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Abstract 

Purpose:  The goal of this study is to develop and validate a radiomics nomogram integrating the radiomics features 
from DCE-MRI and clinical factors for the preoperative diagnosis of axillary lymph node (ALN) metastasis in breast 
cancer patients.

Procedures:  A total of 432 patients with breast cancer were enrolled in this retrospective study and divided into 
a training cohort (n = 296) and a validation cohort (n = 136). Radiomics features were extracted from the second 
phase of dynamic contrast enhanced (DCE) MRI images. The least absolute shrinkage and selection operator (LASSO) 
regression method was used to screen optimal features and construct a radiomics signature in the training cohort. 
Multivariable logistic regression analysis was used to establish a radiomics nomogram model based on the radiomics 
signature and clinical factors. The predictive performance of the nomogram was quantified with respect to discrimi-
nation and calibration, which was further evaluated in the independent validation cohort.

Results:  Fourteen ALN metastasis-related features were selected to construct the radiomics signature, with an 
area under the curve (AUC) of 0.847 and 0.805 in the training and validation cohorts, respectively. The nomogram 
was established by incorporating the histological grade, multifocality, MRI report lymph node status and radiomics 
signature and showed good calibration and excellent performance for ALN detection (AUC of 0.907 and 0.874 in the 
training and validation cohorts, respectively). The decision curve, which demonstrated the radiomics nomogram, 
displayed promising clinical utility.

Conclusions:  The radiomics nomogram can be used as a noninvasive and reliable tool to assist clinicians in accu-
rately predicting ALN metastasis in breast cancer preoperatively.
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Background
In recent years, greater numbers of younger patients 
have presented with breast cancer, with a mortality rate 
ranking first among malignant tumors in females [1, 2]. 

Clinical investigations have revealed that the 5-year sur-
vival rate is 98% for lymph node (LN)-negative breast 
cancer patients. For LN-positive patients, the survival 
rate drops to 84% [3]. Identifying axillary lymph node 
(ALN) status remains important because it is among the 
most influential diagnostic and prognostic factors.

Radical breast cancer plus axillary lymph node dis-
section (ALND) was once considered the standard 
treatment for breast cancer. However, more than 70% 
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of women with early-stage breast cancer have no ALN 
metastasis [4], so any kind of axillary surgery can be 
regarded as overtreatment. Compared with ALND, sen-
tinel lymph node biopsy (SLNB) is less invasive and has 
fewer complications since it only selectively removes the 
first draining lymph node from the tumor [5]. Although 
the rate of damage to blood vessels and nerves in SLNB 
is lower than that in ALND, shoulder dysfunction, numb-
ness, nerve damage and lymphedema may still occur 
at an unacceptable frequency [6, 7]. Furthermore, the 
American College of Surgeons Oncology Group Z0011 
trial confirmed that there was no significant effect on 
overall survival between SLNB alone and SLNB + ALND 
in patients with one or two SLN metastases. Both groups 
accepted breast-conserving surgery and systemic therapy. 
The results indicated that patients with one or two lymph 
node (LN) metastases should be classified as low risk, 
and they should not be directed to immediately undergo 
ALND [8]. Some studies have disputed the necessity of 
SLNB in evaluating ALN status preoperatively [9, 10], 
and the results of these reports suggested that SLNB or 
ALND should be selectively avoided, especially for low-
risk SLN-positive patients.

Considering the above, if clinicians can preopera-
tively identify high-risk ALN metastases in breast cancer 
patients, then these patients may be suitable candidates 
for ALND. To date, several studies have attempted to 
establish models for evaluating ALN status based on 
pathological and genetic characteristics [11], such as lym-
phovascular invasion and serum miRNA, but these data 
are only available during surgery or after immunohis-
tochemical examination, which may lead to inadequate 
clinical implications. Therefore, it is of great importance 
to develop a predictive tool that approximates SLNB 
for predicting the ALN status of breast cancer patients 
preoperatively.

Dynamic contrast-enhanced MRI (DCE-MRI) has been 
applied to discriminate between benign and malignant 
tumors, define tumor sizes and detect occult lesions. 
Kim et al. [12] attempted to predict ALN metastasis with 
lymph node characteristics, such as the long axis, short 
axis, and cortical thickness of the lymph node. These 
predictors showed moderate prediction efficacy and dis-
crimination power with AUCs of 0.730, 0.670 and 0.773, 
and low sensitivity leads to missed diagnoses in some 
breast cancer patients with ALN metastasis [13–15]. 
Radiomics is an image quantitative feature data mining 
technology based on the high-throughput extraction of 
rich, deep image features of lesions to establish correla-
tions between image features and clinical information, 
which can be used to improve the accuracy of tumor 
diagnosis, prognosis, and prediction [16–18]. Moreover, 
radiomics is also an important part of precision medicine 

and individualized treatment, especially in oncology [19, 
20]. Previous studies have shown that the radiomics fea-
tures of the primary tumor obtained from MRI images 
can be regarded as potential noninvasive biomarkers for 
the preoperative prediction of lymph node metastasis 
before surgery [21–23].

Here, we hypothesized that the radiomics features 
based on DCE-MRI sequences could predict ALN metas-
tasis more accurately than the radiomics features based 
on other imaging modalities, and the purpose of our 
study was to establish and validate a nomogram based on 
DCE-MRI radiomics features and clinical factors for the 
preoperative prediction of ALN status in patients with 
breast cancer.

Methods
Patients
The Ethics Committee of The First Affiliated Hospital 
of Hebei North University approved this study, and, 
for this type of study, did not require informed con-
sent. Approximately 553 patients who were confirmed 
to have breast cancer from April 2017 to October 2019 
were retrospectively enrolled in this study. The inclu-
sion criteria of the study were as follows: (1) patients 
with invasive breast carcinoma confirmed by biopsy or 
intraoperative resection, (2) patients who underwent 
DCE-MRI examination 1 week before surgery, and (3) 
all patients who received SLNB/ALND when SLNB was 
positive. The exclusion criteria were as follows: (1) pre-
operative treatment that included radiotherapy, chem-
otherapy and endocrine therapy; and (2) incomplete 
clinical data.

In total, 432 patients were finally enrolled and divided 
into the training cohort (106 ALN-positive patients and 
190 ALN-negative patients) and the validation cohort (54 
ALN-positive patients and 82 ALN-negative patients) at 
a ratio of 7:3 (Fig. 1).

MRI data acquisition
MRI examination was performed by using 3.0 T Philips 
Health care MRI scanners with 8-channel breast dedi-
cated coils. Patients were maintained in the prone 
position, and the bilateral breasts naturally and sym-
metrically fell into the coil. All patients were asked to 
reduce their respiratory rate to avoid motion artifacts 
caused by breathing and the heart beating. The contrast 
agent (Gd-DTPA, 0.1 mmol/kg, Omniscan, GE Health-
care) was injected intravenously at a rate of 2.5 ml/s. 
Then, 20 ml saline was injected at the same rate to flush 
out the residual contrast agent. A total of 9 phases were 
scanned without intervals, and the first phase involved 
plain scanning. After intravenous injection, continuous 
noninterval scans were performed in 8 phases. The scan 
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time for each phase was 58 s. The DCE-MRI sequences 
were acquired using a VIBRANT multiphase sequence as 
follows: TR/TE: 3.8/1.6 ms, FOV: 300 × 300 mm2, matrix 
size: 512 ×  512, silence thickness: 1.5 mm. The second 
phase of dynamic contrast enhancement was selected as 
the object of image segmentation because the peak value 

of enhancement in the lesion area occurs within 60–120 s 
after injection of contrast agent [24].

Patient clinical data recording
All MR images were reviewed by two experienced radi-
ologists (both of them had 6 and 8 years of diagnostic 

Fig. 1  Flow chart of the study population, with exclusion criteria
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experience, respectively). Clinical data included age, 
tumor size, histological grade, multifocality, MRI-
reported LN status, estrogen receptor (ER), proges-
terone receptor (PR), human epidermal growth factor 
receptor 2 (HER2) status and Ki-67 level. Immunohisto-
chemical positive standard occured when tumors con-
tained 10% of immunostained cells defined as ER- or 
PR-positive. Positivity for HER2 was defined as hema-
toxylin-eosin (HE) staining at least 3+. KI-67 positivity 
was defined as at least 14% immunostained cells. ALN 
metastasis was confirmed by histopathology (mac-
rometastasis or micrometastasis of lymph nodes was 
defined as positive). MRI-reported LN status for suspi-
cious metastasis was defined as follows: long and short 
axis lengths exceeding 9 mm and 11 mm, respectively; 
eccentric cortical thickness over 4 mm; and loss of the 
fatty hilum [12]. In situations where the two radiologists 

held different opinions about the details of the clini-
cal characteristics, consensus was reached through 
consultation.

Image segmentation and feature extraction
MR images often display intensity nonuniformities due 
to variations in the magnetic field, which may affect the 
accuracy of the prediction model. Prior to segmenting 
MR images, bias field correction was applied to elimi-
nate bias field artifacts and avoid inhomogeneity [25]. 
The workflow is shown in Fig. 2. MR images were semi-
automatically segmented using the open source soft-
ware MR Radiomics Platform (MRP, http://​www.​ym.​
edu.​tw/​~cflu/​MRP_​MLing​lioma.​html). According to 
Huang et al. [22], radiomics features should be extracted 
based on the largest breast tumor area rather than the 
ALN from MR images. The two-dimensional region 

Fig. 2  The workflow of this study. This study includes image segmentation, feature extraction, feature selection, feature analysis and model 
validation. The ROIs of breast cancer was segmented and then 55 quantitative radiomics features were extracted from the segmentation images of 
individual patients. The least absolute shrinkage and selection operator was used for feature selection and signature construction. The performance 
of radiomics signature was evaluated by area the receiver operating characteristic curves. Finally, a nomogram was plotted based on the radiomics 
signature and clinical model, and the predictive performance of the nomogram was validated by the calibration curves and decision curve analysis

http://www.ym.edu.tw/~cflu/MRP_MLinglioma.html
http://www.ym.edu.tw/~cflu/MRP_MLinglioma.html
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of interest (ROI) covers the entire tumor area (includ-
ing enhancing and necrotic regions) as defined by a 
radiologist with 6 years of experience. The enhancing 
and hyperintense regions’ pixels in the ROI were first 
detected by applying a threshold to extract the hyperin-
tense voxels on DCE-MR images, then the same or simi-
lar voxels were automatically connected to form target 
regions by using the regional-growth segmentation 
algorithm, and the irrelevant voxels of the ROI were 
eliminated. The ROIs were then manually adjusted and 
confirmed by a senior radiologist. The diagram of image 
processing is displayed in Fig. 3.

A total of 55 radiomics features were extracted using 
the MR Platform, including 14 first-order statistical 
features, 8 morphological features, 22 Gy-level cooc-
currence matrix (GLCM) features and 11 Gy-level run-
length matrix (GLRLM) features.

Statistical analyses
R software (version 3.6.2) was utilized to perform sta-
tistical analysis. Continuous variables between the ALN 
metastasis group and the non-ALN metastasis group 
were evaluated by Student’s t test or nonparametric 
Mann–Whitney U test, and categorical variables between 
the two groups were assessed by Pearson’s chi-squared 
test where a p value of < 0.05 was considered significant.

Feature selection and signature establishment
The Z score standardization method was used to stand-
ardize the corresponding features of each patient to 
eliminate the unit boundary and quantify and weigh the 
feature parameters of different units before feature selec-
tion. In the training cohort, the least absolute shrinkage 
and selection operator (LASSO) algorithm was used to 
screen the optimal features by shrinking the portion of 
feature coefficients unrelated to ALN metastasis to zero. 
A radiomics signature was established according to the 
optimal features and coefficients weighted by the LASSO 
algorithm, and the discriminant abilities of the radiom-
ics signature in both cohorts were calculated by the area 
under the curve (AUC).

Establishment of the clinical model and nomogram
Clinical factors related to ALN metastasis were evalu-
ated by univariable logistic analysis and included age, 
tumor size, histological grade, multifocality, MRI-
reported LN status, ER, PR, HER2 status, Ki-67 level, 
and radiomics score. Independent clinical factors were 
screened using the forward selection method in logistic 
analysis to establish a clinical model.

On the basis of the clinical model, the radiomics 
signature was added to establish a combined model 
using multiple logistic regression, and the discriminant 

Fig. 3  Two pre-processing examples. Left side halves: MR images with ductal carcinoma of breast. Right side halves: Corresponding drawing of 
partial enlargement under tumor semi-automatic segmentation (indicated in green)
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ability of the clinical model and combined model was 
assessed by the AUC. To provide an easy and reliable 
tool for predicting ALN metastasis, a nomogram based 
on the combined model was plotted, and then the cali-
bration curve was plotted to demonstrate the prob-
ability of predicting ALN metastasis in both cohorts 
by bootstrapping with 1000 repetitions. The predic-
tion performance of the training and validation cohort 
nomogram was evaluated using the Hosmer–Leme-
show test. To determine the predictive performance of 

the radiomics nomogram in clinical use, decision curve 
analysis (DCA) was performed by quantifying the net 
benefits at different threshold probabilities in the two 
cohorts.

Results
Patient clinical data
The clinical data are summarized in Table  1. In both 
cohorts, histological grade, multifocality and MRI-
reported LN status had a significant correlation with ALN 

Table 1  Clinical characters and radiomics score of the training and validation cohort

Note: Data are number of patients; Data in the last line in parentheses are interquartile ranges

LN lymph node, HER2 human epidermal growth factor receptor 2, SD standard deviation
* highlights the p values that are smaller than 0.05

characteristic training cohort Validation cohort

Positive for ALN 
metastasis(n = 106)

Negative for ALN 
metastasis (n = 190)

P value Positive for ALN 
metastasis(n = 54)

Negative for ALN 
metastasis(n = 82)

P value

Age (mean ± SD) 53.94 ± 9.66 53.84 ± 10.07 0.727 52.35 ± 11.14 53.20 ± 9.17 0.373

Tumor size (mm) 20.37 ± 4.87 19.95 ± 4.67 0.723 20.44 ± 5.88 19.14 ± 4.72 0.500

Histological grade <0.001* <0.001*

  I 13 56 3 20

  II 64 108 32 53

  III 29 26 19 9

Multifocality <0.001* 0.001*

  Yes 53 54 29 19

  No 53 136 25 63

MRI report LN status <0.001* 0.006*

  Yes 74 81 34 32

  No 32 109 20 50

Estrogen receptor 0.030* 0.734

  Positive 84 128 39 57

  Negative 22 62 15 25

Progesterone receptor 0.930 0.928

  Positive 72 130 34 51

  Negative 34 60 20 31

HER2 status 0.340 0.897

  Positive 30 64 12 19

  Negative 76 126 42 63

Ki-67 status 0.881 0.210

  Positive 75 136 41 54

  Negative 31 54 13 28

Radiomics score −0.008(−0.55 to 0.36) −1.642(−2.40 to −0.72) <0.001* 0.064(−0.47 to 0.52) −1.613(−2.67 to −0.63) <0.001*

Fig. 4  Radiomics feature selection using the LASSO regression algorithm in the primary cohort. A. Selection of the parameter (λ) in the LASSO 
model via 10-fold cross-validation depending on the minimum criteria. The binomial deviance curve versus log (lambda) was plotted, and the 
left vertical line corresponds to the optimal value of the minimum criterion; the right vertical line corresponds to the optimal value of the 1-SE 
criteria. The optimal λ value of 0.0127with threshold log (λ) of was − 4.32 was selected. B. LASSO coefficient profiles of the 55 features. Vertical line 
was plotted at the value selected using 10-fold cross-validation, where optimal λ resulted in 14 nonzero coefficients. C. The receiver operating 
characteristic curves (ROC) of the radiomics signature in the training and validation cohorts

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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metastasis (all p values < 0.05); patient age, ER status, PR 
status, HER2 status, and Ki-67 level had no significant 
correlation with ALN metastasis (all p values > 0.05).

Radiomics signature establishment
In this study, the 55 features extracted from DCE-MR 
images were regularized by using the LASSO algorithm, 
and the number of features was reduced from 55 to 14 
in the training cohort, including 6 first-order statistical 
features, 1 morphological feature, 3 GLCM features and 
4 GLRLM features (Fig.  4A, B). The details of the fea-
tures and the corresponding weighted coefficients are 
presented in Table 2. The radiomics score of each patient 
was calculated with the 14 optimal features and the cor-
responding weighted coefficients, and there was a signifi-
cant difference between the two cohorts (median − 0.008 
vs. -1.642; 0.064 vs. -1.613; all p values < 0.001) (Table 1). 
The radiomics signature yielded AUCs of 0.847 [95% 
confidence interval (CI), 0.801  ~  0.886] and 0.805 [95% 
CI, 0.728 ~ 0.868] in the training and validation cohorts, 
respectively (Fig. 4C).

Establishment and validation of the clinical model 
and nomogram
Table  3 shows the results of the multivariable logis-
tic analysis in the training cohort. Independent clinical 
factors (including histological grade, multifocality and 
MRI-reported LN status) were used to establish the clini-
cal model, and the combined model was established by 
incorporating the clinical model and the radiomics sig-
nature. To visualize the risk of ALN metastasis for each 
patient, a nomogram was plotted based on the combined 
model (Fig. 5).

As shown in Fig. 6A and B, the clinical model showed 
moderate predictive performance, with AUCs of 0.723 
[95% CI, 0.682 ~ 0.785] and 0.738 [95% CI, 0.656 ~ 0.810] 
in the training and validation cohorts, respectively. The 
AUC of the clinical model validation cohort was higher 
than that of the training cohort. The specificity of the 
clinical model was good, registering as high as 82.63 and 
79.27% in the training and validation cohorts, respec-
tively, but the sensitivity was poor, measuring only 
53.77 and 61.11% in the training and validation cohorts, 
respectively. The combined model demonstrated better 
discrimination than the clinical model and radiomics 
signature alone, which yielded AUCs of 0.907 [95% CI, 
0.868 ~ 0.937] and 0.874 [95% CI, 0.807 ~ 0.925] in the 
training and validation cohorts, respectively (Table  4). 
The predictive value of the calibration curves in the two 
cohorts had good consistency with the actual results 
(Fig. 6C, D). The results of the Hosmer–Lemeshow test 
showed a nonsignificant difference (p values of 0.152 
and 0.246 in both cohorts, respectively). DCA reflected 
the clinical utility of evaluating the performance of the 
nomogram. Figure 7 shows the DCA for evaluating ALN 
metastasis based on the radiomics nomogram. When 
the threshold probability was in the range of 0.04–0.88, 
the maximum net benefit could be obtained by using the 
radiomics nomogram to predict ALN metastasis.

Discussion
In this study, we developed a radiomics nomogram based 
on primary tumor characteristics for predicting ALN 
metastasis in breast cancer. This multivariable model is 
composed of features extracted from DCE-MR images 
and clinical factors, and it displayed excellent ability, 

Table 2  List of selected feature parameters for establishing the radiomics signature

Note: GLCM gray level co-occurrence matrix, GLRLM gray level run length matrix

Category Radiomics feature Coefficient

First order feature (n = 6) Energy 0.273

Entropy 1.814

Kurtosis 0.029

Maximum 0.006

Mean −0.630

Uniformity −1.713

Morphological feature (n = 1) Spherical disproportion 0.143

GLCM features (n = 3) Correlation −0.037

Entropy −0.421

Information measure of correlation −0.614

GLRLM features (n = 4) Run length nonuniformity 0.524

Short run high gray level emphasis −0.467

Short run low gray level emphasis 0.087

Long run low gray level emphasis 0.136
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with an AUC of 0.907 in the training cohort and 0.874 
in the validation cohort. The application of radiomics 
features extracted from DCE-MR images provides a new 
method for quantifying intratumoral heterogeneity.

At present, with the continuous exploration of radi-
omics, an increasing number of studies have shown 
that it can be used as a powerful noninvasive method to 
increase detection, diagnosis, and prediction [26, 27]. 
Thus, in this study, we developed and validated a radi-
omics signature based on DCE-MRI radiomics features 

for predicting ALN metastasis in breast cancer. A total 
of 14 optimal features were finally screened by the 
LASSO algorithm and used to construct the radiom-
ics signature. The discriminative ability of the radiom-
ics signature was impressive, with AUCs of 0.847 and 
0.805 in both cohorts. Recently, Han et  al. [28] devel-
oped a nomogram based on the radiomics features of 
the first enhancement phase of DCE-MRI to preopera-
tively evaluate ALN status, with AUCs of 0.76 and 0.78 
in the primary and validation cohorts, respectively. In 
the present work, we used the second phases of tumor 
enhancement and achieved higher predictive perfor-
mance. Compared with the study of Han et al. [28], the 
ROIs in the second enhancement phases showed the 
lesion boundaries more clearly. Routine T2-weighted 
imaging (T2WI) and diffusion-weighted MRI (DWI) 
sequences were not included in the present work. In 
fact, the border of the tumor is not clear on the T2WI 
and DWI images, and it is difficult to completely seg-
ment the tumor lesion. In the study by Dong [29], radi-
omics features from the T2WI and DWI images were 
used to predict SLN metastasis and obtained relatively 
low AUC values of 0.770 and 0.787. Furthermore, other 
studies have reported that the strongest enhancement 
phase in DCE-MRI can better reflect the heterogeneity 
and aggressiveness of the tumor [30].

Table 3  Multivariable logistic regression analysis of risk factors 
for ALN metastasis

Note: Data in parentheses are 95% confidence intervals. P value are displayed 
as scientific notation. The combined model was established based on these risk 
factors related to the axillary lymph node metastasis, while the clinical model 
without radiomics signature

CI Confidence interval

Intercept and 
variable

Combined model in the training cohort

Coefficient Odds ratio (95% CI) P value

Intercept −2.586 0.073 (0.003–0.100) 3.23 × 10−5

Histological grade 1.012 2.751 (1.614–4.877) 3.11 × 10−4

Multifocality 1.331 3.783 (1.941–7.601) 1.26 × 10−4

MRI report LN status 1.083 2.954 (1.537–5.821) 1.37 × 10−3

Radiomics signature 1.927 6.871 (4.121–12.617) 1.25 × 10−11

Fig. 5  Nomogram was developed with histological grade, multifocality, MRI-reported LN status, and radiomics signature for predicting ALN 
metastasis in the training cohort
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Among the 14 radiomics features, the 4 first-order fea-
tures were consistent with previous studies. Wu et al. [23] 
demonstrated that first-order features had reliable per-
formance in predicting the LN metastasis of bladder can-
cer, which could help patients who are LN negative avoid 
unnecessary pelvic LN dissection and neoadjuvant chem-
otherapy. GLCM and GLRLM features are widely used 
texture parameters in the field of radiomics and machine 
learning [31], which can reveal minute changes in the 
tumor histological anatomy. In this study, Entropy, Infor-
mation Measure of Correlation and Short Run Emphasis 
are all in line with previously reported features related 
to ALN metastasis extracted from the first enhancement 
phase of DCE-MRI and could reflect the degree of tumor 
heterogeneity and invasiveness based on the radiomics 
score [28, 32]. However, we use different enhancement 
phases and feature extraction methods. Previous work 
suggested that GLCM parameters extracted from MR 
images are correlated with LN metastasis and can better 

display the heterogeneity and complexity of the intratu-
mor microenvironment [33]. Most importantly, GLCM 
and GLRLM features could be regarded as biomarkers to 
stratify patients with breast cancer more precisely [32].

In this study, we determined some clinical factors asso-
ciated with ALN metastasis, including histological grade, 
multifocality and MRI-reported LN status. As expected, 
these ALN metastasis-associated predictive factors were 
quite similar to those identified in previous studies [34–36]. 
Therefore, to provide an easy and feasible tool for clini-
cians, a nomogram that incorporates a clinical model and 
radiomics signature was established to improve the diag-
nostic efficiency and visualize the risk score of individual 
ALN metastasis prediction. We were especially encour-
aged by the good discriminability of the nomogram (AUCs 
of 0.907 and 0.874 in both cohorts), and the calibration 
curves demonstrated good consistency between the pre-
dicted value and the actual outcome. Our study confirmed 
that SLNB can be omitted or ALND can be performed 

Fig. 6  A and B showed the comparison of receiver operating characteristic curves between the radiomics nomogram and clinical model in the 
training and validation cohorts, respectively. C. Calibration curve of the radiomics nomogram in the training cohort. D. validation cohort. The 
calibration curve was used to estimate the goodness of fit between the actual value (Y-axis) and the predicted value of ALN metastasis (X-axis). 
The diagonal dashed line represents the predictive performance of the ideal model, the dotted line represents predictive performance of the 
nomogram, and the red solid line represents the performance of the radiomics nomogram without removed the bias. The closer the two curves are 
to the diagonal dashed line, the higher the predictive power of the model
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directly without lymph node biopsy for patients with high-
risk grade. To date, four similar studies have developed 
predictive models for predicting ALN metastasis based on 
DCE-MRI. The data of our radiomics models in our study 
were all from the same hospitals in China, repeating the 

same protocol for all patients, which increases the repro-
ducibility of feature extraction in the research process. In 
addition, the region-growing segmentation algorithm was 
performed on the ROIs to avoid the influence of irrelevant 
voxels in the calculation of feature parameters.

Recently, Yang et  al. [37] developed a radiomics nomo-
gram based on mammogram features to preoperatively 
evaluate ALN status, with AUCs of 0.779 and 0.809 in the 
primary and validation cohorts, respectively. Further-
more, Yu [38] and colleagues applied radiomic features 
extracted from ultrasound images to predict ALN metas-
tasis in breast cancer, and the prediction performance was 
not satisfactory (AUC = 0.78). The results of our study are 
superior to those of previous studies since radiomics fea-
ture extraction was based on DCE-MR images. It is also 
possible that DCE-MRI can provide richer intratumoral 
hemodynamic features for radiomics analysis. In addi-
tion, the AUC value in our study was slightly higher than 
that of the study of Cui et  al. [39], and the AUC value of 
the SVM classifier was 0.861 in predicting ALN in breast 
cancer using the radiomics features of DCE-MR images. 
As with our study, Santucci et al. [40] also used the second 
contrast enhancement phase to evaluate the ALN status of 
breast cancer, and the AUC of the random forest predic-
tion model reached 0.856. This may have some associa-
tion with the number of patients and classifiers. The small 

Table 4  Prediction performance in the training and validation 
cohorts

Note: Data in parentheses are 95% confidence intervals

AUC​ indicates area under the curve

AUC​ Sensitivity Specificity Threshold

Radiomics signature

  Training 
cohort

0.847 (0.801, 
0.886)

88.68% 67.89% 0.566

  Validation 
cohort

0.805 (0.728, 
0.868)

75.93% 70.73% 0.467

Clinical model

  Training 
cohort

0.737 (0.683, 
0.787)

53.77% 82.63% 0.364

  Validation 
cohort

0.753 (0.672, 
0.823)

61.11% 79.27% 0.404

Combined model

  Training 
cohort

0.907 (0.861, 
0.932)

82.08% 83.65% 0.657

  Validation 
cohort

0.867 (0.798, 
0.919)

75.93% 80.49% 0.564

Fig. 7  Decision curve analysis for radiomics nomogram in the training cohort. The x-axis indicates the threshold probability and y-axis measures 
the net benefit. The blue line represents the radiomics nomogram. The gray line represents the assumption that all patients have LN metastases. 
The black line represents the assumption that no patients have LN metastases. The decision curve showed that when the threshold probability is 
between 0.04 to 0.88, more benefit was added from the radiomics nomogram than either the treat-all-patients scheme or the treat-none scheme
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sample sizes of 102 patients may limit the clinical applica-
bility of the model. However, our prediction efficiencies 
were slightly lower than those in the study of Yu et al. [41], 
and their AUC values were 0.92 in the primary cohort and 
0.90 in the validation cohort in predicting ALN metastasis 
of breast cancer using the radiomics features of DCE-MRI. 
This may be related to two main reasons. One reason is that 
the prediction performance of the clinical model is higher 
than ours (AUC = 0.77). Another reason is the number of 
patients enrolled in our study. We only have a total of 432 
patient data points, and the dataset in their study involved 
more than 1000 patients from 4 medical institutions.

The study has some limitations. First, this is a retro-
spective study with a limited sample size, and the subjects 
assessed for the construction and validation of our pre-
dictive model were all from the same hospital in China. 
Although the radiomics nomogram shows comparable 
performance, a larger sample size from multiple centers 
needs to be used to verify the model and provide reliable 
evidence for clinical application. Second, the ROI outline 
of breast cancer lesions was delineated by the semiauto-
matic segmentation method. We tried to avoid hemor-
rhagic or edematous areas by adjusting the threshold, 
but discernment of the lesion’s exact outline was greatly 
influenced by radiologist’s experience. Furthermore, we 
selected the primary tumor area instead of the LN area 
as the ROI in our study for feature extraction since it was 
difficult to match the biopsied LNs with those on the 
MR images. The results of our study confirmed that the 
changes in MR image features in the primary tumor area 
of breast cancer are related to ALN metastasis, and we 
expect that background parenchymal enhancement and 
peritumoral region features may further improve the pre-
diction performance of the model [42, 43].

Conclusion
In conclusion, the radiomics features extracted from the 
primary tumor area of DCE-MR images can be used as 
potential biomarkers to predict ALN metastasis. In this 
study, we exploited a nomogram by incorporating a radi-
omics signature and a clinical model, which can provide 
valuable evidence to support clinical operation and treat-
ment decision-making. This study is a step toward pre-
cision medicine and personalized treatment for breast 
cancer patients. Further studies based on radiomics are 
expected to make greater contributions to the diagnosis, 
staging and treatment of breast cancer.

Abbreviation
ALN: Axillary lymph node; SLN: Sentinel lymph node biopsy; LASSO: Least 
absolute shrinkage and selection operator; ROI: Regions of interest; ROC: 
Receiver operating characteristic curve; AUC​: Area under the receiver operat-
ing characteristic curve; GLCM: Grey-level co-occurrence matrix; GLRLM: Gray 
level run length matrix.
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