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Abstract: Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety
of cells and tissues throughout the body. They are known as water channels, but they also facilitate
the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded
by the genes AQP0–AQP12, have been identified in mammals, which regulate various important
biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction
of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a
specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper
(electro)physiological cardiac function has not intensively been studied. This review summarizes
recent findings and highlights the involvement of AQPs in normal and pathological cardiac function.
We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy
balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates
that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are
virtually unexplored.

Keywords: aquaporin; water channel; heart; myocyte; edema; failure; energy; electrophysiology; ion
channels; Ca2+ transient

1. Introduction

Aquaporins (AQPs) constitute a major and diverse transmembrane channel family found in most
living organisms [1–3]. They facilitate movement of water along osmotic gradients and were originally
named water channels [4]. Water constitutes approximately 70% of organism mass [5], and therefore,
AQPs—together with simple water diffusion across the hydrophobic bilayer—are important for many
different (patho)physiological processes (for reviews, see [6,7]).

AQPs are relatively small membrane proteins that constitute a monomer containing six
transmembrane spanning domains, intracellular C- and N-termini, and a central water pore [5,8–10].
In the plasma membrane, four monomers form a functional tetramer, with each monomer functioning
independently. Although somewhat controversial, the central tetrameric pore of some AQPs has been
proposed to conduct also small solutes, monovalent anions, heavy metal ions, and gasses, i.e., O2 and
CO2. AQP channels are voltage-independent and do not show gating properties. To date, 13 AQPs are
known in mammals (AQP0–12, encoded by the genes AQP0–AQP12), and they are divided into three
subfamilies based on their pore selectivity. Table 1 summarizes the subdivision of the mammalian
AQPs and their non-controversial basic properties. In short, AQPs 0, 1, 2, 4, 5, 6, and 8 belong to the
classical water selective AQPs. AQPs 3, 7, 9, and 10, also named aquaglyceroporins, are less water
permeable, but they also pass small neutral solutes, such as glycerol and urea. AQPs 11 and 12, initially
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named AQPX1 and AQPX2, are classified to another AQP subfamily, named unorthodox aquaporins,
the properties of which are less clear.

The mammalian AQPs are present in many cell types and organs, for example in kidney, brain, lung,
digestive system, eye, and skin [7]. It is generally accepted that they have important (patho)physiological
roles in, for example, water reabsorption in the kidney, water exchange across the blood–brain barrier,
and growth and vascularity of tumors. We refer to several extensive reviews for their role in normal
physiological processes as well as their pathophysiological function in the above-mentioned organs,
cancer, and obesity [11–19]. AQPs are also found in the heart and cardiomyocytes [20–22], but their
role in normal heart function and cardiac disorders has not intensively been studied [23]. In this review,
we first provide a brief overview of the presence of AQPs in the heart. Subsequently, we highlight
their (patho)physiological role, which has primarily been studied using AQP knock-out transgenic
mice. We conclude that AQPs are not only important for cardiac water homeostasis, but may also
affect cardiac excitation-contraction coupling—either directly or indirectly via dysfunction of other
organs—due to their permeability to glycerol, arsenite, and other small, neutral solutes as well as to
interactions with various ion channel proteins and connexins. However, despite the great progress in
the determination of the characteristics and functions of AQPs in the heart, various effects of cardiac
AQPs seem still unknown.

Table 1. Summary of mammalian AQPs and their basic properties.

HGNC Gene Symbol Synonym Subfamily Permeability

AQP1 CHIP28 water-specific channels H2O, CO2
AQP2 WCH-CD water-specific channels H2O
AQP3 GLIP aquaglyceroporins H2O, urea, glycerol, NH3, arsenite
AQP4 MIWC water-specific channels H2O
AQP5 – water-specific channels H2O
AQP6 AQP2L water-specific channels H2O, NH3, anions
AQP7 AQPap aquaglyceroporins H2O, urea, glycerol, NH3, arsenite
AQP8 – water-specific channels H2O, urea, NH3
AQP9 – aquaglyceroporins H2O, urea, glycerol, NH3, arsenite
AQP10 – aquaglyceroporins H2O, urea, glycerol
AQP11 AQPX1 unorthodox aquaporins H2O

AQP12A AQP12; AQPX2 unorthodox aquaporins H2O
AQP12B INSSA3 unorthodox aquaporins H2O

MIP AQP0 water-specific channels H2O

CHIP28 = channel-forming integral membrane protein of 28 kDa; WCH-CD = water channel- collecting duct; GLIP
= glycerol intrinsic protein; MIWC = mercurial-insensitive water channel; AQP2L = AQP2-like; AQPap = aquaporin
adipose; AQPX1 and AQPX2 = aquaporin-like channels of a new subfamily; INSSA3 = insulin synthesis associated
3; MIP = major intrinsic protein of lens fiber. Modified from [9,10,24,25].

2. AQP Presence in the Heart

Since the first AQP, i.e., AQP1, was identified in rat hearts by Agre and co-workers [26], several
other AQP subtypes have been discovered in cardiac tissue of various animal species (including mouse,
rat, sheep, and goat) and human (for reviews, see [20–22]). The cardiac AQP presence and expression
depends on various factors such as species, sex, development and aging, with data sometimes being
contradictory between species [27]. For example, the presence of AQP1 is high in rat heart at embryonic
days 14–16 [26], but the level of expression was substantially reduced after birth [26], and even further
decreased postnatally [28]. AQP1 was found in the endocardium of the sheep fetal heart at a very early
stage [29], but in contrast to rat, was higher at older developmental stages [30]. In mice, aging increased
AQP1 and AQP4 levels [31]. Cardiac AQP1 expression was found to be lower in female mice [32].
Additionally, in these mice, AQP1 knock-out resulted in increased AQPs 4, 7, and 11 expression in male,
but not female, hearts. More details about the dependence of findings on AQP expression in the heart
on the techniques and species of the underlying studies, can be found in the reviews of Egan et al. [20]
and Rutkovskiy et al. [21]. Butler and colleagues [27] performed a large study of mRNA expression of
AQPs 1–11 in hearts of different species by real-time PCR which will detect all levels of expression
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(even very low levels); mRNA expression of AQPs 1, 4, 6, 7, 8, and 11 was found in mouse hearts,
whereas AQPs 1, 4, 6, 7, 9, and 11 were found in rat hearts, and AQPs 1, 3, 4, 5, 7, 9, 10, and 11 in human
hearts. AQP0 (MIP), AQP12A, and AQP12B were not assessed. Western blot analysis of these samples
indicated cardiac expression only of AQPs 1 and 4; AQP7 was not assessed as its high expression in
adipose tissue might preclude proper interpretation of the results. RNA-sequencing (RNAseq) now
allows for direct quantification of relative expression levels without the inherent primer bias of RT-PCR.
Large RNAseq studies of cardiac tissue are now available [33,34]. Based on these datasets, human
cardiac AQP expression seems to consist mainly of AQP1, AQP3, and AQP7, the expression of the other
genes being small or (nearly) absent (Figure 1).
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demonstrated abundant expression of AQP1 and 6 at the sarcolemma of mouse cardiomyocytes. In 
the human heart, AQP1 has a striated pattern of staining that shows overlap with staining for the Z-
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Figure 1. Relative expression of AQPs in human left ventricular (LV) and atrial tissue (Atr). The main
cardiac sodium channel SCN5A is shown for comparison; expr_tpm indicates the number of transcripts
detected for each gene per million transcripts, normalized for gene length. Expression data obtained
from [33,34].

AQP sub-cellular localization has only been studied in mouse and rat and is summarized in
Figure 2. Immunohistochemistry demonstrated that AQPs 1, 4, and 7 were primarily localized to
the capillary endothelium and endocardium [21,35,36]. In rat, AQP1 was found in the membrane of
isolated atrial and ventricular myocytes, primary atrial myocyte cultures, and in situ myocytes of
frozen atrial and ventricular tissue [37]. Thereafter, other studies confirmed the presence of AQP1 as
well as AQP4 in cardiomyocytes of mouse [27,38], rat [27,35], and human [27,39]. Zhang et al. [38]
demonstrated abundant expression of AQP1 and 6 at the sarcolemma of mouse cardiomyocytes.
In the human heart, AQP1 has a striated pattern of staining that shows overlap with staining for the
Z-lines due to its localization in T-tubules [39]. As discussed in an editorial, Miller [40] suggested that
this particular localization may be important for coordination of the myocardial contraction via CO2

transport mechanisms rather than water transport in the T-tubules itself. In the study of Zhang et al. [38],
AQP4 was exclusively found in the intercalated discs of mouse cardiomyocytes, although this is not a
consistent finding [27,39]. AQP4 has a PDZ domain binding sequence at the C-terminal [41]. Therefore,
AQP4 can bind to synapse-associated protein 97 (SAP97) and syntrophin [42] which, due to their
localization in the intercalated disc, may be a valid explanation for the prevalent distribution of AQP4 in
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the intercalated discs. The consequences of such a specific sub-cellular distribution in cardiomyocytes
may be critical for action potential generation and conduction, as discussed in Section 4.
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heart and cardiomyocytes, primarily based on data from mouse and rat (see body text). Kir channels =

inward rectifier K+ channels, Cx43 = connexin43.

As already stated above, cardiac AQP expression is affected by normal physiological conditions
including sex, development, and aging. However, and even more importantly, these days
various pathologies are known that may affect cardiac AQP expression and, thereby, their role
in (patho)physiology of the heart. In Table 2, we provide an overview of the pathologies and conditions
associated with altered AQP expression, and a detailed description of the (potential) effects are
described in various sections below.

3. AQPs and Myocardial Edema

Interstitial water accumulation, also named edema, occurs in tissue when transcapillary water
transport surpasses the flow of the lymphatic system, and consequently reduced cardiac lymphatic flow
is frequently associated with myocardial edema [43–45]. Water accumulation in the myocardium is
directly associated with contractility changes [46] and mortality due to myocardial dysfunction [47,48].
Myocardial edema may occur in pathologic conditions, including cardiac ischemic injury following
myocardial infarction [49], cardiac bypass surgery [20], or severe burn [50]. In general, water can
pass the lipid bilayer of the cell membrane by different processes, including diffusion, coupled to ion
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channels or substrate transporters, and AQPs [23]. AQPs form the major water transport mechanism in
cardiomyocytes [51,52], but species differences seem to exist [20,23]. Consequent to their water channel
function, AQPs are frequently involved in myocardial edema as discussed below and summarized in
Table 2.

Table 2. Effect of various abnormalities on AQP expression in the heart.

Abnormality Effect Species Study

Myocardial edema following myocardial infarction AQP4 ↑ Mouse Warth et al. [49]
AQP1 ↑
AQP4 ↑
AQP6 ↑

Mouse Zhang et al. [38]

Myocardial edema following cardiopulmonary
bypass surgery AQP1 ↑ Goat Yan et al. [53], Ding et al. [54]

AQP1 ↑
AQP4 ↑ Rat Song et al. [55]

Myocardial edema following severe burn AQP1 ↑ Rat Li et al. [50]
Diabetes mellitus AQP7 ↑ Mouse Skowronski et al. [36]

Fasting AQP7 ↑ Mouse Skowronski et al. [36]
Water restriction AQP9 ↑ Rat Netti et al. [28]

Exercise and/or high-protein diets AQP7 ↑ Rat Palabiyik et al. [56]
Cardiac hypertrophy by pressure overload AQP1 ↓ Rat Zheng et al. [35]

Infective endocarditis AQP9 ↑ Human Benoit et al. [57]

3.1. Myocardial Edema following Myocardial Infarction

Warth et al. [49] studied the role of AQP4 in myocyte swelling in a murine model of myocardial
infarction. They found an upregulation of AQP4 mRNA expression and this correlated with the
size of the infarction. Zhang et al. [38] studied the expression pattern of AQPs in the process of
water accumulation and heart dysfunction following myocardial infarction in mice. They found an
upregulation of AQP1, 4, and 6 in response to myocardial infarction. The AQP4 expression showed a
time course that coincided with that of myocardial edema and cardiac dysfunction. However, AQP1
and AQP6 expression increased persistently up to four weeks. Li et al. [58] demonstrated that AQP1
knock-out has cardioprotective properties in the setting of myocardial infarction. AQP1 knock-out
mice have reduced myocardial edema and a smaller cardiac infarct size as well as an improved
cardiac function as determined via left ventricular catheter measurements. In addition, simvastatin
reduced myocardial edema during ischemia-reperfusion by suppressing the upregulation of AQP1,
4, 8, and 9 in a partially PKA-dependent manner [59], further indicating the importance of AQPs in
myocardial edema.

3.2. Myocardial Edema following Cardiopulmonary Bypass Surgery

Cardiac surgery may result in post-operative myocardial stunning and the development of
myocardial edema (for review, see [20]). In goats, cardiopulmonary bypass surgery resulted in
an increased myocardial muscle tissue water content, which was accompanied by an increased
AQP1 expression [53,54]. The amount of myocardial edema was enhanced by additional AQP1
overexpression [53], while additional AQP1 knock-down and blockade reduced the severity of
myocardial edema [53,54]. Cardiopulmonary bypass surgery in rats not only resulted in an increased
AQP1 expression, but also in an increased AQP4 expression [55]. Interestingly, hydrogen-rich solutions,
which may have therapeutic effects on various diseases [60], suppressed the increase in AQP expression
and reduced myocardial injury induced by cardiopulmonary bypass surgery [55]. In addition, it has
been suggested that diazoxide, an opener of mitochondrial ATP-sensitive K+ channels, may decrease
myocardial edema during cardiopulmonary bypass surgery (see [61], and primary references cited
therein). Intriguingly, diazoxide treatment in patients undergoing cardiopulmonary bypass surgery
lowers the AQP7 expression in atrial tissue [61].
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3.3. Myocardial Edema following Severe Burn

Severe burn injury may affect cardiac function, including an increase in myocardial oxygen
consumption, an increase in cardiac output, and the occurrence of tachycardias [62]. Li et al. [50]
studied the expression of AQP1 in rat hearts after severe burns and the effects of fluid resuscitation
treatment post scalding. They found that scald injuries caused a synchronized increase in water
content and AQP1 mRNA and protein expression in cardiac tissue. They also tested the effects of
fluid resuscitation, a frequently used intervention in case of severe burns [63], on myocardial edema
and AQP1 expression profile. Rats receiving immediate fluid resuscitation treatment showed less
severe myocardial water accumulation and lower AQP1 expression than rats receiving delayed fluid
resuscitation treatment [50].

4. AQPs and Cardiac Electrophysiology

The pump function of the heart is due to coordinated excitation-contraction coupling in atria and
ventricles [64]. Excitation is the result of cardiac action potentials, which consist of five successive
phases. During each of these phases, different ionic currents are activated, which are either carried
through voltage-gated Na+, K+, and Ca2+ channels or through specific ion exchange mechanisms
(for reviews, see [65,66]). Dysfunction of cardiac ion channels and/or exchangers may, thus, affect
action potential properties [65], conduction [67], and pacemaker activity [68], all potentially leading
to life threatening cardiac arrhythmias and sudden cardiac death [69,70]. In contrast to the cardiac
ion channels as well as pumps and exchangers, most mammalian AQP channels conduct neutral
molecules and do not transport ions. However, there may be some exceptions in which AQPs conduct
charged particles [5,71]. For example, AQP1 activated by cyclic guanosine monophosphate conducts
monovalent cations, including Na+, K+, and Cs+, through the central pore of the tetramer [72–75].
Moreover, AQP6 can act as a chloride channel under specific conditions related to the presence of
Hg2+ and low pH [76,77]. Whether such ion flows have a direct physiological relevance for cardiac
electrophysiology is to our knowledge not known. Apart from acting as an ion channel, AQPs may
affect cardiac electrophysiology also indirectly via swelling and/or shrinking of the myocytes and the
consequent changes in ionic composition of the cytosol and the extracellular fluid. In addition, AQPs
may exert an effect on cardiac electrophysiology by crosstalk with various other membrane proteins or
by forming macromolecular complexes [9]. Below, we discuss these possibilities in detail. Data from
AQP knock-out transgenic mice are summarized in Table 3.

Table 3. Observations in the heart from studies on AQP knock-out mice.

Knocked-Out Gene Observed Effect Study

AQP1 Increased AQP4, 7, and 11 expression in male, but not female hearts Montiel et al. [32]
AQP1 Decrease in cardiac weight and cardiomyocyte dimensions Montiel et al. [32]
AQP1 Lower systolic, but not diastolic, blood pressure Montiel et al. [32]
AQP1 Reduced left ventricular wall thickness and mass, and a lower capillary density Yang et al. [78]

AQP1 Reduced myocardial edema and a smaller cardiac infarct size upon myocardial
infarction *) Li et al. [58]

AQP4 Downregulated expression of Cx43 and SERCA Cheng et al. [79]
AQP4 Increased diastolic and systolic [Ca2+]i levels Cheng et al. [79]

AQP4 Increase in cardiac weight Cheng et al. [79],
Cheng et al. [80]

AQP4 Changes in protein kinases Rutkovskiy et al. [81]
AQP7 Higher mortality upon transverse aortic constriction Gerdes et al. [82]
AQP7 Decrease in glycerol uptake and low cardiac glycerol and ATP content Hibuse et al. [83]

* Similarly, it had been observed that additional AQP1 overexpression enhanced the amount of myocardial
edema [53], whereas additional AQP1 knock-down and blockade reduced the severity of myocardial edema [53,54].
Cx43 = connexin43; SERCA = sarcoplasmic reticulum Ca2+ ATPase.

4.1. AQPs and the Nernst Potential

AQPs transport water between cardiomyocytes and the extracellular space. Consequently,
intracellular and extracellular ionic compositions will be affected by AQPs. It is well established [84]
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that a specific transmembrane ionic current (I) is set by the membrane conductance (G) of the ion of
interest and its electrical driving force, which is the difference between the equilibrium potential (Erev)
for the particular ion and the membrane potential (Vm), as expressed by the ohmic relationship:

I = G× (Vm − Erev) (1)

The Erev of the ion in question is determined by the ratio of the intracellular ([X]i) to extracellular
([X]o) ionic concentration [84,85], and is expressed by the Nernst equation:

Erev =
(R× T

z× F

)
× ln

(
[X]o
[X]i

)
(2)

in which R, T, z, and F denote gas constant, absolute temperature, valence, and Faraday constant,
respectively. Thus, any change in intracellular and/or extracellular ionic composition due to water
transport may affect ion channel activity, and conversely. Indeed, swelling and shrinking of
cardiomyocytes affect various membrane currents, including the L-type Ca2+ current (ICa,L) [86],
and the rapid and slow component of the delayed rectifier K+ current (IKr and IKs, respectively) [87].

4.2. AQPs and Cell Volume- and Osmotically-Activated Channels

The water transport of AQPs will also regulate cell volume and osmotic values. Importantly,
the expression of AQPs itself is affected by osmolarity, thereby further drastically altering the water
permeability of the cell membranes (see [88], and primary references cited therein). Cardiomyocytes
have various cell volume-activated ion channels (VACs) as well as osmotically-activated cation channels.
VACs are Cl− or K+ channels activated by an increase in cell volume [89,90]. For example, swelling
in ventricular and Purkinje cardiomyocytes activates an outwardly rectifying Cl− current (ICl(swell)),
which results in resting membrane potential depolarization and action potential shortening in an
osmotic gradient-dependent fashion [91,92]. Resting membrane depolarization and action potential
shortening are conditions that facilitate the occurrence of reentrant arrhythmias [93]. Despite the
pro-arrhythmic effects of volume changes, the direct effect of AQPs on VACs in cardiomyocytes has
not yet been studied.

The Transient Receptor Potential Vanilloid 4 (TRPV4) is an osmotically-activated channel and
its expression in cardiomyocytes is enhanced during ageing [94]. TRPV4 channels are permeable to
Ca2+ ions and the influx of Ca2+ via these channels contributes substantially to osmotically-induced
Ca2+-transient and contractility changes, as well as tissue damage following ischemia-reperfusion [95].
In addition, the Ca2+ load due to TRPV4 channel activation may lead to activation of Ca2+-activated
K+ channels in the heart, as detailed in Section 4.3 below. Recently, it has become clear that AQP2, 4,
and 5 and TRPV4 show interactions in various tissues (see [94], and primary references cited therein).
Thus, AQPs may exert an effect on cardiac electrophysiology and arrhythmias via VAC and TRPV4
channel activation, but detailed experiments are needed to study this hypothesis.

4.3. AQPs and K+ Channels

Inward rectifier K+ (Kir) channels are permeable to K+ ions and they conduct larger inward currents
(at non-physiological membrane potentials, negative to the K+ equilibrium potential) compared to
outward currents. Various Kir subfamilies exist throughout the body [96]. AQP4 is the predominant
water channel in astrocytes [97]. In such cells, AQP4 affects the ATP-sensitive inward rectifier K+

channel, Kir4.1, encoded by KCNJ10, through spatial buffering of K+ by facilitating the movement of
water through the membrane [98,99]. In addition, genetic variation in AQP4, and potentially altered
Kir4.1 function, are predisposing factors for sudden infant death syndrome (SIDS) [100,101]. Kir4.1
is also present in the heart, and its activation may have both anti- and pro-arrhythmic effects [102].
In addition, Kir2.x is responsible for the inward rectifier K+ current (IK1), the current responsible for
setting the resting membrane potential. Kir2.x has PDZ domains similar to Kir4.1 [103], and thus Kir2.x
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in the heart may also be modulated by AQPs. Further research is needed to elucidate such AQP and
Kir2.x interaction and potential functional effects thereof in cardiomyocytes.

As mentioned in Section 4.2 above, osmotically-induced TRPV4 activation may lead to Ca2+ load,
which subsequently may activate various Ca2+-activated K+ channels [94]. Ca2+-activated K+ channels,
especially the small-conductance Ca2+-activated K+ (SK) channel, are important for atrial repolarization
and are involved in atrial fibrillation (AF), and may affect ventricular electrophysiology during heart
failure [104,105]. Thus, AQPs may affect basic cardiac electrophysiology, and may promote cardiac
arrhythmias through TRPV4-induced Ca2+-load. In addition, KV1.5 channels, TREK channels and
TWIK channels—all present in the heart [66]—seem also closely located to AQP4 [106–109] but, so far,
no studies have been performed to unravel whether these channels are molecular partners of AQP4
in cardiomyocytes.

4.4. AQPs and Cx43

Cell-to-cell communication through gap junction channels, which are built of connexin proteins,
is essential for coordinated propagation of action potentials in the heart [110]. Relationships between
connexins and AQPs are well established in vertebrate lens and brain with a decrease in connexin
expression upon downregulation of AQPs (for review, see [111]). This seems also valid in cardiac tissue.
Expression of connexin43 (Cx43) was downregulated in AQP4 knock-out mice [79], but inversely
correlated with AQP1 expression in goats following cardiopulmonary bypass surgery [53]. To our
knowledge, the relevance of AQPs in cardiac impulse propagation or conduction has not yet been
studied, neither with ECGs nor with more sophisticated techniques at tissue levels. However, a
decrease in expression of Cx43, as found in the AQP4 knock-out mice, will make the heart more
vulnerable to reentry-based arrhythmias [110].

4.5. AQPs and Na+ Channels

In dorsal root ganglion neurons, AQP1 knock-out resulted in a reduced action potential firing,
reduced action potential upstroke velocities, and in a decrease of the tetrodotoxin-resistant (TTX-R)
NaV1.8 current and expression [112]. Using immunoprecipitation studies, Zhang and Verkman [112]
showed a clear AQP1–NaV1.8 interaction. The presence of NaV1.8 channels in cardiomyocytes
is debated [113,114], but it has been suggested that NaV1.8 channels may at least affect cardiac
electrophysiology via intracardiac neurons [113,115]. Indeed, blockade of NaV1.8 in a canine model
of acute AF decreased the incidence and shortened the duration of AF [115]. The AQP1–NaV1.8
interaction may thus also have an impact on cardiac electrophysiology and arrhythmogenesis via
intracardiac neurons. Whether AQPs have also effects on other sodium channel isoforms has only been
studied to a limited extent. Neither NaV1.7 channel expression nor the expression of its modulatory
β-subunit, β1, was affected in dorsal root ganglion neurons of AQP1 knock-out mice [112], but data on
effects of AQPs on the most abundant cardiac Na+ channel isoform, NaV1.5, are lacking.

5. AQPs and Cardiac Contractility

Contractions of cardiomyocytes are initiated by a massive release of intracellular Ca2+ from the
sarcoplasmic reticulum (SR), which is known as the [Ca2+]i transient [64,116], and multiple mechanisms
contribute to the associated [Ca2+]i cycling in cardiomyocytes (for reviews, see [116–118]).Ca2+ influx
through ICa,L channels triggers release of Ca2+ from the SR via ryanodine-2 (RyR2) channels, resulting in
the start of the [Ca2+]i transient. This so-called Ca2+-induced Ca2+ release is importantly modulated by
the organization of T-tubuli, with co-localization of ICa,L and RyR2 channels, and the open probability
of RyR2 channels. The [Ca2+]i transient amplitude depends on the Ca2+ content of the SR. The [Ca2+]i

transient decline is importantly due to Ca2+ reuptake into the SR through activity of SR Ca2+ ATPase
(SERCA) and extrusion of Ca2+ into the interstitium via the sarcolemmal Na+/Ca2+ exchanger (NCX).
The SERCA and NCX activity compete during the [Ca2+]i transient. Thus, changes in SERCA function
indirectly affect NCX activity and vice versa, which may result in altered SR Ca2+ content and [Ca2+]i
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transients. The diastolic Ca2+ concentration is regulated by the [Ca2+]i transient decline, and leak of
RyR2 channels. Thus, changes in [Ca2+]i cycling may affect cardiac contractility [119] and/or may be a
source of cardiac arrhythmias [120].

The water transport via AQPs modulates osmotic values in the cytosol, which may affect cell
contractions [121,122]. Furthermore, it will also activate TRPV4 channels (see Section 4.2), resulting
in Ca2+ overload, which is an important source for delayed afterdepolarizations [120], a cellular
mechanism underlying triggered activity arrhythmias [123]. In addition, AQP4 knock-out (KO) mice
have SERCA downregulation, resulting in increased diastolic [Ca2+]i and increased risk for cardiac
arrhythmias and failure [79]. Interestingly, isoproterenol-induced cardiac weight increase was more
pronounced in AQP4 KO compared to wild-type mice suggesting that the AQP4 KO-induced [Ca2+]i

changes may also result in altered structural remodeling [79]. Apart from diastolic [Ca2+]i levels,
systolic [Ca2+]i levels are also increased in cells isolated from AQP4 KO mice [79].

Apart from changes in [Ca2+]i cycling, structural changes may also affect cardiac
contractility [82,124]. At first glance, heart morphology appeared largely normal in various AQP
deficient mice [58,78,83]. However, upon more close examination, cardiac weight was increased in
AQP4 KO mice [79,80], but decreased in AQP1 KO mice [32]. The latter was accompanied by decreased
cardiomyocyte dimensions [125]. A more recent study confirmed that AQP1 KO mice have a reduced
left ventricular wall thickness and mass, but also a lower capillary density [78]. AQP1 KO mice have a
lower systolic, but not diastolic, blood pressure [32], and likely a reduced maximal cardiac output [126],
thus indicating that AQPs have an important regulatory role in cardiac contractility and function.

6. AQPs and Cardiac Energy Balance

The heart has a very high energy demand to maintain its ionic homeostasis, contractility, and
metabolic processes (for review, see [127]). It is well established that cardiomyocytes require fatty acids
and glucose for energy production [127,128]. However, glycerol may also be a substrate for energy
production [83,129]. AQPs of the aquaglyceroporin subfamily (Table 1) allow passage of glycerol, and
may, therefore, play a role in energy regulation [129]. AQP7 is the most prominent aquaglyceroporin
in the heart (Section 2), and it shows upregulation in various conditions where energy balance and/or
substrate may be altered, as summarized in Table 2. AQP7 is not only upregulated in mice with
streptozotocin-induced diabetes mellitus [36], but also upon 72 h of fasting [36]. Furthermore, in rat,
AQP7 is upregulated in response to exercise, high-protein diets, and a combination of both [56]. The
importance of AQP7 in cardiac energy balance is further supported by a study of Hibuse et al. [83].
They studied the effects of AQP7 KO in mice under basal conditions and during pressure-overload
induced by either isoproterenol infusion or transverse aortic constriction. Under basal conditions,
AQP7 KO was associated with a decrease in glycerol uptake, resulting in low cardiac glycerol and ATP
content. Transverse aortic constriction and infusion of isoproterenol resulted in an accelerated and
more pronounced hypertrophy, respectively, in AQP7 KO mice. In addition, AQP7 KO mice showed a
higher mortality upon transverse aortic constriction [82]. In cardiomyocytes, AQP7 may, thus, act as a
glycerol facilitator and dysfunction of AQP7 may increase the susceptibility to hypertrophy as well as
mortality rate.

Recently, Rutkovskiy and co-workers linked the cardioprotective effect of AQP4 KO during
ischemia to changes in protein kinases [81]. In young (≤6 months of age), but not in old (≥1 year)
mice, they found a decreased expression of AMP-dependent kinase, which is important in energy
status [130]. However, mice with reduced AMP-dependent kinase seem more susceptible to ischemia-
and reperfusion-induced cardiac damage [131], which makes a clear association with AQP4 KO
cardioprotection debatable. Nevertheless, the study of Rutkovskiy et al. [81] demonstrates that
non-aquaglyceroporins might also modulate energy status in the heart by kinase modulation.
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7. AQP Modifiers and the Heart

Evidence is increasing that various genetic defects and pathophysiological conditions in the body
may alter AQP function. Below, we discuss various AQP mutations and variants, as well as some
disease mechanisms related to AQPs that may have a direct and/or indirect effect on heart function.
An overview of all phenotypes associated with AQPs is provided in Supplemental Table S1.

7.1. AQPs Mutations and Variants

Genetic diseases caused by mutations in aquaporins are rare [132]. Loss-of-function mutations
in AQP2 may provoke nephrogenic diabetes insipidus [133,134], a condition with excessive urine
production frequently resulting in electrolyte imbalance [135]. The latter is a condition that may increase
the susceptibility to arrhythmias [136]. An AQP3 splice form called AQP3(∆5) results in AQP3-deficient
individuals with a strongly reduced glycerol transport across the membrane of red blood cells due
to the AQP3 deficiency [137]. However, the cardiac phenotype of these patients is unclear. AQP4
loss of function may result in congenital cataracts and impaired hearing [138]. SIDS is frequently
associated with mutations in cardiac ion channel-related genes [139]. Common genetic variants in
AQP4 in combination with common genetic variations in KCNJ10, encoding the ATP-sensitive inward
rectifier K+ channel Kir4.1, have been associated with SIDS [100,101], but the genetic evidence of the
studies by Opdal et al. [100,101] is limited. Recently, another AQP4 aquaporinopathy was proposed by
Berland et al. [140]. In a male patient, they observed a de novo missense variation Ser111Thr in AQP4.
Apart from intellectual disability, hearing loss, and progressive gait dysfunction, cardiac hypertrophy
was detected at the age of three months, which persisted through childhood, but was completely
resolved at age 16. The de novo missense variation did not affect the water permeability or protein
stability, indicating that the observed disorders are not due to impaired water transport through the
AQP4 channel.

Missense mutations in AQP5 were identified in patients with inherited palmoplantar
keratodermas [141], but this AQP subtype is not present in the heart (see Section 2). A common
polymorphism in the promoter region of the human AQP7 gene, resulting in AQP7 downregulation, is
pathogenic for obesity and/or type 2 diabetes [142], while missense mutations in AQP7 are associated
with an inability to increase the plasma glycerol during exercise [143]. Direct effects of variants in
AQP7 on the heart are unknown, but obesity and diabetes themselves may have various adverse effects
on cardiac (electrophysiological) function [144,145]. In Supplemental Table S1 we provide an overview
of all data available in human and in animal models. The Database of Genotypes and Phenotypes
(dbGaP) [146] shows that common variants located in the vicinity of AQP3, AQP7, and AQP9 have
been associated with blood pressure and hypertension. However, these associations do not reach the
threshold for genome wide significance and have not (yet) been replicated. Furthermore, mice with
homozygous loss-of-function mutations in AQP11 suffer from unexpected sudden death between two
and three weeks of age [147], attributed to renal failure, but the cause for the sudden nature of the
death of these animals is not investigated and could be arrhythmogenic in nature.

7.2. AQPs and Pathophysiological Conditions

Arsenic is a naturally occurring metalloid that unfortunately can result in global health problems
affecting many millions of people [148,149]. Among other symptoms, arsenic toxicity is characterized
by cardiovascular diseases [148], including peripheral arterial disease, stroke, and coronary heart
disease (see [149], and primary references cited therein). The heart comprises AQPs that are permeable
to arsenite (see Section 2 and Table 1). The passage of arsenite through AQPs may, thus, be responsible
for intracellular arsenic accumulation and toxicity. Indeed, AQP9 knock-down in hepatocytes results
in a decrease of inorganic arsenic uptake, whereas overexpression of AQP9 in hepatocytes results in an
increase of inorganic arsenic uptake, leading to the enhancement of arsenic-induced cytotoxicity [148].
The effects of arsenic in relation to AQPs in the heart have only been studied to a limited extent. AQPs 3,
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7, and 9 can pass arsenite (Table 1). AQP9 is absent in the human heart, whereas the expression of
AQP3 is relatively low (Figure 1). No studies on AQP7 and arsenic cardiotoxicity are known so far.
AQP9 is also absent in the mouse heart [27]. Interestingly, however, AQP9-null mice have 10–20 times
higher arsenic concentrations in the heart than wild-type mice after injection of sodium arsenite
(NaAsO2) [150]. In addition, they display severe bradycardia within hours after injection. AQP9 is
abundantly present in the liver, and not in heart, suggesting that AQP9 affects cardiac function due to
reduced arsenic clearance by the liver [150].

Lithium, which is widely and effectively used in the treatment of bipolar disorders [151], causes
marked downregulation of AQP2 expression [152]. It frequently results in nephrogenic diabetes
insipidus, similar to loss-of-function mutations in AQP2 (see Section 7.1). Lithium has various side
effects on cardiac function. It may, for example, induce Brugada syndrome [153] and bradycardia [154],
but whether these are due to AQP dysfunction per se or due to (in)direct effects on ion channel function
is unknown.

Cardiac hypertrophy induced by pressure-overload lowers AQP1 expression in rat
cardiomyocytes [35]. Furthermore, cardiac hypertrophy and heart weight increase are more pronounced
in AQP7 knock-out mice upon isoproterenol infusion or transverse aortic constriction compared
to wild-type mice (see also Section 6). In addition, chronic heart failure (CHF) is characterized
by an upregulation of AQP2 in kidneys [155], resulting in abnormal renal water retention [156].
Administration of a vasopressin V2 receptor antagonist prevents CHF-induced AQP2 upregulation
and consequently improves diuresis [155]. AQP2 modulation in the kidneys is, thus, a useful, but
indirect, target for improvement of clinical status and, possibly, outcome of CHF patients [157].

Infective endocarditis, an infection of the endocardial surface of the heart, is a severe and a
potentially lethal disease [158]. AQP9 is expressed in valvular tissue of patients with infective
endocarditis [57], and this expression is associated with the development of acute heart failure [159].
The exact diagnosis of infective endocarditis is often missed or only made late in the course of the
disease [160], and therefore, it is suggested that AQP9 expression may be a potential prognostic marker
in infective endocarditis [159].

Dehydration is a severe problem in the pediatric [28] and elderly [161] population, but also
in critically ill patients [162], being one of the main causes of mortality. Netti and colleagues [28]
demonstrated that rats aged 50 days showed upregulation of cardiac AQP1 expression and appearance
of AQP1 in cardiomyocyte plasma membranes in response to water restriction. However, such effects
were absent in water-restricted rats of 25 days old. Interestingly, water restriction induced a decrease
in water content at day 25, but not at day 50, indicating that the AQP1 upregulation and presence in
cardiomyocyte plasma membranes prevented severe changes in cardiac water homeostasis.

Duchenne muscular dystrophy (DMD) is an X-linked disorder due to mutations in the DMD
dystrophin gene and presents in early childhood with proximal muscle weakness [163]. DMD
unavoidably leads to congestive heart failure and arrhythmias [164]. Interestingly, DMD is associated
with a reduction in AQP4 expression in myofibers [165,166]. Whether this also occurs in cardiomyocytes
is so far unknown, but it is tempting to speculate that AQP4 dysfunction contributes to DMD-induced
cardiomyopathy and arrhythmias (see also Section 4).

8. Concluding Remarks

The multiple essential roles that AQPs play in cardiac water homeostasis are evident from
the changes in myocardial edema in pathophysiological conditions. The effects of AQPs on
cardiac electrophysiology are largely unexplored. However, as discussed above, AQPs have tight
protein–protein interactions with various membrane ion channels and connexins as well as effects
on [Ca2+]i cycling, all important for proper cardiac excitation. It is, therefore, highly susceptible that
AQPs are important determinants of both proper cardiac electrophysiology and arrhythmogenesis, but
detailed studies are required to test this hypothesis. AQP dysfunction may reduce blood pressure and
maximal cardiac output, which may be due to reduced cardiac contractility consequent to changes in
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[Ca2+]i cycling and cardiomyocyte and heart morphology. Further research is required to elucidate
the exact mechanism of the reduced pump function of the heart. AQPs, especially AQP7, which is a
member of the aquaglyceroporin subfamily and is abundantly expressed in the human heart, seem to
have a role in cardiac energy balance. AQP7 acts as a glycerol facilitator and glycerol is a substrate
for energy production. AQP mutations and variants may have a direct or indirect effect on cardiac
function, while some pathophysiological conditions, e.g., arsenic toxicity and CHF, may be due to the
dysfunction of AQPs. Furthermore, the use of specific medications, like lithium in case of bipolar
disorders, may result in dysfunction of AQPs and improper cardiac functioning. Despite the impact of
AQPs on proper cardiac water homeostasis, energy balance, heart failure, and arsenic cardiotoxicity,
and their potential effects on cardiac excitation-contraction coupling, the cardiac phenotype of loss of
function of specific AQPs is not always immediately clear. In this respect, it is worth noting that this is
likely due to the presence of other water-specific AQPs, which may take over cardiac water transport
function [27]. In fact, the total expression of AQPs may even be increased in case of dysfunctioning
of one of the AQP types. Thus, compensatory (functional) upregulation of AQP expression and
associated takeover of AQP functioning may prevent a clear phenotype in the heart. In conclusion,
this review implies a critical role of AQPs in normal and pathophysiological cardiac function, but also
shows that much work remains to be done to elucidate their exact role in electrical and mechanical
cardiac functioning.
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AF Atrial fibrillation
AQP Aquaporin
CHF Chronic heart failure
DMD Duchenne muscular dystrophy
Erev Equilibrium potential
G Membrane conductance
I Transmembrane ionic current
ICa,L L-type Ca2+ current
ICl(swell) Swelling-activated Cl− current
IKr Rapid delayed rectifier K+ current
IKs Slow delayed rectifier K+ current
Kir Inward rectifier K+ channels
NCX Na+/Ca2+ exchanger
RyR2 Ryanodine receptor 2
SERCA SR Ca2+ ATPase
SIDS Sudden infant death syndrome
SK Small-conductance Ca2+-activated K+ channel
SR Sarcoplasmic reticulum
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TRPV4 Transient receptor potential vanilloid 4
VACs Volume-activated ion channels
[X]i Intracellular ionic concentration
[X]o Extracellular ionic concentration
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