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Background: Accurate assessment of hepatic steatosis is a key to grade disease severity in non-alcoholic
fatty liver disease (NAFLD).

Methods: We developed a digital automated quantification of steatosis on whole-slide images (WSIs) of liver tissue
and performed a validation study. Hematoxylin–eosin stained liver tissue slides were digitally scanned, and steatotic
areas were manually annotated. We identified thresholds for size and roundness parameters by logistic regression to
discriminate steatosis from surrounding liver tissue. The resulting algorithm produces a steatosis proportionate area
(SPA; ratio of steatotic area to total tissue area described as percentage). The software can be implemented as a Java
plug-in in FIJI, in which digital WSI can be processed automatically using the Pathomation extension.

Results: We obtained liver tissue specimens from 61 NAFLD patients and 18 controls. The area under the curve of cor-
rectly classified steatosis by the algorithm was 0.970 (95% CI 0.968–0.973), P < 0.001. Accuracy of the algorithm was
91.9%, with a classification error of 8.1%. SPA correlated significantly with steatosis grade (Rs = 0.845, CI:
0.749–0.902, P < 0.001) and increased significantly with each individual steatosis grade, except between Grade 2 and 3.

Conclusions: We have developed a novel digital analysis algorithm that accurately quantifies steatosis on
WSIs of liver tissue. This algorithm can be incorporated when quantification of steatosis is warranted, such as
in clinical trials studying efficacy of new therapeutic interventions in NAFLD. © 2019 The Authors. Cytometry Part B:
Clinical Cytometry published by Wiley Periodicals, Inc. on behalf of International Clinical Cytometry Society.
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Non-alcoholic fatty liver disease (NAFLD), defined as the
abnormal accumulation of fat in the liver, has a spectrum that
ranges from steatosis to progressive inflammation
(steatohepatitis) and eventually fibrosis and cirrhosis (1).
NAFLD is seen as the hepatic manifestation of the metabolic
syndrome and is associated with an increased mortality risk,
mainly from cardiovascular complications (2). Approxi-
mately a quarter of the general population is affected by
NAFLD, which constitutes a global health problem (3).
Severity of steatosis is associated with progression to
steatohepatitis and fibrosis (4,5). Early recognition of severe
steatosis is thus imperative to prevent progression of disease.
Accurate assessment of steatosis severity bears relevance to
other disease states such as in viral hepatitis and liver trans-
plantation, because progressive disease or graft failure is
associated with the degree of steatosis (6–10). Histological
grading of steatosis, togetherwith inflammation, ballooning,
and fibrosis, is a frequently used endpoint in clinical trials
investigating novel therapies (11). The NAFLD activity score
(NAS) is the most commonly used semi-quantitative grading
system, and it grades steatosis as an interval-percentage
upon visual examination of histological liver tissue slides
(12). This score, as many other grading systems, is subject to
interobserver and intra-observer variability and prone to
inaccuracy (13,14). More precise measurement of steatosis
(reduction) will increase power to test efficacy of new drugs.
Current research focuses on development of non-invasive
tools to quantify steatosis such as MR-spectroscopy or
elastography, but validation is still hampered by a subjective
and semi-quantitative gold standard (15).

Digital image analysis (DIA) is a promising method for
accurate histological steatosis assessment, as it does not suf-
fer from observer variability, possesses high reproducibil-
ity, and produces a continuous outcome measure which
may be compared to established standards (13). There are
a number of digital algorithms and tools constructed over
the last years, aiming to objectively quantify steatosis. Dif-
ferent approaches have been used to automatically discrim-
inate steatosis from non-steatotic tissue, ranging from tools
only using RGB color cut-offs to algorithms incorporating
several features, with predetermined cut-offs, and recently
more advanced approaches such as stereological analysis
or supervised machine learning (14,16–20). Nonetheless,
these algorithms these still include bias introducing fea-
tures, such as manual correction (e.g., post-analytical visual
examination to exclude any missed large non-steatotic
areas, such as vessels or tissue tears) or analysis of sections
of the liver biopsy specimen (e.g., random field selection
from several highmagnification images).

In the present study, we aimed to develop and evalu-
ate an automated steatosis quantification algorithm for
whole-slide image (WSI) analysis, excluding any inter-
observer and intra-observer variability.

MATERIAL AND METHODS
Tissue Samples

Tissue slides from liver biopsies were selected from the
Radboudumc histopathology archives from the period

2012–2016. All specimens with a minimum of 11 portal
fields were considered for inclusion. To represent the full
range of steatosis severity, slides from NAFLD patients,
representing each NAS steatosis grade (1: 5–33% steatosis
/ 2: 34–66% steatosis / 3: more than 66% steatosis) were
selected on basis of original pathology report, as well as
slides of patients without any abnormalities or steatosis
that served as controls (Grade 0: <5% steatosis). All slides
were stained with a Hematoxylin–Eosin stain according
to standard practice. Steatosis and fibrosis grade were
revised according to the NAS and Brunt fibrosis score
(12) by an experienced liver pathologist, blinded for
the outcome of the initial evaluation. Requirement for
ethical approval was waived by the institutional review
board (no. 2016-2763). All tissue sections were fully
digitized, producing WSIs, using a P250 Flash digital
slide scanner (3DHISTECH, Hungary). WSIs were pro-
duced using a 20x objective lens (specimen level pixel
size 0.24 × 0.24μm2) and JPEG compressed using qual-
ity factor 80.

Handling of WSIs

The steatosis quantification algorithm was
implemented as a Java plug-in for the Fiji image analy-
sis platform (21). To handle complete WSI, the plug-in
uses the PMA.start WSI-viewer (Pathomation, Belgium)
(22). A WSI containing the entire slide was loaded in
Fiji at reduced resolution, and a square region con-
taining all tissue was selected manually (see Fig. 1A).
This greatly reduces computation time as a large part of
the WSI generally consists of background.

To allow execution of the software on an office grade
computer, the selected area is automatically subdivided
into consecutive non-overlapping patches of 3000 by
3000 pixels (729.28 by 729.28 μm at full zoom) (see
Fig. 1B). The automated steatosis detection and area
measurements are consecutively performed on each
individual patch. A foreground detection algorithm is
run on every patch to detect if there is any tissue pre-
sent at all (23). To reduce the analysis time, the patch is
not processed if no tissue is detected. The plugin is
publically available via this website: https://github.
com/Mverp/Steatosis-Measurer.

Steatosis Measurements

Steatotic hepatocytes are typically characterized by
(1) a white color, (2) a specific size range, and (3) a
round shape (20). The steatosis quantification algo-
rithm detects potential steatotic hepatocytes and distin-
guishes these from similar objects (e.g., blood vessels,
bile ducts, and tissue tearing) on the basis of color, size,
and roundness features. The algorithm first establishes
a set of potential steatotic hepatocytes in the image by
applying a threshold to the saturation channel of the
HSB color space. We found that a threshold that opti-
mally distinguishes between white steatotic hepatocytes
and more pinkish areas (e.g., cytoplasm within the
hepatocyte) is relatively high and will underestimate
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the surface area of the hepatocytes (see Fig. 2). We
therefore first applied a less conservative threshold to
identify steatotic hepatocytes with the correct surface
area after which the stricter, optimal threshold is used
to confirm that the area is indeed a good candidate.

To distinguish between true steatotic hepatocytes and
other white areas detected by the procedure described
above, we used the size and roundness of detected
objects. As a first step, we removed very large (tears in
the tissue and non-tissue background parts of the WSI)

and very small (e.g., vacuoles within a hepatocyte,
interstitial spaces) objects, while taking care not to
remove any true steatotic hepatocytes. To perform a
granular separation between steatotic hepatocytes and
other objects remaining after the previous steps, we
constructed a statistical classifier using logistic regres-
sion analysis (SPSS, version 22 Chicago, Illinois). The
classifier used measures expressing the size and
roundness of objects, as expressed in the following
quantitative features (24):

FIG. 1. Process flowchart of the steatosis quantification plugin. The whole slide image is presented to the user at a reduced resolution and a smaller region of
interest, incorporating all tissue is selected for purpose of saving time (A). The selected region is automatically subdivided by the program into manageable patches
(B). The region of interest is split into foreground and background and any patch with foreground in it is handled in turn (C). The patch is loaded at full resolution (D).
All white areas are identified and areas that are too small or too large according to the given parameters are immediately discounted. All other white areas are judged
further according to the logistic regression analysis. In (E), the green areas pass the logistic regression threshold (i.e., these are steatosis), whereas the cyan areas do
not (no steatosis). Finally, only the steatosis areas are kept and measured, after which the tool calculates the steatosis proportionate area of the whole tissue (F).
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Color saturation thresholding. A part of a whole-slide image that contains a lot of small lightly colored areas that are not steatotic (A). Without
a minimum size, all these areas will be classified as either steatosis or normal tissue and must be corrected manually (B). By introducing a minimum-
size threshold the smaller sized objects are automatically judged to be non-steatotic tissue and no longer need correction (C). [Color figure can be
viewed at wileyonlinelibrary.com]

NOVEL AUTOMATIC DIGITAL ALGORITHM QUANTIFIES STEATOSIS IN NAFLD 523

Cytometry Part B: Clinical Cytometry

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Circularity :
4π ×Area

Perimeter2

Roundness :
4×Area

π × Major Axisð Þ2 ,

where major axis is the length of the major axis of the
ellipse best fitted to the area).

Solidity: Area
Convex Area (the amount to which an area is

convex or concave).
The classifier was constructed using manually classi-

fied objects in representative areas from 20 randomly
picked biopsies from different patients (five from each
NAS grade of steatosis: 0–3). The dataset was split up
in a training and test set (50–50%). The classifier
resulting from logistic regression analysis was used for
the final discrimination, applying a threshold of 0.5 on
the classifier output.

After applying the above procedure, the summed
surface area of all detected steatotic hepatocytes as well
as the total tissue area was calculated. These sums were
aggregated over all image patches in a WSI and the
steatosis proportionate area (SPA) per WSI (the ratio of
the steatotic area to the total tissue area described as a
percentage) was calculated.

Correlation to NAS Grading

Biopsies were revised by an experienced pathologist,
assessing steatosis grade and fibrosis stage (12). Corre-
lation between SPA, resulting from the algorithm and
NAS grade by the pathologist, was analyzed with Spear-
man Rank correlation coefficient and independent-
samples Kruskall-Wallis test with post hoc analyses to
test significance of differences between independent
grades. Distribution of SPA (interquartile range), fat
droplet size (in μm2), and number of droplets (per
patch and per um2) were analyzed to assess heteroge-
neity of steatosis within slides and per steatosis grade.

RESULTS
Identification and Classification Parameters

Candidate steatotic hepatocytes were identified by
application of two thresholds in the saturation channel
after transforming the image from an RGB to HSB color
representation. The threshold values were established
based on visual effect estimation of applying up to
10 different threshold cut-offs in a random selection of

WSI samples. In a comparable manner, we established
feature value thresholds to filter out obvious non-
steatotic areas on the basis of their size (see Table 1).

Results of the Logistic Regression Analysis

Feature coefficients for roundness parameters and
size were calculated using logistic regression analysis,
resulting in the following classifier:

logit :ð Þ= −16:2 + 0:00272× sizeμm
2 +5:81× circularity

+ 7:054× roundness + 10:3× solidity

The area under the curve (AUC) of correctly classi-
fied steatosis by the algorithm on WSIs in the test set
was 0.970 (95% CI 0.968–0.973), P < 0.001 (see Fig. 3).
For the present study, an operating point of 0.5 showed
the best overall performance of the classifier (see Sup-
plementary Information Table 1).The classifier yields
an accuracy of 91.9%, with a classification error of
8.1%. This accuracy shows the performance of the clas-
sifier on numbers of objects within the set of pre-
selected candidates. As we are interested in the SPA
rather than the numbers of objects, we also calculated
the error in summed steatotic cells areas as a result of
false positives and false negatives. From the areas calcu-
lated on the test set (see Table 2), we can calculate the
relative area of false positives as 167,779/3,561,981 ×
100% = 4.71% and that of false negatives as
94,011/3,561,981 × 100% = 2.64%.

Table 1
Feature Thresholds

Feature Threshold

Saturation for correct surface area 29 (of 256)
Saturation for optimal separation of steatosis 15 (of 256)
Minimal size for optimal separation of steatosis 12 μm2

Minimum area size 25 μm2

Maximum area size 6000 μm2

FIG. 3. AUC for classification of steatosis. Cut offs of included size and
roundness parameters were determined by logistic regression analysis on
the test set. [Color figure can be viewed at wileyonlinelibrary.com]
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Correlation Between SPA and Steatosis Grading

A total of 79 biopsies were included in the correla-
tion between SPA and steatosis grade (61 patients with
NAFLD and 18 controls without hepatic steatosis). The
median SPA for Grade 0 steatosis was 1.41% (IQR
1.03–1.80%), in Grade 1: 4.99% (IQR 2.97–9.31%), in
Grade 2: 13.65% (IQR 10.90–16.10%), and in Grade 3:
16.34% (IQR 14.48–20.54%) (see Table 3). A strong and
significant positive correlation was observed between
SPA and steatosis grading (Rs = 0.845, CI: 0.749–0.902,
P < 0.001). The SPA also differed significantly between
steatosis grades in overall analysis (P < 0.001) and in
post hoc analysis between individual grades, except
between Grade 2 and 3 (see Fig. 4). In a subgroup anal-
ysis (n = 26) of patients with severe fibrosis (BRUNT
fibrosis stage ≥2), the SPA also correlated significantly
with steatosis grading (Rs = 0.821, P < 0.001).

Patch Distribution of Steatosis

We found a significant correlation between IQR of
the SPA and steatosis grade (Rs = 0.822, P < 0.001).
Similarly, droplet size (in μm2) and total number of
droplets per slide correlated significantly with steatosis
grade (Rs = 0.723, P < 0.001 and Rs = 0.689, P < 0.001,
respectively). Number of droplets per mm2 remained
equal in all steatosis grades (see Table 3). This results
in an increasing heterogeneity in distribution of SPA
with progressing steatosis grades, despite the equal
number of droplets per mm2 in all grades. Because
every tissue slide is divided in hundreds of smaller pat-
ches for measurement purposes the measured SPA per
patch differs greatly, as is shown by the heterogeneity
of individual patch SPA percentages in a randomly cho-
sen tissue slide for every grade of steatosis (see Fig. 5).

DISCUSSION
We describe the development of a novel automated

digital analysis algorithm that quantifies liver steatosis

on WSIs as a SPA. The algorithm shows good accuracy
for discrimination between steatosis and non-steatotic
tissue.

There is an unmet need for an objective quantifica-
tion of hepatic steatosis. Therapeutical drug trials
include reduction of steatosis as study outcome. In the
transplantation setting, donor livers with moderate to
severe steatosis (approximately exceeding 30%) are
considered low quality grafts (25,26). Quantitative anal-
ysis can increase reliability of steatosis assessment and
truly determine the clinico-pathological correlations
between severity of steatosis and graft failure. Further-
more, development of non-invasive alternatives to
assess steatosis severity will benefit from a reference
standard that has a continuous scale.

Several attempts have been made to establish DIA
for this goal but thresholds showed to be insufficient to
facilitate automated discrimination, as these required
an additional manual correction or special lipid (Oil
Red O) staining procedures (14,18,27–31).

By identifying and combining optimal thresholds for
several roundness and size parameters with logistic
regression, we were able to accurately and automati-
cally quantify steatosis. From the feature coefficients of
the logit function, it appears that the size feature has a
lesser impact on the classification than the shape fea-
tures. This is due to the large difference in scale. The

Table 3
Results of Automated Image Analysis for Each Grade of Steatosis

Steatosis grade N SPA (%) IQR of SPA No. of droplets per mm2 Droplet size (μm2) IQR of droplet size

0 18 1.41 (1.03–1.80) 1.22 (0.82–1.53) 179.5 (151.9–243.6) 108 (94–124) 40 (35–55)
1 25 4.99 (2.97–9.31) 4.04 (2.62–7.42) 169.5 (131.9–278.6) 170 (158–233) 105 (90–226)
2 25 13.65 (10.90–16.10) 8.58 (7.51–11.12) 169.4 (119.7–288.9) 249 (218–309) 279 (239–336)
3 11 16.34 (14.48–20.54) 9.26 (8.84–13.09) 169.8 (136.1–304.2) 226 (207–321) 265 (206–406)

N = number of biopsies analyzed. Median values + IQR (25–75th percentile) are shown.

Table 2
Classification Results in Both the Number of Areas and in Total

Surface Area

Classification
Number of
areas

Total measured
area (in μm2)

True positive 16,612 3,561,981
False negative 585 94,011
False positive 850 167,779

FIG. 4. SPA per NAS grade. SPA differs significantly in all post hoc
analyses between grades (Grade 0 vs. 1; 0 vs. 2; 0 vs. 3; 1 vs. 2; 1 vs.
3) with P < 0.01, except between Grade 2 and 3 (P = 1.000).
Corresponding SPA cut offs were calculated (weighing the mean + SD
between grades): Grade 0–1: SPA 3.21%, Grade 1–2: SPA 9.73%,
Grade 2–3: SPA 15.63%.
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shape features are all ranged between 0 and 1, whereas
size can reach into the thousands (μm2). For the shape
features, it is interesting to note that the solidity has the
most influence on the outcome of the classification.
This indicates that for steatotic areas it is relatively rare
to have protrusions and cavities while flatness and
elongation are less disqualifying factors.

An additional benefit of this algorithm is its ability to
process WSIs. Tools that rely on (random) selection of
fragments of the whole slide are at risk for over- or
underestimation of steatosis (14,16,27,30–32). This is
particularly relevant as steatosis is heterogeneously dis-
tributed, which further increases as the amount of
steatosis rises (30).

It takes the algorithm approximately 10 min to ana-
lyze the whole slide and produce the SPA. In addition,
multiple slides, with no limitation in number, can be
imported into the image analysis program to be ana-
lyzed automatically in subsequent order. The program
can be managed by a technician, leaving the patholo-
gist free handed for other tasks.

The digitally quantified SPA showed to correlate well
with NAS steatosis grading; however, SPA was in all

cases lower than the percentage range resembled by
the pathologists grade. This observation, as well as the
absolute percentages measured with our algorithm, cor-
roborates findings from the other DIA methods quanti-
fying steatosis (14,16,18,20,30,33). Although scoring by
the pathologist is currently the gold standard, it suffers
from interobserver and intra-observer variability (13).
Steatotic hepatocytes are identified as white droplets
upon histological examination of hematoxylin–eosin
stained liver specimens (34). Nonetheless, accurately
estimating total percentage of steatosis has been shown
to be difficult for pathologists (35). Ideally, the patholo-
gist visually estimates the relative percentage of
steatotic hepatocytes compared to all hepatocytes pre-
sent. However, individual hepatocytes are too small,
numerous, and indistinctive to be counted at low mag-
nification. Furthermore, visual overestimation of
steatosis tends to increase with progressing severity
(14). A possible explanation for such overestimation is
proposed by Rawlins et al. and comes from psychologi-
cal studies that investigated how people judge quantity.
When there is a high number of identical items
arranged in an area, as is the case with many steatotic
hepatocytes in liver parenchyma, people tend to over-
estimate quantity (18,36,37). Currently, thresholds for
no, mild, moderate and severe steatosis are based
upon the NAS score. As a result of the much lower
steatosis percentages measured with DIA, such thresh-
olds need to be re-established before used in the clini-
cal setting.

There are some limitations to our algorithm. First,
visual examination by pathologists allows detection and
grading of more abnormalities than only steatosis. We
therefore suggest this algorithm to be supplemental to
a pathologist’s assessment.

A second limitation of the algorithm comes from the
automated division of the slide image in smaller pat-
ches. Steatotic hepatocytes aligned at the edge of the
patch will be cleaved, affecting area size and round-
ness features, possibly causing misclassification. Never-
theless, in our cohort misclassification (false positives
and negatives) led to only a small fractional error on
total SPA.

Lastly, with establishing thresholds, we only incorpo-
rated clear-cut features such as color, size, and round-
ness in a logistic regression analysis. We cannot exclude
that in the future other features will turn to be clinically
relevant. More advanced techniques such as deep learn-
ing, may contribute to future algorithms investigating
multiple histopathological features at once.

To conclude, we present a novel automated digital
analysis algorithm that accurately and objectively quan-
tifies liver steatosis on WSIs, and has the potential to be
incorporated as an addition to visual examination by
pathologists.
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FIG. 5. Distribution of total fat percentage per patch. This figure
shown for a representative WSI of each NAS steatosis grade (0–1–2–3).
On the X-axis, the SPA % per patch is shown, and on the Y-axis the
number of patches in the representative WSI. [Color figure can be
viewed at wileyonlinelibrary.com]
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