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      Naive CD8� T cells proliferate after being 
adoptively transferred into mice rendered lym-
phopenic by genetics (T cell knockout [KO] or 
SCID), irradiation, or cytokine induction by 
Toll receptor agonists or viral infections ( 1 ). This 
acute homeostatic proliferation is a compensa-
tory mechanism to replenish the peripheral T cell 
pool. It has been estimated that only  � 30% of the 
naive CD8� T cell population rapidly proliferate 
under lymphopenic conditions ( 2 ), perhaps be-
cause acute homeostatic proliferation of CD8� 
T cells occurs by interaction between the TCR 
and MHC-expressing self- or environmental 
peptides ( 3, 4 ). These lymphopenia-driven 
CD8� T cells have  “ memory-like ”  features, in-
cluding the expression of the activation/memory 
marker CD44 and the ability to produce IFN �  
on TCR stimulation ( 5 – 7 ). 

 Previous studies have demonstrated that 
those naive CD8� T cells whose TCR have 
high affi  nity to endogenous or self-antigens have 
an advantage for undergoing acute homeostatic 
proliferation ( 8 ). This suggests a potential to skew 
the TCR repertoire toward oligoclonal expan-
sion, though this is sometimes diffi  cult to see 
because so many T cells proliferate. However, 
autoreactive T cells have an enhanced ability to 
initiate autoimmunity during the reconstitution 
of lymphopenic environments, such as in the 
nonobese diabetic mouse model ( 9 ). In humans, 
T cell lymphopenia has been associated with 
autoimmune diseases, such as rheumatoid arthri-
tis, systemic lupus erythematosus, and insulin-
dependent diabetes mellitus ( 10 – 13 ). These 
fi ndings suggest that lymphopenic conditions 
are potentially hazardous for immune regula-
tion, and imply that some mechanism must 
regulate these processes to prevent higher inci-
dences of autoimmunity. Thus far, it is unclear 
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memory cells underwent relatively limited cell division and 
were substantially diluted in frequency by other more exten-
sively proliferating cells originating from that donor cell pop-
ulation ( 1 ). This pattern of division is seen in  Fig. 1 A , where, 
12 d after cell transfer, the viral peptide – specifi c CD8 T cells, 
as detected by intracellular IFN �  assay, were mostly in the 
CFSE-positive cells that had undergone limited numbers of 
divisions.  We questioned how the slowly dividing popula-
tion, which contained bona fi de memory cells, diff ered from 
the rapidly dividing cells, which contained memory-like 
cells. As a preliminary screen, we performed a comparative 
genome-wide microarray analysis of genes expressed on 
sorted, rapidly proliferating (CFSE-low) and slowly prolifer-
ating (CFSE-high) CD8 cell populations, as described in 
 Materials and methods. One of the most dramatic diff erences 
was in PD-1 mRNA levels, which were high in the CFSE-
low population, but below reliable detection in the CFSE-
high population. In addition, mRNA levels for IL-7R � , 
IL-15R � , and Bcl-2 were 3 – 13-fold lower in the CFSE-low 
population than in the CFSE-high population. Based on the 
information obtained from the gene array experiment, we 
stained HP cells with PD-1 – specifi c antibody 13 d after trans-
fer and confi rmed that this molecule was highly expressed on 
a large proportion of the CFSE-low population (28.6  �  
7.2%,  n  � 4), but on only a few cells in the CFSE-high pop-
ulation (1.0  �  0.3%,  n  �3;  Fig. 1 B ). Very little (5.8  �  3.3%, 
 n  �3) expression of PD-1 was seen in donor CD8 cells be-
fore adoptive transfer or on donor cells that had been trans-
ferred into normal C57BL/6 mice, where acute homeostatic 
proliferation does not occur because of the replete immune 
system (Fig. 1 B). We next measured the kinetics of PD-1 
expression on CD8� donor cells during reconstitution of the 
lymphopenic environment. Barely detectable before transfer, 
PD-1 expression slightly increased at day 7, peaked at day 21, 
and returned to pretransfer levels by day 70 ( Fig. 1 C ). As the 
PD-1� cell frequency declined from day 21 to 70, the total 
donor cell number only moderately increased ( Fig. 1 D ), in-
dicating a substantial loss in PD-1� cell number. Expression 
of PD-1 on CFSE-low donor cells similar to those in  Fig. 
1 B  was also seen in LCMV-immune donor cell populations 
transferred into B6 mice rendered lymphopenic by 600 Gy 
irradiation.  Fig. 1 E  is a representative plot from an experi-
ment where 16  �  9% ( n  � 5) of cells were PD-1+ and 
CFSE-low, whereas 1.4  �  0.2% ( n  � 5) of cells were PD-1+ 
CFSE-high, at day 32. Because PD-1 is reported to regulate 
the expansion of self-reactive autoimmune T cells, we also 
tested the fate of transgenic HY male antigen-specifi c donor 
cells in a T cell KO environment ( Fig. 1 F ). Spleen CD8 T 
cells from female HY-transgenic mice contain  � 30% of cells 
expressing both the  �  and  �  TCR transgenes, whereas the 
rest represent a diverse T cell population expressing diff erent 
TCR  �  proteins. In this and a second experiment, transferred 
transgenic HY CD8� T cells dramatically expanded by day 6 
in male T cell KO mice (3.8  �  2 � 10 5 ,  n  � 4) in compari-
son to those in female KO mice (1.9  �  1.4  �  10 4 ,  n  � 3) or 
lymphocyte-replete B6 male mice (2.3  �  0.89  �  10 4 ,  n  � 4) 

which peripheral tolerance mechanisms are involved in the 
regulation of T cells responding to self- or environmental 
antigens during homeostatic reconstitution. 

 Acute homeostatic proliferation involves the division of 
T cells with diff erent histories of antigenic exposure. The fate 
of bona fi de antigen-specifi c memory cells, i.e., those cells 
that have undergone the full diff erentiation program after en-
countering a foreign antigen, diff ers from other memory-like 
cells undergoing acute homeostatic proliferation and express-
ing memory cell antigens. Our laboratory has shown that 
lymphocytic choriomeningitis virus (LCMV) –  and Pichinde 
virus – specifi c CD8� memory T cells of no fewer than seven 
specifi cities are relatively poor at undergoing acute homeostatic 
proliferation and become substantially reduced in frequency 
in comparison to other cells responding to a lymphopenic 
environment ( 1 ). We show that a molecule that distinguishes 
between the slowly dividing Ly6C� bona fi de memory cells 
and the rapidly dividing Ly6C 	  memory-like cells is pro-
grammed death-1 (PD-1). 

 PD-1 is a costimulatory molecule originally isolated by 
subtractive hybridization in a cell death – induced T cell line 
( 14 ). PD-1 is a member of the CD28 gene family and is ex-
pressed on activated T, B, and myeloid cells. PD-1 has two 
known ligands, PD-1 ligand-1 (PD-L1) and PD-L2, which 
both belong to the B7 superfamily. PD-L1 is expressed on 
many cell types, such as T, B, dendritic, endothelial, and tumor 
cells. In contrast, PD-L2 is narrowly expressed on APCs ( 15 ). 
The cytoplasmic domain of PD-1 contains an immuno-
receptor tyrosine-based inhibitory motif, which can recruit 
the phosphatase SHP-2 after ligand engagement and inhibit 
TCR signaling ( 15 ). This inhibitory function of PD-1 can 
occur during autoimmunity, allergy, allograft rejection, anti-
tumor immunity, and chronic virus infection, leading to dys-
functional T cells ( 16 – 18 ). C57BL/6 PD-1 	 / 	  mice develop 
a lupus-like syndrome, whereas BALB/c PD-1 	 / 	  mice have 
dilated cardiomyopathy, which is caused by autoantibodies 
against cardiac troponin I ( 19 – 21 ). Moreover, a single nucle-
otide polymorphism of PD-1 is associated with higher inci-
dences of systemic lupus erythematosus, type 1 diabetes, and 
rheumatoid arthritis in humans ( 22 – 24 ). These fi ndings sug-
gest that PD-1 plays an important role to negatively regulate 
immune responses. 

 We show that PD-1 is expressed on a large subset of acute 
homeostatically proliferating (HP) cells isolated from lym-
phopenic environments. These PD-1� HP cells undergo 
oligoclonal expansion, are dysfunctional, react with the apop-
tosis indicator Annexin V, and then disappear, suggesting PD-1 
involvement in the elimination of autoreactive CD8� T cells 
and the prevention of autoimmunity. 

  RESULTS  

 PD-1 is transiently expressed during reconstitution 

of lymphopenic environments 

 Our earlier study demonstrated that when CFSE-labeled 
LCMV- or Pichinde virus – immune spleen leukocytes were trans-
ferred into T cell – defi cient hosts, the bona fi de virus-specifi c 
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 Figure 1.   Dynamics of memory cell division and PD-1 expression on HP cells. Spleen leukocytes were isolated from Ly5.1-LCMV – immune mice, labeled 

with CFSE, and adoptively transferred into male T cell KO or B6 mice. (A) After day 12, leukocytes were stimulated with peptides and stained for surface makers and 

intracellular IFN � . The epitope-specifi c IFN � -producing CD8� T cells were analyzed for intensity of CFSE. (B) On day 13, leukocytes were harvested and stained 

with anti-CD8, -Ly5.1, and  – PD-1 antibodies. Gated CD8� Ly5.1� donor cells were analyzed for CFSE versus PD-1 intensity. This is representative of three similar 

experiments with two to fi ve mice per group. (C) The time kinetics of expression of PD-1 on CD8� Ly5.1+ donor cells in T cell KO or B6 mice. This is representative 

of two similar experiments with two to fi ve mice per group. (D) The time kinetics of expansion of CD8� Ly5.1� donor cells in T cell KO mice or B6 mice. (E) Naive 

B6 mice were irradiated with 600 Gy. The day after irradiation, spleen leukocytes were isolated from Ly5.1-LCMV – immune mice, labeled with CFSE, and adoptively 

transferred into irradiated or unirradiated B6 mice. On day 32, leukocytes were harvested from irradiated B6 or unirradiated B6 mice and stained with anti-CD8, 

-Ly5.1, and  – PD-1 antibodies. Gated CD8+ Ly5.1+ donor cells were analyzed for CFSE versus PD-1 intensity. (F) Spleen leukocytes were isolated from HY female 

mice, labeled with CFSE, and adoptively transferred into T cell KO or normal male or female B6 mice. On day 6, leukocytes were harvested are stained with anti-

CD8, -HY TCR, and  – PD-1 antibodies. Gated CD8+HY+ donor cells were analyzed for CFSE versus PD-1 intensity. This is representative of two similar experiments.   
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transgenic CD8� T cells did not lose CSFE, and few ex-
pressed PD-1. In contrast, only 6.8  �  7.8% ( n  � 4) of non-
transgenic donor cells from HY mice expressed PD-1 on the 
CFSE-low cell population 6 d after transfer into T cell KO 

or female mice (2.2  �  1.8  �  10 4 ,  n  � 3). The expression 
of PD-1 on the CSFE-low HY cells in the T cell KO male 
mice was elevated on  
 70% of the cells ( Fig. 1 F , gated on 
the transgenic cells). In female mice, the transferred HY 

 Figure 2.   Ly6C distinguishes bona fi de memory HP cells from PD-1� HP cells. Spleen leukocytes were isolated from Ly5.1-LCMV – immune mice, 

and before or after adoptive transfer into T cell KO, leukocytes were stimulated with the indicated peptides and stained for surface antigens and intra-

cellular IFN � . The LCMV-specifi c memory T cells were identifi ed by CD44 (A) or Ly6C (B) and IFN �  costaining before or after adoptive transfer into T cell KO 

mice. (C) At day 21, splenocytes from T cell KO or B6 mice were harvested and stained with anti-CD8, -Ly5.1, -Ly6C, and  – PD-1 antibodies, revealing three 

distinct cell populations. This is representative of three similar experiments with three to fi ve mice per group. (D) Spleen leukocytes were isolated from 

Ly5.1-LCMV – immune mice, and adoptively transferred into irradiated or unirradiated B6 mice. At day 32, splenocytes were harvested and stained with 

anti-CD8, -Ly5.1, -Ly6C, and  – PD-1 antibodies, revealing three distinct cell populations. This plot is of one representative mouse out of fi ve mice.   
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Ly6C 	  ( n  � 5), and 30  �  8% PD-1 	 Ly6C� ( n  � 5), with 
the fi rst two subsets contained mostly within the rapidly di-
viding CSFE-low population, and the last subset containing 
virtually all of the slowly dividing bona fi de memory cells. 
Donor cells transferred into WT C57BL/6 mice remained 
PD-1 	  and contained Ly6C� and Ly6C 	  subsets ( Fig. 2 C ). 
Similar results were seen when irradiated mice were used as 
hosts.  Fig. 2 D  compares PD-1 to Ly6C expression and shows 
that 12  �  8% ( n  � 5) of cells are PD-1�Ly6C 	  HP cells, 
25  �  5% ( n  � 5) are PD-1 	 Ly6C 	  HP cells, and 60  �  8% 
( n  � 5) are PD-1 	 Ly6C� HP cells at day 32 in reconsti-
tuted irradiated C57BL/6 mice. We questioned whether these 
three subpopulations had other unique properties that distin-
guished them from each other. 

 Expression of activation molecules and growth factor 

receptors on the three HP subtypes 

 To characterize the three major populations distinguished 
by PD-1 and Ly6C costaining, we examined changes in ex-
pression of the activation markers CD43 and CD62L. CD43 
is normally expressed on all CD8� T cells, but a unique gly-
cosylated form, detected by mAb 1B11, is expressed on acti-
vated T cells. 21 d after transfer, 79  �  2% ( n  � 4) of the 
PD-1�Ly6C 	  HP cells and 34  �  12% ( n  � 4) of the 

mice (unpublished data). These results suggest that self-reactive 
cells rapidly divide in a lymphopenic environment and ex-
press PD-1. 

 PD-1� HP cells belong to the Ly6C −  population 

 Bona fi de memory CD8� T cells express high levels of 
CD44 and Ly6C on their cell surface ( 25, 26 ).  Fig. 2 A  shows 
that most HP cells expressed CD44� during homeostatic 
proliferation, so that molecule is not useful for diff erentiating 
bona fi de memory cells from memory-like HP cells ( Fig. 
2 A ).  This experiment also confi rms that virus-specifi c memory 
cells are diluted after homeostatic proliferation ( 1 ). In con-
trast, the overall percentage of Ly6C+ CD8 T cells was simi-
lar before and after homeostatic proliferation, and virtually all 
of the LCMV-specifi c bona fi de memory cells were in this 
subset ( Fig. 2 B ). This result suggested that Ly6C might be a 
good marker to distinguish bona fi de memory cells from at 
least some of the memory-like HP cells. We next addressed 
whether Ly6C was expressed on PD-1� CD8 cells 21 d after 
transfer, which is when PD-1 expression was at its peak. As 
shown in  Fig. 2 C , PD-1 � cells were nearly exclusively 
 located within the Ly6C 	  population. Thus, by using PD-1 
and Ly6C costaining, we could defi ne three major popula-
tions: 45  �  16% PD-1�Ly6C 	  ( n  � 5), 24  �  8% PD-1 	 

 Figure 3.   Expression of glycosylated CD43, CD62L, IL-7R � , and IL-15R �  on HP cells. Spleen leukocytes were isolated from Ly5.1-LCMV – immune 

mice, labeled with CFSE, and adoptively transferred into T cell KO or B6 mice. After day 21, splenocytes from T cell KO or B6 mice were harvested and 

stained with anti-CD8, -Ly5.1, -Ly6C, -PD-1, -CD43, -CD62L, -CD127, or -CD122 antibodies. The expression of glycosylated CD43 (A), CD62L (B), CD127 

(C), and CD122 (D) in the individual populations was analyzed after gating on PD-1 and Ly6C costaining. This is representative of three similar experi-

ments with three to fi ve mice per group. (E) The expression of CD43, CD62L, CD127, and CD122 on CD8+ Ly5.1+ donor cells in B6 mice. Numbers on 

graphs, MFI.   
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population contained most of the Annexin V� cells (MFI � 
3,553  �  320,  n  � 5), and the other two subsets had few An-
nexin V� cells (PD-1 	 Ly6C 	  HP cells, MFI � 1,246  �  86, 
 n  � 5; PD-1 − Ly6C� HP cells, MFI � 1,054  �  126,  n  � 5; 
 Fig. 4 A ).  Many of the PD-1� HP cells expressed low levels 
of IL-7R �  ( Fig. 3 ), and -7 is an important survival factor of 
T cells and acts to maintain the expression level of survival 

PD-1 − Ly6C 	  HP cells had elevated glycosylated CD43 ex-
pression ( Fig. 3 A ).  However, only 14  �  8% ( n  � 4) of the 
Ly6C+ HP cells had high levels of glycosylated CD43, sug-
gesting that they were in a lower state of activation ( Fig. 3 A ). 
Naive and most memory spleen CD8� T cells generally ex-
press high levels of CD62L, but CD62L is down-regulated 
on activated T cells ( 25, 26 ). On day 21, expression of CD62L 
was down-regulated on 90  �  2% ( n  � 4) of the PD-1�
Ly6C 	  HP cells and 62  �  5% ( n  � 4) of the PD-1 	 
Ly6C 	  HP cells, but only on 36  �  6% ( n  � 4) of the Ly6C� 
HP cells ( Fig. 3 B ). These data suggest that the PD-1� popu-
lation was highly activated; that the Ly6C� population was 
mostly resting, despite undergoing some limited division; 
and that the PD-1 	 Ly6C 	  population may be in some 
intermediate state. This is consistent with the concept that 
the PD-1+ population may be undergoing the greatest de-
gree of homeostatic proliferation. 

 Previous studies have demonstrated that IL-7 or -7/-15 
plays an important role in homeostatic expansion of naive or 
memory CD8� T cells ( 27, 28 ), so we analyzed whether the 
expression levels of IL-7R �  (CD127) and -15R �  (CD122) 
correlated with the proliferation status of the three major 
populations. As shown in  Fig. 3 C , 76  �  11% ( n  � 4) of the 
PD-1� HP cells had dramatically decreased expression of 
IL-7R � , but IL-7R �  was expressed at normal high levels on 
the other two populations (PD-1 	 Ly6C 	 , 72  �  4%,  n  � 4; 
PD-1 	 Ly6C�, 86  �  3%,  n  � 4;  Fig. 3 C ). Other studies 
have demonstrated that memory CD8 T cells express IL-
15R � , which is important for IL-15 – mediated induction 
of proliferation and survival signals. As shown in  Fig. 3 D , 
Ly6C� HP cells, which contain the bona fi de memory cells, 
were IL-15R �  – high (mean fl uorescence intensity [MFI] � 
72  �  7,  n  � 3), PD-1� HP cells were IL-15R �  – intermedi-
ate (MFI = 33  �  4,  n  � 3), and PD-1 	 Ly6C 	  HP cells 
were IL-15R �  – low (MFI � 25  �  2,  n  � 3).  Fig. 3 E  por-
trays the expression of CD43, CD62L, IL-7R � , and IL-
15R �  on the total transferred CD8+ T cells in WT C57BL/6 
mice 21 d after transfer. 

 Most PD-1� cells react with Annexin V� 

 In other systems of T cell activation, the down-regulation of 
IL-7R �  expression correlates with reduced viability and im-
pending apoptosis ( 29, 30 ). Many of the PD-1� cells were 
low in IL-7R �  expression and did not express the high levels 
of IL-15R �  that might be needed to compensate for that loss. 
We thus questioned whether the PD-1� HP cells, despite 
their high levels of activation and proliferation, might be a 
population with a propensity for cell death. To address whether 
cell death was involved in the progression of homeostatic 
proliferation, CD8+ donor cells were stained with Annexin V 21 d 
after transfer. The CFSE-low populations were 36  �  10% 
Annexin V+ cells ( n  = 7), but the CSFE high population 
had only 2.4  �  1% Annexin V+ cells ( n  = 7; not depicted), 
suggesting that high levels of apoptosis might accompany 
homeostatic proliferation. When the three subpopulations 
were analyzed for reactivity with Annexin V, the PD-1� HP 

 Figure 4.   Expression of Annexin V – binding reactivity and Bcl-2 

on HP cells. Spleen leukocytes were isolated from Ly5.1-LCMV – immune 

mice, labeled with CFSE, and adoptively transferred into T cell KO or B6 

mice. After day 21, leukocytes from T cell KO or B6 mice were harvested 

and stained with anti-CD8, -Ly5.1,  – PD-1, -Ly6C,  – Annexin V, or 7AAD 

antibodies. (A) Annexin V binding or Bcl-2 expression (fi lled region, iso-

type control; open region, Bcl-2) in the individual populations was ana-

lyzed after gating on PD-1 versus Ly6C populations. (B) The time kinetics 

of expression of PD-1 versus Annexin V binding at days 21, 35, and 70. 

This is representative of two to three similar experiments with three to 

fi ve mice per group.   
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that this apoptotic cell population declines over time; as 29  �  
11% ( n  � 12) of the HP cells were PD-1+Annexin V+ at day 
21, decreasing to 17  �  6% ( n  � 6) at day 35, and then to 3  �  
2% ( n  � 8) at day 70, when there were very few remaining 
PD-1� cells. These results demonstrated that PD-1 expression 
correlated with the Annexin V� preapoptotic state and the 
presumed elimination of a cell population during homeo-
static proliferation. 

 Defi cient cytokine production by the PD-1� HP cells 

 Previous studies have shown that cytokine production can be 
inhibited in virus-specifi c PD-1� CD8� T cells during chronic 
viral infection, and that interference with PD-1 signaling can 
restore the cytokine production in exhausted CD8+ T cells 
( 32 – 34 ). We found that in the CSFE-low populations 21 d 

molecules such as Bcl-2 ( 31 ).  Fig. 4 A  shows that PD-
1�Ly6C 	  and PD-1 	 Ly6C 	  HP cell populations both ex-
pressed low levels of Bcl-2 (PD-1�Ly6C 	  HP cells, MFI � 
17.2  �  6.9,  n  � 3; PD-1 	 Ly6C −  HP cells, MFI � 17.2  �  5.2, 
 n  � 3). In contrast, the Ly6C� HP cells, which contained 
the bona fi de memory cells, expressed much higher levels of 
Bcl-2 (MFI � 51.1  �  20.6,  n  � 3). The bottom row of  Fig. 4  
compares this to the binding of Annexin V (MFI � 746  �  56, 
 n  � 2) and the expression of Bcl-2 (MFI � 24.5  �  0.4,  n  � 2) 
on total transferred CD8� cells in WT C57BL/6 21 d after 
transfer.  Fig. 4 B  shows that 61% of gated PD-1� HP cells 
stained with Annexin V� at day 21 (comparing PD-1�/
Annexin V� and PD-1�/Annexin V 	  populations), sug-
gesting that most of the PD-1� HP cells were in a preapop-
totic state 21 d after homeostatic proliferation.  Fig. 4 B  shows 

 Figure 5.   Poor IFN � - and TNF � -production by PD-1+ HP cells. Spleen leukocytes were isolated from Ly5.1-LCMV – immune mice, labeled with 

CFSE, and adoptively transferred into T cell KO mice. After day 20 (A) or 21 (B), splenocytes from T cell KO mice were harvested and stained with anti-CD8, 

-Ly5.1,  – PD-1, -IFN � , or -TNF �  antibodies. (A or B) The expression of IFN �  or TNF �  versus PD-1 was analyzed on gated CD8� Ly5.1� donor cells. This is 

representative of three similar experiments with three to fi ve mice per group. (C) Splenocytes from T cell KO mice after 14 d of reconstitution were har-

vested, and 10 6  cells were seeded into 96-well plates and treated with 25  � g/ml anti – PD-L1 antibody for 3 d. Cells were stained with anti-CD8, -Ly5.1, 

 – PD-1, and -IFN �  antibodies. The expression of IFN �  versus PD-1 was analyzed on gated CD8+Ly5.1+ donor cells. This is a representative result of nine 

mice tested in three experiments. (D) Splenocytes from T cell KO mice ( n  � 4) after 14 d of reconstitution were harvested, and CD8+PD-1+ cells were 

removed by cell sorting. 10 6  cells of the CD8�PD-1� – depleted population were seeded into 96-well plates and treated with 25  � g/ml anti – PD-L1 anti-

body for 3 d. The expression of IFN �  versus PD-1 was analyzed on gated CD8�Ly5.1� donor cells after stimulation for 4 h with anti-CD3. This is a repre-

sentative result of two experiments (four mice per group). (E) This displays the total number of CD8�Ly5.1� donor cells or IFN � -producing CD8�Ly5.1� 

donor cells harvested from 20 – 23-d reconstituted T cell KO mice, which had been treated with hamster IgG ( n  � 8) or anti-PD-1 antibody ( n  � 8) for 6 d. 

(F) Increase in CD8+ IFN � -producing cells after 6 d treatment of anti – PD-1 antibody in vivo. This displays the FACS profi les from the experiment in E that 

were designated by circles.   
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eff ect of the anti – PD-L1 antibody. Thus, the anti – PD-L1 
treatment seems to restore cytokine production by PD-1� 
cells. Similar results were seen in the HY transgenic T cell 
system, where 7.5  �  1.2% ( n  � 4) of the PD-1� HY cells 
derived from 6-d transferred T cell KO mice produced IFN �  
after HY male peptide stimulation in vitro, in contrast to 
16  �  4.9% ( n  � 4) of the PD-1 	  HY cells (not depicted). 
These results with HP cells are consistent with published 
work in other systems on the inhibitory properties of these 
molecules ( 32, 33, 35 ). 

 Having shown that interference with PD-1 signaling en-
hances IFN �  production in vitro, we tested whether interfer-
ence with PD-1 signaling in vivo would lead to an increase 
in the number of CD8 T cells. Suffi  cient quantities of anti-
body to PD-1 were available to us, but we needed to test dif-
ferent timing regimens and doses to establish an eff ect. We 
found that giving day 20 – 23 T cell KO mice (reconstituted 
with LCMV-immune splenocytes) 2 i.p. injections of 200  � g 
of antibody to PD-1 (clone J43; or control hamster IgG) in 
200  � l PBS 3 d apart was eff ective at increasing CD8 T cell 
numbers 3 d later, or a total of 6 d after initiation of treat-
ment. In 3 experiments with a total of 8 mice for each treatment, 
anti – PD-1 treatment, in comparison to a control hamster anti-
body, caused a 56, 43, and 36% increase in total donor CD8 
T cell number, and a 105, 26, and 56% increase in the total 
number of donor CD8 T cells capable of synthesizing IFN �  
after anti-CD3 treatment in a 5-h in vitro assay. This 
amounted to averages of 1.9  �  0.42  �  10 6  CD8 T cells (treated) 
versus 1.3  �  0.33  �  10 6  cells (control; P � 0.007;  Fig. 5 E ) and 
7.9  �  1.2  �  10 5  IFN � -producing CD8 cells (treated) versus 
4.9  �  1.7  �  10 5  cells (control; P � 0.001;  Fig. 5, E and F ). 
 Fig. 5 E  shows all of the individual values from three experi-
ments, where each experiment is designated by a unique 
symbol.  Fig. 5 F  shows the IFN � -secreting cell FACS profi les 
of individual mice from one of the experiments. These results 
are consistent with the concept that PD-1 signaling inhibits 
the outgrowth of functional T cells, at least at this time point 
of homeostatic proliferation. 

 Bona fi de memory transgenic T cells are PD-1 � 

Annexin V �  and can produce IFN �  during acute 

homeostatic proliferation 

 We have interpreted our failure to find LCMV-specific 
memory CD8 T cells in the PD-1� population to indicate 
that bona fi de memory cells do not fall into this population. 
However, we used peptide-induced IFN �  production to 
monitor LCMV-specifi c T cells, and  Fig. 5  shows that 
the PD-1� population is functionally defective in regards to 

after transfer, 20  �  6% ( n  � 10) of the cells produced IFN �  
and 12  �  6% ( n  � 7) produced TNF �  after anti-CD3 stim-
ulation, suggesting that some memory-like cells have the capac-
ity to make cytokines while undergoing acute homeostatic 
proliferation (not depicted). Experiments designed to examine 
the functional capacity of PD-1� cells showed, on average, that 
only 13  �  4% ( n  � 4) of the PD-1� cells produced IFN �  
after anti-CD3 stimulation, in contrast to 32  �  3% ( n  � 4) of 
the PD-1 −  HP cells ( Fig. 5 A ).  Similarly, only 4  �  1% ( n  � 3) 
of the PD-1� HP cells produced TNF � , whereas 21  �  8% 
( n  � 3) of PD-1 	  HP cells produced TNF �  ( Fig. 5 B ). 
Those PD-1� cells that did produce cytokines had lower 
levels per cell than did the PD-1 	  cells ( Fig. 5, A and B ). 

 Because the bona fi de memory cells in the Ly6C+ PD-1 	  
population may have biased the results by being the major 
contributors to cytokine production, we also compared the 
production of IFN �  and TNF �  in the Ly6C 	  population, 
separated into PD-1� or PD-1 	  cells. Only 10  �  1.1% ( n  � 4) 
of PD-1�Ly6C 	  cells produced IFN �  after anti-CD3 
stimulation, in contrast to 37  �  1.8% ( n  � 4) of the PD-
1 	 Ly6C 	  cells (not depicted). Similarly, only 4.1  �  2.5% 
( n  � 3) of the PD-1�Ly6C 	  cells produced TNF � , in contrast 
to 40  �  7.2% ( n  � 3) of the PD-1 	 Ly6C 	  cells. The abili-
ties of these three fractions to synthesize IFN �  or TNF �  after 
anti-CD3 stimulation are summarized in  Table I . 

 We next tested whether the expression of PD-1 may be a 
cause of the T cell dysfunction by incorporating 25  � g/ml 
anti – PD-L1 mAb into cultures of day 14 HP cells for 3 d. 
The frequencies of PD-1� cells producing IFN �  were sig-
nifi cantly enhanced in the presence of anti – PD-L1 mAb (No 
antibody treatment, 6.6  �  2.5%,  n  � 9; anti – PD-L1 mAb 
treatment, 9.3  �  2.2%,  n  � 9; P � 0.03;  Fig. 5 C ), whereas 
the percentage of PD-1 	  IFN � -producing cells was not sig-
nifi cantly changed (No antibody treatment, 16  �  5.5%,  n  � 9; 
anti – PD-L1 mAb treatment, 15  �  5.4%,  n  � 9; P � 0.6;  Fig. 
5 C ), suggesting that the anti – PD-L1 blocking mAb only af-
fected PD-1 	 expressing cells. Of note is that there was hardly 
any IFN �    production by the highest expressing PD-1� cells, 
but anti – PD-L1 mAb enabled some of these high-expressing 
cells to make IFN �  ( Fig. 5 C ). Because it was possible that 
the high-expressing PD-1� cells that made IFN �  had been 
derived from a PD-1 	  population within the culture, we 
sorted out CD8�PD-1� cells from the ex vivo cell popula-
tions before putting them into culture.  Fig. 5 D  shows that 
PD-1� cells did not appear in these PD-1 – depleted 3-d cul-
tures, and that the proportion of cells in the culture making 
IFN �  was higher than that in the cultures retaining the 
PD-1� cells. In those PD-1 – depleted cultures, there was no 

  Table I.  The phenotypes of the three major populations during homeostatic proliferation 

CD43 CD62L IL-7R � Il-15R � Annexin V Bcl-2 IFN � TNF � 

PD-1�Ly6C 	 high low low intermediate high low low low

PD-1 	  Ly6C 	 low/high low/high high low low low high high

PD-1 	 Ly6C� low high high high low high high high
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P14-transgenic memory CD8 T cells were mostly Annexin V 	  
during homeostatic proliferation, in contrast to some of the 
nontransgenic Ly5.2+ CD8+ donor cells within the same 
population ( Fig. 6 B ). In addition,  Fig. 6 C  shows that 96% of 
the P14-transgenic memory CD8 T cells produced IFN �  after 
GP-33 peptide stimulation. These results indicate that bona 
fi de memory CD8 cells remain functional and do not express 
PD-1 under conditions of acute homeostatic proliferation. 

 PD-1+ HP cells undergo oligoclonal expansion 

 Previous studies have demonstrated that PD-1 becomes ex-
pressed on T cells that are repeatedly and strongly stimulated 
through their TCR ( 36, 37 ). Consistent with those fi ndings, 
the PD-1� HP cells observed here had a highly activated 
phenotype, suggesting frequent stimulation through their 
TCR ( Fig. 3 ). We questioned whether this strong stimula-
tion would select for specifi c T cell clones outcompeting other 
clones. To address this question, we used all available V �  mono-
clonal antibodies (V � 2-14) to investigate the TCR V �  reper-
toires at day 21. V �  staining of the total HP population revealed 
polyclonal populations with moderate TCR skewing, so we 
analyzed the three subpopulations of HP cells defi ned by PD-1 
and Ly6C. As shown in  Fig. 7 A , considerable TCR V �  
skewing was seen in the PD-1� population, indicating oli-
goclonal patterns of expansion, and there was great variation 
among mice regarding the V �  usage of the skewed population.  
This high variation between mice was unusual, given that 
mice 1 – 5 and 6 – 8 received the same pooled donor cells, 
respectively. This may indicate that the progenitors for these 
oligoclonal expansions were of very low frequency in the 
donor populations. The skewed oligoclonal expansions were 
almost exclusively within the PD-1� subset of the Ly6C 	  cells, 
as  Fig. 7 A  shows little skewing of TCR in either the PD-
1 	 Ly6C 	  or in the PD-1 	 Ly6C� populations, which re-
mained polyclonal. The polyclonal V �  profi les of those 
populations seemed very similar to the V �  profi les of CD8 T 
cells from LCMV-immune mice used as donors ( Fig. 7 B ). Thus, 
the oligoclonal expansions, which are indicative of highly 
proliferating T cell populations, were exclusively within the 
PD-1� cell populations. These results, along with those in 
 Fig. 4 , suggest that discrete clones of donor nonmemory T cells 
might interact with endogenous antigens with suffi  ciently 
high affi  nity such that they dramatically expand, are induced to 
express PD-1, and then become apoptotic and disappear under 
these conditions of acute homeostatic proliferation. 

 An alternative hypothesis, however, is that the oligoclon-
ally expanded cells lost their PD-1 expression but remained 
in the host. To test for this, we examined the TCR �  usage 
in the Ly6C 	  and Ly6C� cells 70 d after transfer, after the 
PD-1� cells had virtually disappeared ( Fig. 7 C ). At this time 
point, no TCR skewing in either HP fraction was seen, and 
the two fractions looked nearly identical. Further, of the 8 
tested T cell populations from day 21 displayed in  Fig. 7 A , 
expanded V �  populations could be easily seen in nonsub-
divided donor CD8 T cell populations from all but mouse 6, 
which had a relatively low (27%) frequency of PD-1� cells 

 cytokine production. By these criteria we cannot rule out the 
presence of dysfunctional bona fi de memory cells within the 
PD-1� population. It is diffi  cult to get convincing tetramer 
staining of these low frequencies of memory CD8 T cells 
under these conditions of acute homeostatic proliferation, so 
we did analyses using P14 transgenic memory CD8 T cells, 
which can be identifi ed by anti-V � 2 and -V � 8.1/8.2 stain-
ing. We generated P14-transgenic memory CD8 T cells in 
C57BL/6 mice, as described in the Materials and methods, 
and then adoptively transferred the memory T cell – contain-
ing splenocytes into T cell KO mice to address this question. 
As shown in  Fig. 6 A , 94% of the P14-transgenic memory 
CD8 T cells remained negative for expression of PD-1 in T 
cell KO or C57BL/6 hosts 20 d after transfer.  Furthermore, 

 Figure 6.   P14-transgenic memory CD8 T HP cells are PD-1 � 

Annexin V �  and can produce IFN �  after GP-33 stimulation. The 

generation of Ly5.1� P14-transgenic memory CD8 T cells is described in 

the Materials and methods. Spleen leukocytes were isolated from Ly5.2-

LCMV – immune mice containing Ly5.1� P14 memory CD8 T cells. Cells 

were labeled with CFSE and adoptively transferred into T cell KO mice or 

B6 mice. Leukocytes from these reconstituted mice were then harvested 

and analyzed on day 20. (A) The expression of PD-1 on P14-transgenic 

memory CD8 T cells was analyzed on gated CD8� Ly5.1� V � 2� cells. 

(B) Annexin V binding on Ly5.1� P14-transgenic memory CD8 T cells was 

analyzed after gating on 7AAD-, CD8�, Ly5.1�, and V � 2� cells. For 

Ly5.2 donor cells, Annexin V binding was analyzed after gating on 

CD8�7AAD 	  cells. (C) The production of IFN �  by P14-transgenic mem-

ory CD8 T cells was analyzed on gated CD8�, Ly5.1�, and V � 2� cells 

after GP-33 peptide stimulation.   
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CD8� T cells, which were mostly expressing PD-1, had 
dramat ically decreased by 54 d after transfer, in comparison to 
the HY cell numbers 6 d after transfer (day 6, 5.5  �  0.65  �  
10 5 ,  n  � 2; day 54, 5.8  �  0.47  �  10 4 ,  n  � 2). This strongly 
argues that those cells have been eliminated from the host, 
which is consistent with the Annexin V� phenotype of the 
PD-1� cells when they were present ( Fig. 4 ). 

  DISCUSSION  

 The expression of PD-1 is induced after TCR engagement, 
and PD-1 is known to down-regulate immune responses to 

(not depicted). Expansions of a single defi ned V �  population 
representing 30 – 42% of the total CD8 T cells were observed 
in mice 3 – 5, 7, and 8. In contrast, expanded V �  populations 
of  
 23% were not found in any of the 6 tested nonsub-
divided day 70 populations (individual samples not depicted). 
Given that  Fig. 1 D  shows that between day 21 and 70 there is 
only a modest increase in total CD8 T cell number that would 
not substantially dilute out the oligoclonal populations, we inter-
pret these data to indicate that the expanded oligoclonal popula-
tions have been drastically reduced in frequency by day 70. 
We also found that the number of transferred HY transgenic 

 Figure 7.   PD-1+ HP cells undergo oligoclonal expansion. Spleen leukocytes were isolated from Ly5.1-LCMV – immune mice and adoptively trans-

ferred into T cell KO mice. After day 21 or 70, leukocytes were harvested and stained with anti-CD8, -Ly5.1,  – PD-1, -Ly6C, and -V �  antibodies. (A) The 

percentage of V �  usage in the individual populations was calculated. The percentage of V �  usage on PD-1�Ly6C 	  cells (black bar), on PD-1 	 Ly6C 	  

donor cells (white bar), and PD-1 	 Ly6C� (gray bar) in 8 individual mice 21 d after transfer. Groups 1 – 5 and 6 – 8 received pooled donor cells from Ly5.1-

LCMV – immune mice. (B) The percentage of V �  usage on Ly6C 	  (white bar) and Ly6C� (gray bar) CD8� cells in LCMV immune mice. (C) The percentage 

of V �  usage on Ly6C 	  (white bar) and Ly6C� (gray bar) HP cells at day 70 after transfer. These are mean expressions in six mice  �  the SD.   
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lymphopenic environment and stays expressed as they divide 
within that environment.  Fig. 2  shows that virtually all of the 
bona fi de memory cells were Ly6C�, but it is not clear whether 
all Ly6C� cells originated as bona fi de memory cells. Never-
theless, the phenotype is remarkably diff erent from that of the 
other subsets. Despite the fact that these cells are dividing, 
albeit slowly, they do not have an activation antigen pheno-
type. In addition, they function normally in regard to cytokine 
production on TCR stimulation, which is best illustrated with 
the transgenic P14-transgenic memory CD8 T cells, where 
96% produced IFN �  after stimulation ( Fig. 6 ). The Ly6C� HP 
cells express high levels of growth factor receptors, high levels 
of Bcl-2, and are viable, as indicated by their lack of reactivity 
with Annexin V. This population shows no indication of oli-
goclonal expansion. 

 The PD-1� oligoclonally expanding cell population ap-
pears to be eventually lost ( Fig. 7 ), and the bona fi de memory 
cell population, staining with Ly6C and dividing slowly, is grad-
ually diluted. Although virtually all of the bona fi de memory 
cells expressed Ly6C, this does not mean that all Ly6C� cells 
are bona fi de memory cells and that Ly6C� can be a marker to 
reliably distinguish bona fi de memory cells from other HP cells, 
and it is possible that some Ly6C 	  HP cells might eventually 
convert to expressing the Ly6C marker. The day 21 PD-
1 	 Ly6C 	  subset, however, has its own unique phenotype 
in that, while actively dividing, it has no evidence of oligo-
clonal expansion, suggesting that it consists of cells not re-
acting with high affi  nity to self- or endogenous antigens. 
Although expressing low levels of Bcl-2, these cells are func-
tional and viable, in that they make cytokines on anti-CD3 
stimulation and fail to react with Annexin V. Bcl-2 is sometimes 
down-regulated in activated dividing cells without being as-
sociated with apoptosis ( 31 ). Down-regulation of IL-7R �  is 
frequently correlated with a preapoptotic state, but no such 
down-regulation was seen in this population. 

 Thus, it would seem that acute homeostatic proliferation 
selects against those cells that are reacting strongly to either 
self-antigens or other endogenous antigens, such as those ex-
pressed by microbial fl ora. These cells initially expand oligo-
clonally, and but then undergo apoptosis, as the immune 
system is gradually repopulated with a less vigorously expand-
ing polyclonal population. 

  MATERIALS AND METHODS  
 Mice.   C57BL/6 male mice (Ly5.2�) were purchased from The Jackson 

Laboratory and used at 8 – 12 wk of age. B6.SJL (Ly5.1�) mice, which are 

congenic to C57BL/6 mice, except for the Ly5.1 marker, were purchased 

from Taconic Farms at 4 – 5 wk of age. P14 TCR (Ly5.1�) transgenic mice 

(expressing transgenic TCR specifi c for the D b -restricted LCMV epitope 

GP33 – 41) ( 39 ), B6.129P2 Tcrbtml Mom Tcrdtml Mom  ( �  �  �  �  KO) mice (T 

cell-KO) ( 40 ), and C57BL/6 HY-transgenic mice, whose transgenic TCR 

is specifi c for the H-2D b  – restricted male antigen HY ( 41, 42 ), were bred 

within the Department of Animal Medicine at the University of Massachusetts 

Medical School. All of these mice were maintained in accordance with 

the guidelines of the Institutional Animal Care and Use Committee of the 

University of Massachusetts Medical School and age- and sex-matched 

before use. 

self-antigens or pathogens ( 16 ). We found that HP cell popu-
lations present during acute homeostatic proliferation could 
be divided into the following three subsets defi ned by expres-
sion of PD-1 and Ly6C: PD-1�Ly6C 	 , PD-1 	 Ly6C 	 , 
and PD-1 	 Ly6C�. The properties of these HP subsets are 
summarized in  Table I .  The PD-1� population was mostly 
devoid of bona fi de memory cells, consisted of dramatically 
expanded distinct oligoclonal V �  populations, and expressed 
a highly activated antigenic phenotype. The PD-1� cells had 
reduced growth factor receptor expression, low Bcl-2, and 
presented with a preapoptotic phenotype, as shown by their 
reactivity with Annexin V. These cells were in a dysfunc-
tional state, as they produced cytokines poorly on anti-CD3 
stimulation. T cells that react with Annexin V can remain 
 viable for some time and, in contrast to those found here, con-
tinue to secrete cytokines. For example, most Annexin V� 
CD8 T cells present during acute LCMV infection maintain 
their ability to produce cytokines ( 29, 38 ). Even though 
Annexin V reactivity can be a property of actively dividing 
and still functioning T cells, studies have shown that those 
Annexin V� T cells are far more susceptible to death than 
Annexin V 	  cells, when placed into in vitro culture or trans-
ferred in vivo ( 32, 38 ). PD-1� CD8 cells during persistent 
LCMV infection, where they receive repeated signaling 
through their TCR, have a similar phenotype to these PD-1� 
HP cells in that they fail to produce cytokines on TCR 
stimulation; treatment of mice with anti – PD-L1 can restore 
their functional phenotype ( 32 – 34 ). We show in our model 
of acute homeostatic proliferation that anti – PD-L1 can en-
hance IFN �  production by the PD-1� cells in vitro, and that 
anti – PD-1 can increase the number of total and IFN � -pro-
ducing CD8 T cells in vivo, arguing for an important func-
tional role for PD-1 in this system. 

 The ultimate fate of these highly active oligoclonally ex-
panded PD-1+ HP cells during acute homeostatic prolifera-
tion appears to be elimination from the host, as most of them 
disappear by 70 d after transfer. We interpret this to mean 
that those cells that are most self-reactive or reactive with 
other endogenous ligands initially undergo dramatic oligo-
clonal proliferation, express PD-1, become functionally in-
active, and are eliminated from the host. This is consistent with 
previous observations that PD-1 KO mice spontaneously de-
velop autoimmune diseases and suggests an important role for 
PD-1 under conditions of lymphopenia. 

 The properties of the PD-1� T cell subset diff ered dra-
matically from the other subsets ( Table I ). Naive T cells are 
induced to express CD44 during acute homeostatic prolifera-
tion ( 5, 6 ), but we have reported that bona fi de CD44� 
antigen-specifi c memory cells, which have undergone the full 
diff erentiation series as a consequence of the immune re-
sponse, only divide at a modest level and are diluted during 
acute homeostatic proliferation ( 1 ). Because of similarities in 
CD44 expression, it has been diffi  cult to distinguish memory 
cells from memory-like cells during this process. We show 
that Ly6C may be useful for this process. It is expressed on 
virtually all bona fi de memory cells before transfer into the 
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antibody (clone MIH5; eBioscience) for 3 d. For anti – PD-1 antibody treat-

ments in vivo, day 20 – 23 T cell KO mice (reconstituted with LCMV-

immune splenocytes) were given 2 i.p. injections of 200  � g of antibody to 

PD-1 (clone J43; BioExpress) or control antibody (hamster IgG; BioExpress) 

in 200  � l PBS at day 0 and 3. Splenocytes were harvested at day 6. IFN �  was 

induced in these splenocytes by incubating them with 0.2  � g/ml anti-CD3 

antibody, 10 U/ml of human recombinant IL-2, and 0.2  � l GolgiPlug for 

4 – 5 h at 37 ° C. After FcR blockade, the cells were stained with fl uorescently 

labeled mAbs against CD8, Ly5.1, or PD-1 for 30 min at 4 ° C. After staining, 

cells were permeabilized with Cytofi x/Cytoperm for 20 min at 4 ° C and stained 

with mAb to IFN �  in perm/wash buff er for 25 min at 4 ° C. Finally, cells were 

washed and resuspended in FACS buff er and analyzed by fl ow cytometry. 

 TCR V �  analysis.   21 or 70 d after reconstitution of T cell KO mice with 

splenocytes from LCMV-immune Ly5.1� mice, spleen cells were harvested 

and stained with mAb to CD8, Ly5.1, PD-1, Ly6C, and FITC-labeled V � -

specifi c mAbs (V � 2-14; BD Biosciences kit). Data represent the percentage 

of CD8 cells staining with the V �  mAb. The percentage for  “ other V �  ”  was 

calculated by subtracting the sum of individual V �  from 100%. 
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 Immunofl uorescent staining of antigen-specifi c T cells.   Spleen leu-

kocytes were incubated with 5  � M of synthetic peptide or 0.2  � g/ml anti-

CD3 antibody, 10 U/ml of human recombinant IL-2, and 0.2  � l GolgiPlug 

(BD Biosciences) for 5 h at 37 ° C. After FcR blockade (anti-FcRII), the cells 

were stained with fl uorescently labeled mAbs against CD8, CD44, CD122, 

CD43, V � 2, V � 8, IL15R � , CD62L, Ly6G/6C, Ly6C, Ly5.1, PD-1, H-Y 

TCR, or IL-7R �  for 30 min at 4 ° C. The mAb to Ly6G/C was clone RB6-

8C5, which cross-reacts with a common epitope of Ly6G and Ly6C, but 

only Ly6C is expressed on memory CD8� T cells ( 43 ). After staining, cells 

were permeabilized with Cytofi x/Cytoperm for 20 min at 4 ° C and stained 

with mAb to IFN �  or TNF �  in perm/wash buff er (BD Biosciences) for 25 

min at 4 ° C. Finally, cells were washed and resuspended in FACS buff er (PBS 

with 2% FCS and 0.1% sodium azide) and analyzed by fl ow cytometry. All 

mAbs were purchased from BD Biosciences, except for antibodies specifi c 

for Ly5.1, PD-1, H-Y TCR, and IL-7R � , which were purchased from 

eBioscience. 

 Adoptive transfer of LCMV-immune splenocytes into lymphopenic 

environments.   LCMV-immune T cell populations were prepared by inoc-

ulating Ly5.1� mice i.p. with 5  �  10 4  PFU of the Armstrong strain of LCMV 

and waiting at least 6 wk before use. For the creation of LCMV-specifi c 

transgenic memory CD8 cells, splenocytes were harvested from naive 

P14-transgenic mice (Ly5.1�), which contained  � 90% of V � 2� and 

V � 8.1/8.2� CD8 T cells. 2  �  10 6  splenocytes were resuspended in 200  � l 

HBSS (Invitrogen) and adoptively transferred via the tail vein into Ly5.2� 

B6 mice. 1 d later, B6 recipients were infected i.p. with 5  �  10 4  PFU of the 

Armstrong strain of LCMV. After 6 wk,  � 25% of the spleen CD8� T cells 

were memory P14-transgenic CD8� T cells. Splenocytes from normal or 

LCMV-immune Ly5.1, from Ly5.2� containing memory P14-transgenic T 

cells, and from HY-transgenic Ly5.2 mice were harvested and isolated, sus-

pended in HBSS at 2.0  �  10 7  cells/ml, and incubated in 5  � M CFSE (Invit-

rogen) solution for 12 min at 37 ° C. After incubation, these donor cells were 

washed twice with HBSS, resuspended in 200  � l HBBS, and 1.5  �  10 7  cells 

were adoptively transferred via the tail vein into Ly5.2� T cell KO, irradi-

ated, or normal B6 mice. 

 Annexin V staining.   Cells that had been incubated with anti – surface 

marker antibodies for 30 min at 4 ° C were washed and incubated in Annexin V 

binding buff er (BD Biosciences) with allophycocyanin/Annexin V at a 1:20 

dilution for 15 min at room temperature. The cells were washed and re-

suspended in Annexin V binding buff er with 7-amino-actinomycin D 

(7AAD) at a 1:250 dilution. Cells were analyzed by fl ow cytometry immedi-

ately thereafter, and 7AAD+ cells were excluded from the analysis. 

 Gene microarray analysis.   CFSE-labeled splenocytes from T cell KO 

hosts that had received splenocytes from LCMV-immune Ly5.1 donors 

were stained with anti-CD8 antibody, anti-Ly5.1 antibody, and 7AAD. 

7AAD −  cells were gated, and CFSE-low (greater than eight divisions) and 

CFSE-high (zero to six divisions) cells were sorted by fl ow cytometry using 

a FACStar PLUS  sorter (BD Biosciences). Total RNA was extracted from 

CFSE-low or -high cells using an RNeasy Mini kit (QIAGEN). T7-(dT) 24  

primer (GENSET Corp.) and SuperScript DS cDNA synthesis kits were 

used to direct cDNA synthesis. The biotin-labeled cDNA was transcribed to 

cRNA and labeled using an RNA transcript labeling kit (Enzo Diagnostics, 

Inc.). Fragmented cRNA was hybridized to MG-U74Av2 microarray chips 

(Genomic Core Facility at University of Massachusetts Medical School), and 

expression levels were analyzed with Microarray Suite 5.0 (Aff ymetrix). 

 In vitro and in vivo antibody blockade.   For stimulations in vitro, sple-

nocytes were harvested from T cell KO mice 14 d after reconstitution, and 

10 6  splenocytes or CD8�PD-1� – depleted splenocytes were seeded into 

96-well plates in RPMI supplemented with 10% FBS, 1 mM sodium pyru-

vate, 100 U/ml penicillin G, 100  � g/ml streptomycin sulfate, 50 mM 

2-mercaptoethanol, 2 mM  l -glutamine, 1% (vol/vol) nonessential amino acid 

solution, and 10 mM Hepes, and treated with 25  � g/ml anti – PD-L1 blocking 
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