recently, Hammarlund et al. observed the survival of
antigen-specific plasma cells induced by vaccination in the bone
marrow of rhesus macaques, a species with a lifespan similar to
humans, for more than one decade in spite of sustained memory
B cell depletion (14).

Plasma cells can be generally divided into two distinct
categories based on their lifespan: (a) short-lived plasma
cells/plasmablasts (proliferating cells with a life span of 3–5 days)
and (b) long-lived plasma cells (non-proliferating cells with a
life span of several months to lifetime). The term- antibody
secreting cells (ASCs) refers to both short-lived and long-lived
plasma cells. It is not fully understood whether long-lived plasma
cells represent the final differentiation stage of short-lived plasma
cells, or whether short- and long-lived plasma cells belong to
completely separate plasma cell populations (15). While long-
lived plasma cells are mainly formed during germinal center
reaction secreting high-affinity class switched antibodies located
in BM, short-lived plasma cells are mainly formed in extra-
follicular sites of secondary lymphoid organs expressing low-
affinity IgM antibodies (16, 17). The competence to become a
long-lived plasma cell is distinct from the basic ability to become
a plasma cell (18). It is presumed that not all plasma cells are
long-lived per se. In our opinion, long-lived plasma cells fulfill
the criteria of memory cells as they continuously secrete the
antibodies independently of their precursor cells (B cells), T cell
help and antigen presence. Therefore, we suggest to use the term
“memory plasma cell.”

We have proposed that, in order to become a memory cell,
short-lived plasmablasts need a special environment: the so-
called plasma cell survival niche (19, 20). This survival niche
is composed of cellular components and soluble factors derived
from these cells. If migratory plasmablasts reach the survival
niche and receive survival factors there, they will become
memory plasma cells; otherwise, they will remain short-lived
and die. The bone marrow is the primary niche for memory
plasma cells. Of note, plasma cells can survive for decades in
the hypoxic bone marrow, and it has been shown that hypoxic
condition enhances the survival of human plasma cells in vitro
(21). Therefore, the hypoxic environment could be one of the
factors that contribute to the long-term survival of memory cells.
The number of plasma cell survival niches in a given organ is
limited. This, in turn, limits the number of memory plasma cells
per organism (22). A recently introduced mathematical model
provides a possibility to quantify the niche-related dynamics of
plasma cells (23). However, the long half-life of plasma cells is a
new area of exploration. Most of our current knowledge about
memory plasma cells is frommouse models. However, we should
also consider some differences between human and mice (24).
There are many questions to be answered, for example, whether
the internal trigger for transformation into memory plasma cells

is the intrinsic program of plasma cells, or if it is related to
external signals from the plasma cell survival niche.

EXTRINSIC SURVIVAL
FACTORS (SIGNALS)

Extracellular factors can be divided into two general categories:
cellular compartments and molecular compartments.

Cellular Compartments
Cellular compartments of plasma cell survival niches are
composed of stromal cells (key players) and originated
hematopoietic cells (accessory cells).

Stromal Cells
Stromal cells are a complex network of various subpopulations,
including fibroblasts, endothelial cells, fat cells, and reticular
cells, almost all of which are bone marrow stromal cells of
mesenchymal origin (25). They provide signals by secreting
growth factors or by making direct cell-cell contacts needed
for hematopoiesis (including the progression of B-lymphoid
lineage cells) or for the survival of memory plasma cells (26, 27).
In vitro studies show that co-culture of plasma cells with stromal
cells significantly increases the life span of plasma cells (27).
Reticular stromal cells, a minor subpopulation of stromal cells,
express CXC-chemokine ligand 12 (CXCL12, a ligand of CXCR4
expressed on plasma cells) and are scattered throughout the
bone marrow (28). It has been shown that high numbers of
plasma cells are in contact with these CXCL12-expressing cells in
CXCL12/GFP reporter mice (28). Furthermore, in vivo intravital
microcopy studies have demonstrated that direct contacts form
between plasma cells and reticular stromal cells, that reticular
stromal cells form a static component of the plasma cell survival
niche, and that about 80% of plasma cells directly contact
reticular stromal cells in a non-random fashion (29). However,
a recent study has shown that cell-cell contact is not necessary for
the survival of human bone marrow plasma cells in vitro (21).

Fibroblasts form part of the survival niches for memory
plasma cells in the bone marrow by producing IL-6 and
CXCL12 (30, 31). Other evidence shows that fibroblasts from
the lymph nodes (LN) and spleens of mice and humans can also
promote plasma cell survival in vitro (27, 32). A new subset of
fibroblastic reticular cells (FRCs) that form dense meshworks
in the medullary cords of lymph nodes, where many plasma
cells reside, has been recently identified. Medullary FRCs have
also been described as major local producers of plasma cell
survival factors IL-6, BAFF, CXCL12 and APRIL. “In vitro,
medullary FRCs alone or in combination with macrophages
promote plasma cell survival while other LN cell types do not
have this property” (33).

Another hypothesis of how stromal cells and plasma cells
communicate involves the release of extracellular vesicles from
bone marrow-derived mesenchymal stromal cells (MSCs). This
novel mechanism of cell-cell communication over short and long
distances supports the concept of ex vivo survival of human
antibody secreting cells (34).

Frontiers in Immunology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 721

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Khodadadi et al. The Maintenance of Memory Plasma Cells

Hematopoietic Niche Components
Hematopoietic niche components (HNC) such as
megakaryocytes (35), basophils (36, 37), dendritic cells and
monocytes/macrophages (38), myeloid progenitors (39),
neutrophils (40), and eosinophils (41) act as accessory cells
of the plasma cell niche. Hematopoietic cells are associated
with memory plasma cells in bone marrow and support their
survival mainly by secreting the survival factors APRIL (a
proliferation-inducing ligand) and IL-6 (see below). Plasma
cells express BCMA (B- cell maturation antigen) and IL-6R
(IL-6 receptor), receptors for APRIL and IL-6, respectively.
Among hematopoietic components, eosinophils are the best
characterized cells as source of APRIL and IL-6 (42, 43). In
accordance with the importance of eosinophils in maintaining
memory plasma cells, animal studies have shown that the number
of plasma cells is significantly reduced in the bone marrow and
gastrointestinal tract of eosinophil-deficient 1dblGATA1 mice
(41, 43, 44). However, two more recent, independent studies
suggest that eosinophils are not essential for plasma cell survival
in the bone marrow (45, 46). This discrepancy might be due
to the effects of different environmental factors, especially
microbiota. Microbiota can play a role during early life and
may thus influence the generation of plasma cells and total
immunoglobulin concentrations in adult animals. A new study
indicates that microbiota-specific IgA-producing gut plasma
cells generated during infancy live for many decades (47).
This suggests that signals from the microbiota can impact on
plasma cell pools. However, eosinophils are not the only APRIL
source that supports the survival of plasma cells. APRIL can be
produced by a variety of other bone marrow cells (35, 48).

Considering the short life span of cells of hematopoietic
origin compared to that of long-lived memory plasma cells, the
maintenance of static memory plasma cells does not depend on
a single cellular source of survival factors. The multicomponent
plasma cell survival niche model suggests that different dynamic
hematopoietic cells can compensate for the loss of a particular
cell type (48). Regulatory T cells (Tregs)—the other type of
cells of hematopoietic origin—also play a supportive role in the
maintenance of memory plasma cells. It has been reported that
the loss of T regulatory cells correlates with the reduction of
memory plasma cell populations in the bone marrow. Although
the mechanism for this remains unclear, the close association of
Treg cells and plasma cells suggests that communication between
these populations takes place through cell-cell contact or soluble
factors (49). In the bone marrow Treg cells express high levels
of Treg effector molecules CTLA-4, and that deletion of CTLA-4
results in elevated plasma cell numbers. These findings indicate
a possible regulatory effect of CTLA-4 expression on Tregs, a
population which acts on the plasma cell pool in the bonemarrow
(49). However, it is also known that plasma cell survival depends
on constitutive signals through CD80/CD86, which is presented
by CD11c cells under T regulatory cell control (49, 50).

Molecular Niche Components
Molecular niche components (MNC) include soluble factors and
membrane-bound factors.

Soluble Factors
Soluble factors that contribute to plasma cell survival are
cytokines and chemokines. A wide variety of cytokines, including
IL-6 and members of the tumor necrosis factor (TNF)
superfamily (APRIL, BAFF, and TNF-alpha), play an important
role. IL-6 binds to the IL-6 receptor expressed on plasma
cells, enhances their survival and maintains antibody titers
in vitro (51). However, plasma cell survival is not significantly
decreased in IL-6-null mice (51). In human, IL-6 is mandatory
for in vitro generation and survival of memory plasma cells in
combination with either APRIL or stromal cell-soluble factors
(52). APRIL (a proliferation-inducing ligand) and BAFF (B-cell
activating factor) are also important factors for memory plasma
cell maintenance (53). Structurally, APRIL and BAFF are very
similar cytokines that belong to the TNF superfamily. Both can
bind with high affinity to B-cell maturation antigen (BCMA)
and to transmembrane activator and calcium-modulator and
cyclophilin ligand interactor (TACI), which is expressed by
B cells at various stages of maturation; however, only BAFF
can react with the BAFF receptor (BAFF-R) (54). Plasma cells
express BCMA and TACI, but only low levels of BAFF-R (55).
APRIL, which competes with BAFF for receptor binding sites, is
expressed by eosinophils (41), megakaryocytes (35) and myeloid-
derived cells, including monocytes, macrophages, and dendritic
cells (41, 54). APRIL and BAFF bind to BCMA (their shared
receptor) and promote plasma cell survival by inducing the anti-
apoptotic molecule Mcl-1 of the Bcl-2 family (see below) (56).
Neutralization of BAFF andAPRIL with TACI-Ig depletes plasma
cells in the bone marrow, whereas the presence of either BAFF or
APRIL alone is sufficient to sustain the plasma cell population
(53, 57). Unlike IL-6 deficiency, BCMA deficiency has a great
impact on the loss of memory plasma cells (57). TNF-alpha has
also been shown to support the survival of human plasma cells
in vitro (30, 51). Taken together, these data suggest that the TNF
superfamily and IL-6 are essential for the long-termmaintenance
of plasma cells in the bone marrow.

Chemokines and their receptors are crucial for the control of
lymphocyte trafficking. CXCL12 (also known as SDF1) and its
receptor CXCR4 are important for the migration of plasmablasts
to the bone marrow for final differentiation into plasma cells,
and for the maintenance of effective humoral immunity (17, 58).
CXCL-12 has two main effects on plasmablasts and memory
plasma cells. First, it acts as a chemokine and guides the
plasmablasts from secondary organs to the bone marrow (59)
and, second, it acts as a survival factor for plasma cells
(as was shown in vitro) (51, 60). CXCL12-expressing stromal
cells guide plasmablasts (expressing CXCR4) toward unique
environments rich in anti-apoptotic survival factors in the bone
marrow for their survival (61). In humans, the migration of
plasmablasts requires glucose oxidation, which is controlled by
CXCL12/CXCR4-mediated activation of the protein kinase AKT
(62). CXCL12 itself also promotes plasma cell survival in murine
bone marrow in vitro and in vivo (17, 27). Hence, the chemokine
CXCL12 promotes the entry of CXCR4-expressing plasma cells
into the bone marrow and the long-term survival of plasma
cells (42).
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Membrane Bound Factors: Memory Plasma Cell

Surface Markers and Adhesion Molecules

Memory Plasma Cell Surface Markers
The phenotype of plasma cells might provide useful information
about how external stimuli trigger intrinsic signals and play a
role in the maintenance of memory plasma cells. The expression
of CD138, TACI, BCMA, Sca-1, Ly6C, Ly6K, CD28, SLAMF7,
and CD98 is a hallmark of mouse plasma cells. The human
genome lacks direct homologs of murine Ly6A, Ly6C1/2, Ly6K
(63). In mice, short-lived plasma cells can be distinguished from
long-lived memory plasma cells by high expression of B220 (a
relatively B-cell-specific isoform of CD45) and MHCII (63, 64).
Human plasma cells are characterized by the co-expression of
CD138 and CD38, which allows for the identification of plasma
cells in the bone marrow or in cell suspensions from tissues
by flow cytometry. These terminally differentiated B cells lose
the ability to express CD19 and CD20 (B cell marker) on the
cell surface while retaining cell surface expression of CD27.
However, there is a diverse range of phenotypic markers of
plasma cells (65).

CD138 (syndecan-1, Sdc-1) is a member of the syndecan
family of four structurally related cell surface heparan sulfate
proteoglycans (HPSGs) (66). Among non-hematopoietic cells,
CD138 expression is high on epithelial cells and lower on a variety
of other cell types, including endothelial cells and fibroblasts
(67). Plasma cells at higher level (68) and pre-B cells at lower
level (69) are the only hematopoietic cells that express CD138.
High expression of CD138 on plasma cells is a hallmark of their
identification, which is upregulated during differentiation from
plasmablasts into plasma cells (69). CD138 is involved in many
cellular functions, including cell-cell adhesion and cell-matrix
adhesion (70). In-vitro plasma cells adhere to type I collagen of
the bone marrow stromal matrix via CD138 (synecan-1) (71).
Some investigators doubt that CD138 is important for plasma
cell function under normal conditions (72), but recent evidence
shows that CD138 plays a direct cell-intrinsic role in plasma cell
survival in vivo (73). These authors suggest that CD138 plays a
major role in protecting plasma cells from premature apoptosis
by using its heparin side chains to substantially increase IL-
6 and APRIL presentation to their receptors on plasma cells,
leading to increased cytokine signaling and higher expression of
the pro-survival proteins Bcl-2 and Mcl-1. Surface expression of
CD138 on plasma cells does not impair its early differentiation or
proliferation, but rather promotes or correlates with the survival
of mature plasma cells.

CD38 is a type II transmembrane glycoprotein. Its
extracellular domain acts as an enzyme that converts
nicotinamide adenine dinucleotide (NAD+)/NADP+ into
cADPR, ADP-ribose and NAADP, all of which are intracellular
calcium-mobilizing agents (74). CD38 is expressed on most
thymocytes, some activated peripheral blood T cells and B cells,
plasma cells, and dendritic cells. Memory plasma cells express
high levels of CD38 compared to their precursors (75, 76).
Apparently, this CD38 molecule is distinct from CD38 on other
cells because a lamprey monoclonal antibody that recognizes a
unique epitope of the CD38 ectoenzyme specifically reacts with
plasmablasts and plasma cells in healthy individuals and in most

human multiple myelomas (77). CD38 molecules on the plasma
membrane are in close contact with the BCR complex and with
molecules regulating homing (CXCR4 and CD49d) (78).

CD19, a co-receptor of the BCR complex, is one of the earliest
and most specific markers of B-lineage cells (79). Plasma cells
in human bone marrow express CD19 in a heterogenic manner.
The majority of plasma cells express CD19, but a minor group
of plasma cells is CD19neg. There is now increasing evidence that
memory plasma cells among the CD19neg plasma cell population
are enriched in human bone marrow (80–82). A recent study
using a new staining protocol of plasma cells in mice, could
also detect IgG-secreting cells with CD19low B220low CD138high

Blimp-1high in bone marrow which are most likely memory
plasma cells (76). Lack of CD19 expression may be considered as
a candidate marker for memory plasma cells maintaining long-
term memory, but its mechanism is unknown (83). Compared
to CD19pos plasma cells, CD19neg bone marrow plasma cells
have a prosurvival mature phenotype: low expression of CD95
and high expression of Bcl2 and less proliferating Ki67 cells.
This is a sign of long-term stability of this subset in human
bone marrow (84, 85). It has been recently demonstrated that
CD19neg CD45neg plasma cells persist for at least two decades in
the human small intestine (82). This study also has shown that
CD19neg plasma cells isolated from the small intestine of elderly
subjects contain rotavirus-specific clones. These findings support
the lifetime selection and maintenance of protective plasma cells
in the human intestine (82). Therefore, CD19neg plasma cells are
not restricted to plasma cells in the bone marrow, but can also be
detected in the gut. Of note, it has been demonstrated that CD19
loss can occur in a subset of plasmablasts at an early stage of the
immune response and, thus, is not strictly dependent on plasma
cell aging (79).

Adhesion Molecules
A variety of different adhesionmolecules such as very late antigen
4 (VLA-4, integrin α4β1), lymphocyte function-associated
antigen 1 (LFA-1, integrin αLβ2), endothelial-cell selectin (E-
selectin) ligand, platelet selectin (P-selectin) ligand, CD11a,
CD18, CD44, and CD93 are expressed on plasma cells (20).
VLA-4 and LFA-1 have a high impact on the survival of plasma
cells. VLA-4 binds to VCAM-1 on stromal cells, and extracellular
matrix components fibronectin and osteopontin present in the
bone marrow. LFA-1 binds to three different molecules of the
immunoglobulin superfamily: ICAM-1, ICAM-2, ICAM-3. Both
VLA-4 and LFA-1 probably act by fixating the plasma cells in their
niches. Their importance for bone marrow plasma cell survival
has been demonstrated by co-blockade of LFA-1 and VLA-4
adhesion molecules in vivo, which resulted in a transient 75%
reduction of bone marrow plasma cells in wild-type mice (86).
However, the administration of integrin-blocking antibodies do
not lead to strong plasma cell depletion in lupus prone mice (87).
CD93 has also been suggested to promote plasma cell survival
by functioning as an adhesion molecule (88) CD44 binds to
hyaluronic acid, a protein of the extracellular matrix (89). CD44
itself is a surface marker of mesenchymal stem cells (90) and is
involved in cell–cell and cell–extracellular matrix adhesion. Bone
marrow plasma cells express high levels of CD44, which prolongs
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the survival of human plasma cells in vitro (30, 51). It has been
reported that cell contact between plasma cells and stromal cells
via a CD44 variant isoform induces IL-6 production by stromal
cells (91).

Several other cell-surface proteins like CD28 (92) and CD37
promote various aspects of plasma cell longevity (93). CD28
expressed on bone marrow plasma cells has been shown to
be essential for plasma cell longevity (50, 92), and CD28-
CD80/86 interaction modulates short-lived and memory plasma
cell function (94). CD28 expression triggers an intrinsic survival
signal, possibly through activation of the NF-κB pathway and
by upregulation of BCMA. This protection is specific to bone
marrow memory plasma cells and, at least in malignant plasma
cells, is mediated by CD28’s engagement of CD80/86 on myeloid
cells and subsequent IL-6 secretion (95). CD37, a tetraspanin
protein, is essential for the clustering of VLA4 molecules on B
cells necessary for activation of the Akt survival pathway. CD37-
defient mice have reduced numbers of IgG secreting plasma cells
compared to wild-type mice (93).

In summary, multiple molecules expressed on plasma
cells contribute to plasma cell survival. The above-mentioned
examples show that progress is being made, but many questions
remain unanswered. Thus, more data is needed for a better
understanding of the processes controlling plasma cell homing
and longevity (96).

INTRACELLULAR FACTORS
AND MECHANISMS

Many intracellular factors and mechanisms are related to
memory plasma cell programming. Together, they build up
a complex network that controls various biological functions
of memory plasma cells, including their differentiation,
maintenance, and death as well as antibody synthesis and
secretion. These intracellular factors and mechanisms have
complicated functions and influence each other. This might
explain why some studies have yielded conflicting findings and
conclusions. The real pathways, especially how these intracellular
factors and mechanisms communicate with the extracellular
factors, are not comprehensively understood. Here, we focus
on some recently described factors and mechanisms that are
considered to correlate with the survival and maintenance of
memory plasma cells.

Differentiation-Related Factors
The differentiation of activated B cells into plasma cells requires
coordinated expression changes in hundreds of genes. Interferon
regulatory factor 4 (IRF4), B lymphocyte-induced maturation
protein 1 (Blimp-1), and X-box-binding protein 1 (XBP-1) are the
three most important transcription factors guiding the plasma
cell development program (17, 97). IRF4 is required for class
switch recombination, germinal center (GC) B cell formation,
and plasma cell differentiation (98–100). IRF4 functions are
dose-dependent. Low levels of IRF4 or even transient induction
of IRF4 is sufficient to induce GC B-cell formation, while
high concentrations of IRF4 promote the generation of plasma

cells and antagonize the GC fate by repressing Bcl6 and by
activating both Blimp1 and Zbtb20 (zinc finger and BTB domain-
containing protein 20) (17, 100, 101). It has been shown that
plasma cells residing in murine bone marrow disappeared
immediately after conditional inactivation of Irf4, and that the
effect can last for the whole observation time period of several
weeks (102). Therefore, in addition to the defects in GC B-cell
formation (100) and plasma cell differentiation caused by the loss
of IRF4, the available results indicate that IRF4 plays an essential
part in memory plasma cell survival, potentially by regulating
some key survival molecules, such as myeloid cell leukemia 1
(Mcl-1) (102).

Blimp-1 is a transcriptional “master regulator” that is
necessary for plasma cell differentiation (103, 104). During the
B cell to plasma cell transition, 648 genes are upregulated and
424 are downregulated. Blimp-1 activates 38% (245) of these
upregulated genes and represses 41% (105) of the downregulated
ones (106). It directly regulates several transcription factors
and important gene programs to facilitate the post-mitotic
state of mature plasma cells (17, 107, 108). Within the B cell
lineage, Blimp-1 is exclusively expressed in plasma cells, and
its expression is higher in mature memory plasma cells than
in short-lived plasma cells (plasmablasts) (109). By using a
conditionally Blimp-1 deficient mouse model, it has been shown
that Blimp-1 is required for the maintenance of memory plasma
cells in the bone marrow and for the long-term maintenance
of antigen-specific immunoglobulin in serum. In this mouse
model, the number of memory plasma cells in the bone marrow
decreases 4-fold, resulting in a drop in antigen-specific IgG1
levels in serum 3 to 4 weeks after inactivation of Prdm1, which
encodes Blimp-1 (110). However, by using a GFP reporter mouse
model to track plasma cells at higher resolution, another study
more recently has demonstrated that plasma cell numbers in
the bone marrow and spleen remain stable for many weeks
in spite of a lack of Blimp-1, although the Blimp-1 deficient
plasma cells lost their ability to secrete antibodies (102). Similar
results are obtained after transferring B cells from these mice into
B- and T-cell-deficient Rag1−/− mice after conditional Blimp-
1 inactivation. Furthermore, this study suggests that Blimp-
1 is essential for the establishment of the full plasma cell
transcriptome but that once it has been established, plasma cell
identity is maintained independently of Blimp-1 (102).

Endoplasmic Reticulum
Stress-Related Factors
Memory plasma cells continuously secrete antibodies which
allow the immune system to maintain a stable humoral
immunological memory over long periods (8). To maintain
stable levels in serum, one plasma cell secrets about 103

antibodies per second, approximately 2 ng per day (111, 112).
To maintain this large-scale and stable antibody synthesis and
secretory capacity, plasma cells require a specialized machinery,
and metabolic activity. The endoplasmic reticulum (ER) is
the major organelle for the synthesis and folding of secreted
and transmembrane proteins. Plasma cells have continuous ER
stress. When protein-folding requirements exceed the processing
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capacity of the ER, the accumulated misfolded and unfolded
proteins trigger the unfolded protein response (UPR), resulting
in the adjustment of protein synthesis and the enhancement of
ER folding capacity as well as increased degradation of misfolded
proteins and enhanced ER biogenesis (113, 114). However,
when these attempts fail and ER stress is unabated, UPR
signaling typically switches to a pro-apoptotic mode known as
the terminal UPR (115). The pro-apoptotic factor Chop (C/EBP
homologous protein) is a characteristic marker for terminal UPR-
induced apoptosis.

There are three regulatory arms of the UPR: PERK (protein
kinase RNA activated (PKR)-like ER kinase), ATF6α (activating
transcription factor 6α), and IRE1 (inositol-requiring enzyme-1)
(113). Although mature B cells express high levels of PERK and
ATF6α, physiologically, both PERK and ATF6α are dispensable
for plasma cell differentiation, immunoglobulin secretion and
survival (116, 117). Blimp-1 is intimately involved in the UPR.
It directly regulates Atf6 and 38% of the downstream genes of
the UPR (102). As a component of the IRE1 branch, XBP-1 is an
important transcription factor associated to UPR, which induces
the transcription of a wide variety of ER-resident molecular
chaperones and protein-folding enzymes that work together to
increase ER size and function (118). Additionally, the induction
of Xbp1, which is downstream of Blimp-1, is required for this
marked ER expansion and increased protein synthesis (119).
XBP-1 is required for the generation of plasma cells. In XBP-
1 deficient mice, immunoglobulin levels are low and plasma
cells are notably absent (120). However, later studies suggest
that XBP-1 is required more specifically for immunoglobulin
production (121–123). Conditional inactivation of Xbp1 has no
effect on the size of the plasma cell population, while XBP-
1 deficiency in bone marrow plasma cells results in a global
decrease in immunoglobulin transcripts and protein expression
which correlates with reduced immunoglobulin secretion (102),
but does not have a direct effect on the maintenance of memory
plasma cells. Based on the current evidence, it seems that the
three main arms of UPR do not directly influence the survival
and longevity of memory plasma cell.

The inducible nitric oxide synthase (iNOS), which can be
induced by XBP-1 (124), is associated with various mammalian
physiology functions, including ER stress. iNOS has been found
to modulate components of the UPR. Several mRNA levels
related to ER stress are significantly lower in iNOS-deficient
plasma cells (125). Both iNOS deficiency and iNOS inhibitor
treatments cause plasma cells to have shorter life spans in vitro
and in vivo. Bone marrow memory plasma cell numbers are
significantly lowered in iNOS-deficient mice and wild-type
mice treated with an iNOS inhibitor, and this decrease is
accompanied by a significant decrease in the levels of antigen-
specific antibodies. The effect of iNOS on the ER suggests that it
has an effect on plasma cell survival. The finding that iNOS is also
required for plasma cell responses to IL-6 and APRIL suggests an
additional contribution of iNOS to the maintenance of memory
plasma cells (125, 126).

Another system linked to ER stress is the ubiquitin-
proteasome system, which is responsible for the degradation of
not needed and misfolded proteins inside the cell. Bortezomib

can inhibit the proteasome function and induce the efficient
depletion of plasma cells, including memory plasma cells, in
lupus mice (127). After bortezomib treatment, mRNA levels of
Chop, a characteristic marker for the terminal UPR, increase
40-fold in splenic plasma cells and 20-fold in bone marrow
plasma cells, resulting in the induction of terminal UPR and cell
death. Another mechanism contributing to bortezomib-induced
cell death is the inhibition of anti-apoptotic transcription factor
NF-kB activity (127).

Autophagy
As misfolded proteins accumulate in the ER, autophagy
functions as a crucial adaptive “self-eating” process by which
autophagosomes envelop and degrade cellular components,
and thus ameliorate ER stress. Similarly to the unfolded
protein response, autophagy can result in either cell survival
or cell death (114). Autophagy is a catabolic process related to
lysosomal activity. There are three major types of autophagy:
macroautophagy, chaperone-mediated autophagy (CMA), and
microautophagy. Microautophagy involves direct invagination
of the lysosomal membrane. Chaperone-mediated autophagy
involves the direct translocation of proteins into lysosomes.
Macroautophagy leads to the integration of cytoplasmic material
into vesicles that ultimately fuse with lysosomes; it is central
to lymphocyte homeostasis, which is under the control of
autophagy-related gene (ATG) products (128). Using mice
in which Atg5 is conditionally deleted in B lymphocytes,
antibody responses are significantly diminished during antigen-
specific immunization, parasitic infection, and mucosal
inflammation (129). Moreover, Atg5-deficient B cells retain the
ability to produce immunoglobulin and undergo class-switch
recombination, but are impaired in their ability to terminally
differentiate into plasma cells and, therefore, are unable to
mount an effective antibody response, since the total plasma cell
numbers in spleen and mesenteric lymph nodes are significantly
low after immunization (129). However, another study with
Atg5-deficient mouse model has shown that the antigen-specific
plasma cell number in spleen is similar to the control group
14 days after immunization (130). Memory plasma cells from
the bone marrow have higher autophagic activity than B cells.
Atg5-deficient plasma cells have a larger ER and more ER
stress signaling, which leads to higher expression of Blimp-1
and immunoglobulins, and to increased antibody secretion
(130). The enhanced immunoglobulin synthesis is associated
with more death of mutant plasma cells. The immunized
Atg5-deficient mice have normal GC responses, but a 90%
reduction of antigen-specific bone marrow memory plasma
cells, demonstrating that Atg5 is specifically required for the
maintenance of bone marrow memory plasma cells (130).
Similarly, the in vitro study has shown that a lack of autophagy
causes a substantial increase in the death of murine plasma
cells and that 1 year after immunization, Atg5-deficient mice
have remarkably fewer antigen-specific memory plasma cells
in the bone marrow than wild-type mice (131). Another study
using a murine autophagy-deficient autoimmune model has
revealed that a decrease in memory plasma cells in the bone
marrow is accompanied by a decrease in serum anti-dsDNA IgG
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antibody levels (132). These findings confirm that autophagy is
important for the maintenance of memory plasma cells. So far,
the contribution of other autophagy factors is not known.

Metabolism
As they require the secretion of large quantities of glycosylated
antibodies, which consumes 90% of their glucose utilization,
plasma cells have high metabolic and energy pressure. Human
and murine memory plasma cells can robustly engage pyruvate-
dependent respiration and take up more glucose, which is
essential for the generation of pyruvate. Targeting mitochondrial
pyruvate carriers Mpc1 and Mpc2 in vitro reduces the survival of
memory plasma cells significantly (133). The conditional Mpc2-
deficient mice result in a significant loss of bone marrowmemory
plasma cells and a corresponding reduction of antigen-specific
antibody titers in serum. These findings suggest that glucose
uptake and mitochondrial pyruvate import promote the long-
term persistence of memory plasma cells (133, 134). Interestingly,
glucose can stabilize the expression of Mcl-1 (135, 136), which
is essential for the survival of memory plasma cells (see below).
Other nutrients besides glucose also contribute to plasma cell
functions. Amino acids are the basis for antibody synthesis.
Expression of CD98, a common subunit of many amino acid
transporters and thus a marker of amino acid availability, is
controlled by the transcription factor Blimp-1 and is very highly
expressed in plasma cells, especially memory plasma cells (64,
102, 117). CD98 deficiency leads to severe antibody defects,
and autophagy contributes to the metabolism of amino acids as
cellular components are recycled, whereby the autophagy activity
is higher in memory plasma cells than in plasmablasts (117).
The metabolism of short-chain fatty acids (SCFAs) produced by
gut microbiota are involved in plasma cell differentiation and
promote antigen-specific host antibody responses (137).

Ectonucleotide pyrophosphatase/phosphodiesterase 1
(ENPP1), first identified as a membrane alloantigen, is involved
in ATP-derived energy production. ENPP1 expression gradually
increases during B cell differentiation to plasma cells, and bone
marrow plasma cells show higher ENPP1 expression than their
splenic counterparts in both mice and humans. Furthermore,
bone marrow memory plasma cells express about 2-fold more
ENPP1 than plasmablasts (138). ENPP1 deficiency does not
affect GC formation or plasmablast migration. However, plasma
cells residing in the bone marrow of Enpp1−/− mice take up less
glucose and the frequency of antigen-specific memory plasma
cells is significantly lower in the bone marrow than wild-type
controls (138). ENPP1-deficient plasma cells have an impaired
glycolysis pathway, which leads to reduced levels of energy
production. Considering the 2-fold higher ENPP1 expression
in bone marrow memory plasma cells, it suggests that ENPP1
allows bone marrow memory plasma cells to consume more
glucose in order to better fuel higher antibody production levels
and longer survival times (138).

Anti-apoptotic Factors
The NF-κB family of transcription factors governs the expression
of multiple genes involved in cell survival, proliferation and
effector functions. The primary contribution of NF-κB to

lymphocytes is to assure cell survival. The anti-apoptotic
functions of NF-κB are crucial for lymphocytes, even after
they become mature (139). As NF-κB is involved in activities
such as proliferation, activation, and GC formation during B
cell differentiation (140–142), it influences the differentiation of
plasma cells. Several factors like BAFF-BAFF-R axis and CD40-
CD40L axis have been shown to activate the NF-κB pathway and
mediate B and plasma cell differentiation. Adhesion molecules
such as ICAM-1 and VCAM-1 are also regulated by NF-κB
signaling (143). These factors are involved in the construction
of survival niches for memory plasma cells, probably indirectly,
through the NF-κB pathway.

Ras-related in brain 7 (Rab7) inhibition and knock-out studies
provide further evidence of the role of the NF-κB pathway in the
maintenance ofmemory plasma cells. Rab7 is a small GTPase that
plays a B cell–intrinsic role in antibody response and promotes
class-switch recombination bymediating NF-κB activation (144).
One study has showed that Rab7 activity inhibition or Rab7 gene
knockout results in reduced numbers of plasma cells, including
memory plasma cells, and that it consequently suppresses IgG
anti-dsDNA autoantibody responses, prevents the development
of disease symptoms, and extends the lifespan of lupus mice
(145); Rab7 also decreases the expression of several genes
associated with memory plasma cells survival, including Cxcr4,
Irf4, Mcl1, and Atg5, but not Prdm1 and Xbp1. Interestingly,
the apoptosis of cultured CD19−CD138hi plasma cells induced
by Rab7 inhibition can be prevented by enforced NF-κB
activation (145). In another study, the treatment of lupus mice
with resveratrol, a small polyphenol anti-inflammatory agent,
enhances the expression of FcγRIIB on B cells and plasma cells,
resulting in a marked depletion of plasma cells in the spleen and
bone marrow, thereby decreasing serum autoantibody titers and
ameliorating lupus nephritis; the authors have concluded that
this upregulation of FcγRIIB is NF-κB dependent (146).

Bcl-2, Bcl-xL, and Mcl-1 are anti-apoptotic members of
the Bcl-2 family expressed on plasma cells (56, 147). Various
studies have shown that Bcl-2 and Bcl-xL are involved in
plasma cell differentiation (148, 149), but the presence of both
is not crucial for the survival of existing plasma cells (56, 150).
Mcl-1 expression, regulated by the BCMA, is higher in bone
marrow plasma cells than in plasma cells residing in other
lymphoid organs (56). BCMA is a receptor for APRIL, which
is an important survival factor for memory plasma cells, as
described above. BCMA is an essential factor for the survival of
memory plasma cells in the bone marrow. BCMA−/− mice have
a 20% decrease in plasma cells in the bone marrow compared
to their wild-type counterparts (57). The enzyme γ-secretase
directly cleaves BCMA and releases soluble BCMA, which acts
as a decoy that neutralizes APRIL. The inhibition of γ-secretase
in vivo enhances BCMA surface expression in plasma cells and
increases their number in the bone marrow (151). Another
study confirms the importance of the APRIL-BCMA axis in
plasma cell survival in the bone marrow and indicates that this
process requires the transcriptional induction of Mcl1 (56). After
deletion of Mcl1, the percentage and absolute numbers of total
plasma cells and antigen-specific plasma cells are significantly
lower than in wild-type mice, which highlights the important
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role of this APRIL/BCMA/Mcl-1 signaling pathway for the long-
term maintenance of memory plasma cells. The study from a
mouse plasma cell line has shown that Blimp-1 can positively
regulate the expression of the BCMA gene (152). Although the
induction of BCMA is part of a transcriptional program during
plasma cell differentiation, however, investigations in Blimp-1
deficient GFP reporter mice have indicated that the BCMA-
mediated plasma cell survival pathway is independent of Blimp-1
(56). So far, this APRIL/BCMA/Mcl-1 pathway appears to be the
best-characterized survival pathway of memory plasma cells (96).

MicroRNAs
MicroRNAs (miRNAs) are small, non-coding RNA molecules
(containing about 20–22 nucleotides) that post-transcriptionally
regulate gene expression in plants and metazoans. Until now,
about 2,500 human and 1,900 mouse miRNAs which are
functionally involved in most physiological cellular processes,
including proliferation, development, and differentiation, have
been identified (153–155). Many miRNAs are involved in B cell
and plasma cell biology, for example, miR-30, miR-217, miR-28,
miR-150, miR-155, miR-361, miR-125b, miR-181b, miR-21, miR-
24-3p, miR-148a, and miR-17-92, etc. (156). MicroRNA-150 is
specifically expressed in mature lymphocytes; it directly targets
the transcription factor c-Myb (157), which is required for newly
generated plasma cells migrating toward CXCL12 and therefore
regulates the establishment of thememory plasma cell pool (158).
MicroRNA-155 is required for the B-cell response to antigens. In
miR-155-deficient mice, the number of GC B cells is reduced.
B cells lacking miR-155 show a reduced GC response and
failed secretion of class-switched, high-affinity IgG1 antibodies
(159, 160). MicroRNA-125b regulates GC B-cell responses by
targeting transcription factors IRF-4 and Blimp-1, and thereby
inhibiting plasma cell differentiation (161). MicroRNA-24–3p
has been identified as a direct mediator of human plasma cell
survival, which is upregulated by IL-6 and CXCL12. Under
induced ER stress, the upregulation of miR-24-3p expression
by IL-6 can rescue plasma cells from apoptosis through the
mitogen-activated protein kinase pathway (162). MicroRNA-
148a can protect immature B cells from apoptosis and regulate
B cell tolerance; it is upregulated in lymphocytes from lupus
patients and lupus mice and accelerates the development of
autoimmunity (163). It has been shown that miR-148a is
upregulated in activated naive murine B cells, that it is the
most abundant miRNA in memory plasma cells in both humans
and mice, and that it promotes plasmablast differentiation
and survival in vitro (164). A significant decrease in serum
antibody levels and plasma cell numbers has been observed in
conditional B-cell-specific miR-148a knockout mice with and
without immunization, and in tamoxifen-inducible miR-148a-
deficient mouse, the number of bone marrow memory plasma
cells is significantly reduced, suggesting that miR-148a controls
the differentiation of B cells into plasmablasts and the survival of
memory plasma cells (165).

Other Factors
Zbtb20 is a broad complex, tramtrack, bric-à-brac, and zinc
finger (BTB-ZF) protein expressed in GC B cells; it is upregulated

during plasma cell differentiation and is highly expressed in
memory plasma cells in an IRF4-dependent manner. Zbtb20
conditional knockout mice are characterized by a blunted
antibody response and a significant loss of plasma cells in the
bone marrow; these findings indicate that Zbtb20 is essential for
the maintenance of memory plasma cells in the bone marrow
and for the persistence of antigen-specific immunoglobulin levels
in serum (101). In this study the expressions of Bcma and Mcl1
in plasma cells are similar in knockout and wild-type mice (as
determined by quantitative RT-PCR), whereas another study in
Zbtb20-deficient mice demonstrates the reduced expression of
Mcl1 in bone marrow plasma cells (as analyzed by single-cell
quantitative RT-PCR), suggesting that Zbtb20 may be required
for the maximal expression of Mcl-1 (166). Interestingly, the
requirement for Zbtb20 appears to be dependent on the type
of adjuvant used. After alum-adjuvanted immunization, antigen-
specific memory plasma cells fail to accumulate in the bone
marrow, leading to a progressive loss of antibody production,
whereas adjuvants that activate TLR2 and TLR4 restore long-
term antibody production by inducing compensatory survival
pathways in the plasma cells of Zbtb20-deficient mice (166).

Another regulator expressed in plasma cells is the tyrosine
kinase Lyn, a negative regulator for many signaling pathways.
Lyn attenuates signal transducer and activator of transcription 3
(STAT3) signaling, which canmediate the upregulation of Blimp-
1 during plasma cell differentiation (167), of STAT3 responses to
IL-6, and of the IL-6/JAK/STAT3 pathway, therefore supporting
plasma cell survival and immunoglobulin secretion (168). A
study in Lyn-deficient mice has showed that, in the absence
of Lyn, memory plasma cells accumulate and have improved
survival, and that the expression of CXCR4 on plasma cells
is enhanced. Furthermore, cultured Lyn-deficient plasma cells
show better in vitro survival with IL-6 but not with APRIL,
indicating that Lyn regulates the survival of memory plasma cells
through the IL-6/STAT3 pathway (169).

The lifestyle of memory plasma cell is complex. It involves
many intracellular factors and mechanisms, all of which
influence the maintenance of memory plasma cells more or less.
Apparently, communication between the different factors and
mechanisms is essential for establishing a survival network for
memory plasma cells (Table 1; Figure 1). However, the signaling
pathways, especially the patterns of connecting extracellular
factors, are still bewildering and need to be further investigated.

MAINTENANCE OF MEMORY PLASMA
CELLS IN INFLAMED TISSUES

The bone marrow is the primary survival niche for memory
plasma cells. In addition, secondary lymphoid organs like the
spleen provide a limited number of plasma cell survival niches.
However, in the presence of chronic inflammation, memory
plasma cells can also be detected in inflamed tissues (20, 170,
171), such as kidneys (105, 172–176), central nervous system
(177–179), lungs (180, 181), nose (182), lymph nodes (183),
salivary glands (184, 185), joints (186, 187), and tonsils (188, 189).
The infiltration of local plasma cells appears to be associated with
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TABLE 1 | Extrinsic and intrinsic factors contributing to the maintenance of

memory plasma cells.

External factors Internal factors and

mechanisms

Cellular

compartments

Molecular

compartments

â Differentiation

related Factors

• IRF4

• BLIMP-1

• XBP-1

â Endoplasmic reticulum

(ER) stress related factors

and mechanism

• UPR

• iNOS

• Ubiquiton-proteasome

response

â Autophagy

and metabolism

• Anti-apoptosis factors

• NF-kB family

• Bcl-2 Family

â Others

• Zbtb20

• Tyrosine Kinase Lyn

• MicroRNA

â Stromal Cells

(mesenchymal origin)

• CXCL12+ cells

â Hematopoietic-

origin cells

• Megakaryocytes

• Basophils

• Dendritic cells

• Monocytes/

Macrophages

• Neutrophils

• Eosinophils

• Regulatory T cells

â Soluble Factors

• Cytokines

◦ TNF-superfamily

(APRIL, BAFF,

TNF-a)

◦ IL-6

• Chemokines

◦ CXCL-12

â Membrane-

bound Factors

• Plasma cell (PCs)

surface markers

◦ CD138

◦ CD38

◦ CD19

• Adhesion

molecules

expressed on PCs

◦ VLA-4

◦ LFA-1

◦ CD93

◦ CD44

◦ CD28

◦ CD37

the severity of the inflammatory disease. Little is known about
how the memory plasma cells are maintained in the inflamed
tissues and what kinds of survival niches support them. In this
section, we will review recent findings regarding the presence of
memory plasma cells in inflamed tissues.

CXCL12 Axis
The CXCL12/CXCR4 axis supports the maintenance of memory
plasma cells in the bone marrow, as described above. In lupus
prone mice (NZB/W), CXCL12 expression is higher than in
healthy mice. Various studies have shown that CXCL12 levels
are elevated in the kidneys of older mice with nephritis (174,
190, 191), and that neutralization of CXCL12 with a monoclonal
antibody at an early age can prevent the development of
proteinuria and prolong the survival (190). Treatment with
AMD3100, a CXCR4 blocker, significantly decreases the number
of memory plasma cells in the kidneys of NZB/W mice (175).
Similar results have been achieved by inhibiting CXCR4 with
the antagonist CTCE-9908 in another murine lupus model (191).
About 60% of plasma cells in inflamed NZB/W kidneys are in
contact with CD11b+ macrophage-like cells (173), which are
the prime source of CXCL12 (192). Using a collagen-induced
arthritis model, it has been observed that CXCL12 expression
is increased in the inflamed joints, and that treatment with
the CXCR4 blocker AMD3100 provides clinical benefits (193).
In rheumatoid arthritis (RA), the expression of CXCL12 in
synovial tissues is increased (194, 195), and CXCL12 seems

to be predominantly expressed by endothelial venules and
synoviocytes in the synovial tissues (196–199). These findings
resemble the pictures of the CXCL12-expressing stromal cells
organizing the survival niches for memory plasma cells in the
bone marrow (170).

In a murine model of induced experimental autoimmune
encephalomyelitis (EAE), an upregulation of CXCL12 has been
detected in the inflamed spinal cord where memory plasma
cells are localized (179). Similar co-localization of memory
plasma cells with CXCL12-expressing epithelial and infiltrating
mononuclear cells has been detected in the salivary glands of
patients with primary Sjögren’s syndrome (184). However, in
a hepatitis virus-induced central nervous system inflammation
mouse model, virus-specific IgM and IgG antibodies are detected
in the spinal cord, and plasma cells are predominantly found
in demyelinated lesions and adjacent white matter (178). While,
mRNA levels of CXCL12 do not always exceed baseline levels
throughout this inflammatory condition (178).

APRIL/BAFF Axis
APRIL and BAFF expression levels are higher in the inflamed
kidneys of NZB/W mice (174). In human lupus nephritis,
elevated mRNA levels of APRIL and BAFF have been detected
in renal biopsies from patients refractory to immunosuppressive
therapies (200). In RA, BCMA and APRIL expression levels are
higher in synovial fluid (187, 201), and the APRIL levels closely
correlate with the local plasma cell counts. The main source
of APRIL is infiltrating neutrophils and CD68+ macrophages,
and CD138+ plasma cells are found to be in tight contact with
CD68+ macrophages in the zones of high concentration of
secreted APRIL (202). Furthermore, APRIL and BAFF released
by microglia and astrocytes in the spinal cord are present in the
same area in which memory plasma cells are found. Notably,
the memory plasma cells are strongly positive for both APRIL
and BAFF, which suggests that a self-sufficiency mode may exist
under inflammatory and autoimmune disease conditions (179).
Moreover, the mRNA levels of BCMA, TACI, APRIL and BAFF
in the spinal cord are increased during inflammation, indicating
that these factors may support the survival of local plasma
cells (178).

In inflamed nasal tissues from patients with granulomatosis
with polyangiitis (GPA), plasma cells are found in close proximity
to APRIL secreted by macrophages, giant cells, and epithelial
cells. (182). In allergen-challenged mice, BAFF levels are
significantly increased in lung and bronchoalveolar lavage fluid
(203), and the number of eosinophils is increased and associated
with infection and allergic diseases. Although eosinophils have
been shown to support the maintenance of memory plasma cells
in the bone marrow and of IgA+ plasma cells in the intestine
(44), the number of IgA+ plasma cells is not reduced in the lungs
of eosinophil-deficient mice (204).

Others Factors
Under inflammatory conditions, plasma cells are detectable in the
inflamed joints of patients with RA and osteoarthritis (186, 187,
205, 206). Many factors like ICAM1, VCAM1, VLA-4, and IL-6
are increased in inflamed synovial tissues (207–209), which may
build up the microenvironment needed for the maintenance of
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FIGURE 1 | The survival network for memory plasma cells in the bone marrow. Bone marrow is the major site of memory plasma cells. The stromal cells together with

hematopoietic cells construct the microenvironment supporting the survival of memory plasma cells via cell-contact or secretion of soluble factors. Different plasma

cell surface molecules are communicating with intracellular factors via different pathways regulated by internal factors and mechanisms. This cartoon summarizes the

current understanding of the complex network consisting of stromal and hematopoietic cells, soluble factors, receptors and signaling pathways. The thicker arrows

indicate pathways, which are key players in the maintenance of memory plasma cells.

local plasma cells. Other types of cells may also contribute to the
establishment of survival niches in inflamed joints. In RA, nurse-
like cells produce enhanced levels of many cytokines (e.g., IL-6)
and promote B cell survival and differentiation. Interestingly,
transmission electron microscopy analysis of RA synovial tissues
has shown numerous plasma cells are surrounded by synovial
long slender cytoplasmic dendritic cells with spines or finger-
like protrusions, which cell membrane appears to be fused or
very tightly attached to the cell membrane of the paired plasma
cell (210). Immunofluorescence staining studies also show that
both CD14+ dendritic cells and CD138+ plasma cells in synovial
tissue reside in close proximity (211, 212).

In an adapted multiple sclerosis murine model of EAE,
VCAM-1 is upregulated; memory plasma cells are localized in
areas of increased VCAM-1 expression (179). Further research
has shown that, in the inflamed salivary glands of patients with
Sjögren’s syndrome, Ki67 negative memory plasma cells are
tightly juxtaposed to the ductal and acinar epithelia, which highly
express IL-6 (184).

Plasma cells are also detectable in lung tissues during
allergic airway inflammation. Nerve growth factor (NGF)
and neurotrophin-3, mainly secreted by local T cells and
macrophages, appear to support the survival of these plasma
cells, which express neurotrophin receptors due to upregulation
of the anti-apoptotic protein Bcl2. One study has showed
that inhibition of neurotrophin receptors significantly reduces

local plasma cell numbers and serum antibody levels, and that
overexpression of NGF results in higher plasma cell counts in
the perialveolar area. These data suggest that NGF might be
essential for the local survival for plasma cells (213). In patients
with chronic bronchitis and obstructive pulmonary disease,
plasma cells are particularly abundant in the subepithelium and
interstitium between submucosal gland acini, where they are co-
localized with IL-4-positive cells. The latter cells are identified
as CD68+ monocytes/macrophages and CD20+ B cells and,
interestingly, over 60% of the plasma cells themselves express
IL-4 in these inflamed tissues (214).

So far, investigators who have tried to explain the survival
mechanisms for memory plasma cells under inflammatory
conditions based their studies on the assumption that the
memory plasma cell environment in inflamed tissues is like
that in the bone marrow, but if this is actually so in reality is
still unclear. Current findings suggest that the maintenance of
plasma cells in inflamed tissues is supported by inflammatory
cells (Table 2). In addition, plasma cells themselves are able
to secrete their own survival factors such as APRIL, BAFF,
and IL-6. Transcriptome comparisons of bone marrow memory
plasma cells and splenic plasmablasts revealed more than 900
differentially expressed transcripts between these two types of
plasma cells (117). Taking into account the different behavior
of memory plasma cells in inflamed tissue, there must be
differences between the memory plasma cells in bone marrow
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TABLE 2 | Contributors to the survival of memory plasma cells in inflamed tissues.

Inflammation Factors local sources

Kidney CXCL12

APRIL, BAFF

Macrophages

Not clearly defined

Joint CXCL12

APRIL

IL-6

Cell-cell contact

ICAM1, VCAM1, VLA-4

Endothelial cells, synoviocytes

Infiltrating neutrophils, macrophages

Nurse-like cells

Dendritic cells

Not clearly defined

CNS APRIL, BAFF

CXCL12, VCAM-1

Microglia and astrocytes, plasma cells

Not clearly defined

Salivary gland CXCL12

IL-6

Epithelial infiltrating mononuclear cells

Ductal and acinar epithelia

Nose APRIL Macrophages, giant cells and

epithelial cells

Lung NGF, neurotrophin-3

IL-4

BAFF

Local T cells, macrophages

Monocytes/macrophages, B cells,

plasma cells

Not clearly defined

and those in inflamed tissues, healthy memory plasma cells,
and their autoreactive counterparts. A study comparing the
transcriptomes of these plasma cells would help to understand
the survival mechanisms of (autoreactive) memory plasma cells
under inflammatory conditions.

CONCLUSION

Due to their longevity, memory plasma cells residing in the
bone marrow are crucial for maintaining humoral immunity
independently of memory B cells, T cell help, and antigen
presentation. A stable immune memory provides long-term
protection against pathogens. The survival of memory plasma
cells is supported by a physiological survival niche established

by different cells and extra- and intra-cellular factors and
mechanisms. Upsetting the niche environment will disturb
the survival of memory plasma cells and, ultimately, humoral
immune memory. More information on the maintenance of
memory plasma cells may improve vaccination strategies.

However, if immune tolerance fails, autoreactive plasma cells
can be generated and become memory plasma cells surviving
in bone marrow and chronically inflamed tissues where they
contribute to autoimmune pathology. Under these disease
conditions, memory plasma cells are considered to be therapeutic
targets (170, 172, 215). Compared to plasmablasts, memory
plasma cells are resistant to most conventional therapies,
including conventional immunosuppression and B cell depletion
as such. This makes it clinically challenging to target memory
plasma cells (87, 171, 216, 217). At present, only a few approaches
are able to target memory plasma cells efficiently. Since these
methods do not distinguish between memory plasma cells
secreting protective and pathogenic antibodies, there is a need
to develop strategies that selectively targets the pathogenic cells
without affecting the protective humoral memory. Therefore,
a better understanding of the lifestyle of memory plasma cells
will give us clues for developing new approaches to target these
cells. Although many advances have been made in research on
the survival and maintenance of memory plasma cells, as we
have described in this review, the path to truth is still covered
with a veil that needs to be lifted in further investigations in
the future.
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