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Abstract: Quantum mechanics predicts correlations between measurements performed in distant
regions of a spatially spread entangled state to be higher than allowed by intuitive concepts of
Locality and Realism. These high correlations forbid the use of nonlinear operators of evolution
(which would be desirable for several reasons), for they may allow faster-than-light signaling. As
a way out of this situation, it has been hypothesized that the high quantum correlations develop
only after a time longer than L/c has elapsed (where L is the spread of the entangled state and c is
the velocity of light). In shorter times, correlations compatible with Locality and Realism would
be observed instead. A simple hidden variables model following this hypothesis is described.
It is based on a modified Wheeler–Feynman theory of radiation. This hypothesis has not been
disproved by any of the experiments performed to date. A test achievable with accessible means is
proposed and described. It involves a pulsed source of entangled states and stroboscopic record of
particle detection during the pulses. Data recorded in similar but incomplete optical experiments are
analyzed, and found consistent with the proposed model. However, it is not claimed, in any sense,
that the hypothesis has been validated. On the contrary, it is stressed that a complete, specific test is
absolutely needed.

Keywords: foundations of quantum mechanics; optical tests of quantum theory; entanglement; EPR
paradox; Bell’s inequalities

1. Introduction

Quantum mechanics (QM) has faced debate since its early years. At least three points
of conflict have been identified:

(i) Failure of the principle of correspondence in chaotic systems (“quantum chaos”).
(ii) Evolution from a superposition state to the observed state of a system is not described

by the theory (the “measurement” or “projection” problem).
(iii) Correlations between measurements performed in distant regions of a spatially

extended entangled state are higher than allowed by Local Realism (violation of
Bell’s inequalities).

Local Realism (LR) is shorthand for the intuitive notions of separability of physical
phenomena, and that the features of these phenomena are independent of being observed
or not [1,2]. LR is assumed not only in everyday life, but also in all scientific practice
(except QM).

The conflictive point (ii) can be solved by using nonlinear operators of evolution [3,4].
However, it has been shown [5,6] that such operators would allow faster-than-light signal-
ing, if combined with the high correlations of point (iii). This would be in contradiction
with theory of Relativity, and make quantum field theory untenable. The conclusion is that
any nonlinear extension of QM is impossible, even if it is infinitesimal. This conclusion
has been interpreted in two opposite ways. For some, it is the demonstration that QM is
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part of the “ultimate theory” of Nature, for the introduction of nonlinear correction terms
is impossible. For others, instead, it means that the predictions of QM are structurally
unstable, and hence that there is something important missing in its formulation.

Hope to reconcile QM with LR comes up by noting that the performed tests leave space
for the following hypothesis: QM predictions are valid for statistical averages measured
over “long” times; measurements performed in “short” times would hold to LR. The time
scale here would be given by the time light needs to cover the spatial spread L of the
entangled state. In other words, QM (as we know it) would describe t→∞ stationary states,
while transient deviations from QM predictions would be observed in times shorter than
L/c. If this hypothesis was demonstrated correct, it would solve not only point (iii), but
it would also open the door to the use of nonlinear operators to solve point (ii) (it would
probably allow a more appropriate approach to point (i), too). Faster-than-light signaling
would never be possible, for the high correlations characteristic of entanglement would
exist only after a time longer than L/c had elapsed. Note that usual QM would still make
correct predictions in the overwhelming number of cases. The only case where we foresee
some limitation is Quantum Key Distribution using entangled states. In principle, the
transient deviations would impose the rate of detected entangled pairs to be smaller than
c/L. Anyway, this limit is several orders of magnitude above the rate that can be reached
nowadays (see Section 3).

Following this hypothesis, in Section 2, we introduce a simple hidden variables model
named “AB”. Similar to almost all such models, it is an artificial construction. It is not
claimed to provide an accurate description of an underlying physical reality. It has a
well-defined form in order to be testable, but we expect it to reveal the general features of
the hypothesized transient deviations. In Section 3, an achievable testing experiment is
explained. It is based on stroboscopic reconstruction of time variation of entanglement and
efficiency. In Section 4, we analyze data obtained in similar but incomplete experiments
performed between 2012 and 2019. These data are consistent with AB, but we do not claim
them to provide any sort of confirmation of the transient deviation hypothesis—they just
encourage performing the appropriate experiment.

2. The AB Model
2.1. A Hidden Variables Theory

Because of its relevance and simplicity, the case of two photons entangled in polariza-
tion is considered (see Figure 1). Source S emits pairs of photons in the fully symmetrical
Bell state: |ϕ+〉 = (1/

√
2) × {|xA,xB〉 + |yA,yB〉} towards stations A and B separated by a

distance L. Entanglement is evaluated, f.ex., with the Clauser–Horne–Shimony and Holt
parameter SCHSH [1]. It involves measuring the probability (defined as the frequency limit)
of coincident detections at each pair of gates at each station: P++(a,b), P−−(a,b), P+−(a,b)
and P−+(a,b), with angle settings a = {0,π/4} and b = {π/8,3π/8}. The QM ideal prediction
is SCHSH = 2

√
2, while LR imposes SCHSH ≤ 2.

Figure 1. Source S emits entangled states |ϕ+〉 towards stations separated by a distance L. Analyzers
are set at angles a and b, and single photons are detected transmitted (+) or reflected (−) at each station.

An important parameter is efficiency η ≡ Nc/Ns, where Nc is the number of coinci-
dences and Ns is the number of single detections in a given run. It is well known that hidden
variables holding to LR can exactly reproduce QM predictions if η ≤ 1/

√
2 ≈ 0.71 [7].

We assume that each emitted pair carries an angular “hidden variable” α that takes
values in [0,2π] and has two equally probable sub-states, α+ and α−. Pi

+ (Pi
−) is the
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probability to detect a photon at gate “+” (“−”) in station i. The probabilities of detection
at station A (setting a) are assumed to be:

if α = a and α = α+, PA
+ = 1 and PA

− = 0;

if α = a and α = α−, PA
+ = 0 and PA

− = 1;

if α 6= a, PA
+ and PA

− = 0. (1)

and at station B:

if α = α+, PB
+ = cos2(b − α) and PB

− = sin2(b − α)

if α = α−, PB
+ = sin2(b − α) and PB

− = cos2(b − α) (2)

(regardless the value of a, which is unknown at B).
The probability of coincidence in the “+” gates is then:

if α = α−, PB
+ = sin2(b − α) and PB

− = cos2(b − α) (3)

where p(α = a) is the probability that α = a (the factor 1/2 comes from the two equally
probable sub-states of α). This result is proportional to the QM prediction. The same
holds for the coincidence probabilities P+−, P−+, and P−−, so that SCHSH = 2

√
2 is obtained.

However, there is an asymmetry in the number of single counts in each station: “all”
emitted photons are detected at B, while only “some” of them are detected at A. To be
precise: if Rα is the total rate of detections (regardless if + or −) at B, the rate at A is only
p(α = a) × Rα. In order to balance the rates of singles at each station, we assume that half
of the emitted pairs carry a hidden variable β that mirrors Equations (1) and (2):

if β = b and β = β+, PB
+ = 1 and PB

− = 0;

if β = b and β = β−, PB
+ = 0 and PB

− = 1;

if β 6= b, PB
+, PB

− = 0. (4)

and:
if β = β+, PA

+ = cos2(a − β) and PA
− = sin2(a − β)

if β = β−, PA
+ = sin2(a − β) and PA

− = cos2(a − β) (5)

Choosing p(α = a) = p(β = b) ≡ p, the same rate of singles is detected at each station.
The probability of detecting a single photon at A is: probability of being an α-pair × p(α = a)
+ probability of being a β-pair × 1 (for, all β-pairs are detected at A) = 1/2p + 1/2. In turn, the
probability of detecting a coincidence is 1/2 × p(α = a) + 1/2 × p(β = b) = p. Therefore, the
efficiency is:

η = 2p/(1 + p) (6)

In the case of experiments with fast and random variation of analyzers’ settings [8,9],
there are two alternatives in each station, so that p = 1/2⇒ η = 2/3 (and SCHSH = 2

√
2). In

the general case, it is convenient to relax the strict equalities in Equations (1), (2), (4) and
(5) to:

PA
+ or PA

− = 1 if α ∈ [a − ∆, a + ∆]

PA
+ or PA

− = 1 if α ∈ [a − ∆, a + ∆]

PA
+ and PA

− = 0 otherwise. (7)

PB
+ and PB

− are defined as in Equation (2) (and symmetrically for β).
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Now, p = ∆/π. If ∆ = π, then p = 1 and η = 1, but P++ = 1/4 (no correlation). After
integrating α and β in [0,2π], the total probability of “++” coincidence is:

P++ = (1/4π){sin(2∆) × cos2(a − b) + ∆ -
1
2

sin(2∆) } (8)

If ∆� 1, then P++ ≈ (∆/2π) × cos2(a − b) = p × 1/2 × cos2(a − b), as in Equation (3).
The expressions for the coincidence probabilities P+−, P−+, and P−− are analogous to
Equation (8). It is found that:

SCHSH = 2
√

2 sin(x)/x (9)

where x = 2∆. Equations (8) and (9) are valid even if there is no correlation at all between
the values of α and a (β and b). That is, they are valid even for the experiments performed
with fast and random variation of the settings α and β.

2.2. Delayed Reaction

At this point, the model simply exploits the efficiency loophole [1,7]. We now add that
the detection (in general: absorption) of a photon at station A produces a “reaction” on the
hidden variable. This reaction propagates backwards to the source, carrying information
on properties the photon had when it was detected (in the case of interest here, whether it
was detected polarized with an angle parallel, or perpendicular, to a). The reaction arrives
to the source at time τ≥ L/c after the emission (τ/2 to go and τ/2 to return), and influences
the values of α emitted thereafter, in such a way that they tend to fit α = a; that is, a sort
of stimulated emission at the hidden variables level. The reaction is proportional to the
rate of detected photons Rdet and to the mismatch between α and a when the photon was
detected (that is, when the reaction was “born”). Therefore, the evolution of the values of
α emitted at time t is given by:

dα(t)/dt ∝ −Rdet(t − τ/2)×[α(t − τ) − a(t − τ/2)] (10)

Rdet(t − τ/2) ∝ Remitted(t − τ), so that:

dα(t)/dt = −Γ(t − τ)×[α(t − τ) − a(t − τ/2)] (11)

where the value of Γ is unknown, but is supposedly proportional to the rate of emitted
photons (which is, in turn, proportional to the source intensity). Before the delayed reaction
arrives, the source is assumed to emit random values of α. If it emits entangled states in the
Bell state |ϕ+〉, the beams propagating to A and B carry the same value of α. If the source
is prepared to emit classical states instead, the values of α in each beam are not correlated.
An expression similar to Equation (11) holds for β(t).

The hypothesized reaction is inspired by the absorber theory of radiation proposed
by Wheeler and Feynman [10]. In this theory, the reaction propagates backwards not
only in space but also in time. D. Pegg shows this theory to explain the experiment in
Figure 1 in an elegant way [11]. The theory is impeccable, but the idea of signals propa-
gating backwards in time is uncomfortable. The delayed reaction hypothesized here has a
poorer theoretical basis, but is free of that uncomfortable feature. It clearly holds to Locality
and, most importantly, leads to a testable difference with QM.

Equation (11) is a delay differential equation. It evolves in a phase space of infinite
dimensions. Its solutions are difficult to find in the general case. In the particular case
that Γ(t) and a(t) are constant, the solutions have the general form α(t) = α0.exp(zt/τ),
z ∈ C. Critical damping of α(t) towards a is reached for Γτ = 1/e. For 1/e < Γτ < π/2,
α(t) converges towards a with damped oscillations of period ≈4τ. SCHSH is given by
Equation (9) for all times, while η varies on time depending on the distance between α(t)
and a. When α(t) ∈ [a − ∆, a + ∆], η = 1 (Equation (7)). If t→∞, then α→a, β→b, p→1,
η→1, SCHSH→2

√
2, and all observables coincide with QM predictions regardless of the

value of ∆. For Γτ ≥ π/2, the oscillation amplitude of α(t) diverges. In this case, α(t) runs
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away, losing any correlation with a. Equation (9) for SCHSH still holds, and η = 2/3 as in the
case of setups with random and fast variation of the settings.

Experiments focused on measuring time-averaged magnitudes cannot provide a clear-
cut disproval of the transient deviation hypothesis, even if they are essentially loophole-
free [12–15]. These experiments reach η > 2/3, but this result can be reproduced by a
modified version of AB exploiting remaining imperfections. Such a modified version is
more involved and uninteresting, for it is always possible to design a classical theory able
to fit the numbers of a specific experimental realization [16]. This does not lessen the
significance of the loophole-free experiments. They did reach the goals they were designed
for [17]. The point is that no real experiment is perfect, and that experimental results cannot
be reliably applied to test a model different from the one they were designed to test. The
transient deviation hypothesis can be tested in an easy and definitive way by observing
time evolution of efficiency and/or entanglement.

To explore the behavior of Equation (11) further, we can run numerical simulations.
In Figure 2, Γ is “turned on” at t = 0 and remains constant thereafter; we choose a = π/4
and α(t = τ) = 0. Values of α(t) for t < τ are random in [0,2π]; they are not plotted to not to
burden the figure. At t = τ, the reaction starts to influence the emitted values of α. Yet, as
the values α(t – τ) in the rhs of Equation (11) are randomly distributed, α(t) does not evolve
far from α(τ) during this stage. At t = 2τ = 1000, the values of α(t − τ) are not random any
longer, and α(t) starts to evolve towards the “target” value a. It does so in a monotonous or
oscillatory way, depending on the value of Γ.

Figure 2. α(t) for several values of Γ scaled with τ (note that the plot starts at t = τ) according to
Equation (11); Γ(t < 0) = 0, Γ(t ≥ 0) = Γ, α(t < τ) = random (not plotted), α(t = τ) = 0, a = π/4, time
scale: τ = 500. For critical damping (Γ = 1/e), the value 0.9 × a is reached in ≈3.5 τ. Recall that α(t) is
a hidden variable; this curve cannot be directly observed.

An interesting numerical result is that (for the same value of Γ) oscillations cross their
target values (0 and π/4) at nearly the same time even if the initial values α(t ≤ τ) are all
different (Figure 3). The only condition for this to occur is that the random initial values
are distributed symmetrically to the target. As they are assumed uniformly distributed
in [0,2π], the condition is fulfilled for any target value. As shown later, this effect of
spontaneous synchronization has important consequences.

The hidden variable α(t) cannot be directly observed. The value of SCHSH is fixed
by Equation (9) and depends on ∆ weakly. Perhaps surprisingly, the only observable
effect comes up in the time variation of η. In the next section, an experiment to test the
transient deviation hypothesis (of which the AB model is probably the simplest expression)
is described.
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Figure 3. An example of spontaneous synchronization. The evolution of α(t) and β(t) are plotted for
different initial conditions (including 500 different random values for t < τ, not plotted) and target
values (a = 0, b = 3π/8), Γ = 1. In spite of all these differences, target values are crossed at nearly the
same times. Synchronization improves as the partition of τ increases (here, τ = 500).

3. A Proposal to Test the Transient Deviation Hypothesis
3.1. Difficulty of Direct Observation

According to the usual description of Figure 1 experiment, there is no reason to expect
any time variation of efficiency (in ideal conditions, of course). A straightforward approach
to test AB is hence to measure η(t) during times shorter than τ. Yet, such measurement is
impossible nowadays. In order to check entanglement and observe η(t) with enough detail,
a rate of coincidences >103 τ−1 is required. The highest reported rate is ≈3 × 105 s−1 in
a laboratory environment [18], which means ≈10−4 τ−1. Numbers are better for larger L:
50 s−1 at 13 Km [19] (≈2 × 10−3 τ−1) and 8 s−1 at 144 Km [20] (≈4 × 10−3 τ−1), but still
short by almost six orders of magnitude.

One possibility at hand is a “stroboscopic” approach. It is reasonable to expect α(t)
to decay to a random distribution in a finite time τd after the driving reaction is turned
off. A stroboscopic measurement of η(t) is then possible, by using a pulsed source of
pairs with time between pulses longer than τd. Each pulse produces at most one photon
recorded (at random time position within the pulse), and the behavior of η(t) and SCHSH(t) is
reconstructed after millions of pulses. As in all stroboscopic reconstructions, it is necessary
to assume that the system decays to the same “ground state” after each pulse. However, in
this case, that state means random α(t), so it is not a stringent assumption. Although τd is
unknown, pulse repetition rate Rp can be lowered until some effect is perceived.

An observation suggests that τd might actually be quite short: a performed pulsed
version of the Figure 1 setup (see details in Section 4) shows that if the time coincidence
window defining coincidences is increased beyond the pulse duration, the measured total
SCHSH parameter decays following the curve calculated assuming that detections outside
the pulse are fully uncorrelated [21]. Assuming non-correlation implies the curve, but, of
course, observing the curve does not necessarily imply actual non-correlation. Nevertheless,
if the last implication is accepted valid, then τd would be shorter than the time resolution
of that experiment, i.e., τd < 12.5 ns, and hence, values of Rp as high as 80 MHz would be
acceptable. This figure is far higher than estimated necessary to perform the experiment
(see next Section).

3.2. Description of the Proposed Setup

We detail the proposed experiment:

(i) The source of pairs: a set of nonlinear crystals is pumped with square-shaped laser
pulses of rise time and fall time τrf and full duration τpulse, equally separated by
a time Rp

−1. All these parameters, and also the pump intensity, are adjustable. A
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laser diode at 405 nm pumping a pair of two crossed type-I phase-matched nonlinear
crystals [22] seems to be the simplest choice.

(ii) The stations A and B are provided with devices to record the time of detection of
each photon (time stamping), and also the time of emission of each pump pulse (to
determine the starting time of the stroboscopic reconstruction) with resolution τres.
Samples of the pump are sent to each station to synchronize the starting time of each
pulse. In some experiments devoted to test QM vs. LR, the analyzers’ settings {a,b} are
varied randomly in a time shorter than τ to enforce the lack of correlation between the
hidden variables and the settings. The assumed decay of α(t) and β(t) to a random
state implies that the lack of correlation occurs spontaneously. This not only means
an important experimental simplification, but it also solves the problem of ensuring
settings’ randomness, which is a sort of infinite regress [23–25]. Measurement runs
are repeated with different values of L to scan the time scale.

(iii) Time hierarchy: the following relationships should hold: τres � τ, to resolve details of
η(t). τrf � τ, to allow pump pulse to be square shaped. τ� τpulse, to give enough
time to the evolution of α(t). τpulse � Rp

−1, to allow pulses to be well separated. τd

� Rp
−1, to allow α(t) to decay to the regime of random emission.

This time hierarchy is summarized in Table 1.

Table 1. Summary of the time parameters involved in the proposed experiment. All are adjustable by
the observer, except τd, whose value is unknown. Typical or estimated values are indicated between
parentheses (see text).

Time Parameter (Name) Description

τ (20–200 ns) Time between stations, L/c

τres (2 ns) Resolution of time stamping

τpulse (200 ns–2 µs) Pulse duration

τrf (�τpulse) Pulse rise and fall time

τd (<12.5 ns?) Decay time to initial state

Rp
−1 (>τd) Separation between pulses

The first critical time in this hierarchy is τres. Jitter in avalanche photodiodes (the
usual devices for single photon detection) limits τres to ≈2 ns. Standard laser diodes and
driving devices also reach τrf ≈ 2 ns. These numbers imply values for τ in the 20–200 ns
range (meaning L from 6 to 60 m), and hence, τpulse from 0.2 to 2 µs, and Rp from 500 to
50 KHz. All these figures are easily attainable.

Pump intensity must be kept low, so that probability of detection of one photon per
pulse remains small. This is to limit the number of spurious coincidences, which is an
issue in the pulsed regime [26]. As a consequence, a single-photon detection rate would be
expected in the 5–50 KHz range.

3.3. Predicted Observations

Numerical simulations of AB are run assuming that Γ is turned on at t = 0 and
remains constant thereafter. The sharp “slit” assumed in Equation (7) is simple but rather
unphysical; in these simulations, the following smooth condition is used instead:

p(α = a) = exp -[α(t)−a]2/∆2 (12)

(and the same for β, b). From Equation (6), the efficiency at station A is now:

ηA(t) = {exp − (α − a)2/∆2 + exp − (β − b)2/∆2}/{1 + exp − (α − a)2/∆2} (13)
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(and a symmetrical expression for ηB), where α and β are functions of time ruled by
Equation (11).

The program is iterated many times and results for each time value are summed up,
imitating the stroboscopic reconstruction. A numerical iteration of the program corresponds
here to a pulse in the actual experiment. Each iteration starts from a different set of random
initial conditions for α(t) and β(t), hence, there is no memory from one iteration to the next
(what corresponds to pulse separation longer than τd). After many iterations, a curve of
η(t) averaged over a large number of different sets of initial conditions, <η>(t), is obtained.
The right number of iterations is found by increasing it until the curve of <η>(t) stabilizes.
In all tested cases, 103 iterations suffice.

Some results are shown in Figure 4. In spite of the explicit functional dependence in
Equation (13), numerically obtained values of <η>(t = τ) are independent of {a,b}. This is a
consequence of the random and symmetrical distribution of α(t) and β(t) for t < τ (which is
also the cause of the spontaneous synchronization effect mentioned before). For ∆ fixed,
the curves start with the same value of <η>(τ) regardless of the value of Γ. This is because
the reaction, no matter how weak or strong, has had no time to propagate from the stations
to the source. Naturally, <η>(τ) is smaller for smaller ∆ (which means a narrower “slit”).
As in Figure 2, curves remain near <η>(τ) for a time τ (i.e., until the earliest reaction arrives
to the source). Then, α(t) and β(t) start to evolve towards their target values a and b. The
curves differ depending on the value of Γ. The evolution is faster, and the saturation value
(=1 in these ideal conditions) is reached sooner, for higher Γ.

Figure 4. Observable <η>(t) averaged over 103 iterations with different random initial conditions
and values of Γ (scaled with τ), ∆2 = 0.1 (left), ∆2 = 0.01 (right), time scale: τ = 500.

If the value of Γ is such as to produce oscillations of the hidden variables, a peak
of efficiency is reached each time α(t) and β(t) are close to a,b. These peaks are clearly
visible in Figure 4 in spite of the different initial conditions and target values, thanks to
the spontaneous synchronization effect. For small Γ, instead, a nearly linear increase in
<η>(t) is visible. If ∆ is relatively large, the efficiency saturates sooner and the concavity of
the curve is downwards. If ∆ is small, it is upwards instead. For large Γ, oscillations are
sharper and show higher contrast as ∆ decreases, but the period remains the same. This
period is proportional to L.

The curves in Figure 4 assume the source is equidistant from each station. Dr. Siddarth
Joshi put forward the interesting question of what is observed if the stations are placed
at different distances. Now, two time scales are relevant: τA = LA/c and τB = LB/c, where
LA (LB) is the distance from S to the A (B) station. There are also two possible interaction
strengths: ΓA and ΓB. In the symmetrical case, Γ is scaled with τ, and hence there is a
single-parameter set of solutions (leaving aside ∆). In the non-symmetrical case instead,
the other interaction strength and time delay have independent values, and hence there is
a three-parameter set of solutions. An exhaustive exploration of this 3-D parameter space is
beyond the scope of this paper. A couple of relevant cases are discussed in the Appendix A.

If the transient deviation hypothesis is correct, the following phenomena should be
then observed:
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(I) At fixed L: <η>(t) increases with time until it saturates. Time needed to reach the satu-
ration value decreases if source intensity is increased. At high intensity, oscillations
may appear. If Rp is increased above a certain threshold (the unknown value τd

−1),
<η>(t = 0) would also start to increase, for α(t) and β(t) would have had no time to
decay between pulses. In the limit case of a continuous source, <η> = 1.

(II) At variable L: the time <η>(t) takes to reach saturation, and also the period of the
oscillations (if they exist), increase with L.

These features warrant a test of QM vs. LR different from all the ones attempted until
now. It is independent of the violation of a statistical correlation limit. It is also more robust,
for a definite result is obtained even if the experimental setup is far from ideal regarding
efficiency of optics, detectors, and alignment. The key is the scaling of the evolution of
<η>(t) with L.

4. Results Obtained in Incomplete Experiments

In the year 2012, our group tested and closed the time coincidence loophole [21,27]. That
experiment can also be regarded as an incomplete version of the one proposed in Section 3.
It involved a pulsed source of entangled photons and time-stamped record of both photon
detection and pulse emission events, as required, but it did not fit the time hierarchy
described in (iii). In particular, τres � τ, and pump pulses were not square shaped. Most
importantly, the values of pump intensity, τpulse, L, and Rp were not varied.

In Figure 5, stroboscopically measured <η>(t) and SCHSH(t) are shown. Entanglement
is constant during the whole pulse duration, in agreement with predictions of both QM and
AB. Efficiency, instead, increases almost linearly, starting with ≈3% and reaching ≈16%
some 100 ns (or ≈400 τ) later. This variation is not predicted by the usual description
and is therefore caused by some experimental artifact or by an effect of the kind expected
according to the transient deviation hypothesis.

Figure 5. Observed <η>(t) (in %) and SCHSH(t) (×4, for clarity of figure) in the 2012 experiment [21],
τres = 12.5 ns, τ = 0.27 ns, Rp = 60 KHz, station B. Single counts are also plotted (in arbitrary units), to
indicate pulse duration (35 ns FWHM), shape, and position. The best fit to the (assumed linear) slope
of <η>(t) is 1.2 × 10−3 ns−1, average SCHSH = 2.635.

The curve of <η>(t) in Figure 5 sums up coincidences recorded for all {a,b} settings in
order to improve the statistics. The same variation (i.e., nearly linear, and with the same
slope) is observed in each subset of data corresponding to each setting {a,b}. The values in
Figure 5 are consistent with ∆ < 0.33 (from Equation (9)) and Γ > 1.38 × 10−3 ns−1. The
experiment was repeated in 2018 using the same setup and the nearly linear variation of
<η>(t) was observed again, although with a slightly different slope.

In 2019, the experiment was repeated with an improved setup [28]. Distance between
stations was still short (τ = 0.5 ns), but time resolution (τres = 2 ns), pulse duration (τpulse = 500 ns),
and shape (square, τrf ≈ 2 ns) were closer to the proposal. Single photons were detected at
a rate ≈ 60% higher than in 2012, and their wavelength was 810 nm instead of 710 nm.
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Now, <η>(t) is observed as constant during the whole pulse duration (also entan-
glement, SCHSH ≈ 2.67) (see Figure 6). We believe the linear variation in Figure 5 to be a
numerical effect (a sort of aliasing) caused by the marginal value of the time resolution
compared with pulse duration and the typical time of pulse variation.

Figure 6. Measured <η>(t) (a) and SCHSH(t) (b) in the 2019 experiment [28], τres = 2 ns, τpulse = 500 ns,
τ = 0.5 ns, Rp = 50 KHz, station A. Horizontal dotted line indicates the limit given by CHSH inequality.

Nevertheless, the new observations do not rule out the transient deviation hypothesis
completely, for τ is still too short. They are consistent with the AB model with ∆ < 0.29 and
Γ > 0.08 ns−1 (from d<η>/dt > 0.062 ns−1 estimated from Figure 6, left).

In all these experiments, τres > τ. Oscillations, if they existed, would have not been
observed. This limitation leaves space for additional sets of values {∆,Γ} to be consistent
with the observations (yet, these additional values can be found only through numerical
trial and error). An experiment where τres � τ is absolutely needed to test the transient
deviation hypothesis.

5. Conclusions

The AB model is the simplest realization we found of the general hypothesis of the
existence of transient deviations from QM predictions. It is a classical model based on the
assumed existence of a reaction on the hidden variable α(t) each time a photon is absorbed.
That reaction propagates back to the source in normal time (as opposed to the Wheeler–
Feynman theory, where the reaction propagates backwards in time) and influences the
future values taken by α(t) in such a way that α(t) converges to the value a set for the
polarization analyzer. The model is able to reproduce all QM predictions after a time much
longer than L/c has elapsed since the moment the source of entangled states is turned on.
The transient deviation hypothesis has not been reliably refuted by experiments performed
until now, but it can be clearly tested in a relatively simple setup. The magnitude to
measure is stroboscopic time variation of efficiency, and how this variation scales with the
distance between stations. Data recorded in similar but incomplete experiments performed
in 2012, repeated in 2018, and improved in 2019 are consistent with the transient deviation
hypothesis, but they are insufficient to validate or refute it.

The observations described in (I) and (II) in Section 3 define a test of QM vs. LR of a
new type, independent of the violation of an average correlation limit. In the usual tests
(i.e., the violation of a Bell’s inequality), threshold values of detectors’ efficiencies, angle
settings’ unpredictability, and event-ready signals must be ensured to close all the known
loopholes. In the test proposed here, instead, a definite answer is obtained even if those
difficult technical requisites are not fulfilled. In the usual tests, a low correlation, e.g.,
SCHSH < 2, cannot be interpreted as a refutation of QM, for it may be the consequence of a
poor realization. In the test proposed here, instead, the observation of (I) and (II) would
provide support to the transient deviation hypothesis even in an imperfect setup. The
usual tests of QM vs. LR face the problem of the never-ending proliferation of loopholes
(and hence, technical conditions are increasingly difficult to achieve), never reaching fully
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conclusive results. The experiment proposed here provides a definite answer from both
possible outcomes: if L-dependent <η>(t) dynamics are observed, QM (as we know it, at
least) will be demonstrated as incomplete. The door will be open to potentially fruitful
nonlinear extensions of QM. If such L-dependent dynamics are not observed instead, the
transient deviation hypothesis will be refuted.

Finally, the proposed experiment is technically simple: the analyzers can be kept fixed,
and efficiency and correlation are not needed to reach a high threshold. We believe it
difficult to find an experiment at hand with more important potential consequences.
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Appendix A. The Asymmetrical Setup

Appendix A.1. LA, LB Are Slightly Different

In Figure A1, the time evolution of coincidences and observable efficiencies at stations
A and B are displayed for the case LA/LB = 5/6, Γ = 1.25 for both arms (be aware of the
resulting different scaling of Γ for each branch), a = 0, b = π/8, ∆2 = 0.1.

Figure A1. LA/LB = 5/6. Left: observable <ηA>(t) and <ηB>(t) averaged over 1000 iterations with
different initial conditions, a = 0, b = π/8, ∆2 = 0.1. Right: evolution of the number of coincidences.

Note the deformation of the efficiencies’ oscillations in the early periods. The efficiency
of the station farther from the source reaches the maximum value (=1) first, and ηA(t)
oscillates with the period that corresponds to the B arm (and vice versa). In this case,
the spontaneous synchronization effect still holds; note that both curves start at the same
efficiency value. The evolution of the number of coincidences shows a beating behavior,
which is to be expected.

Appendix A.2. LA, LB Are Very Different

Figure A2 corresponds to a strongly asymmetrical case, LA/LB = 2/15. All the other
parameters are the same as in the previous section. Efficiency in the station nearest to the
source (A) follows a fast oscillation (i.e., with time scale τA) and then slower oscillations
(i.e., with time scale τB). The efficiency in the farthest station (B), instead, rapidly converges
to the maximum value. Note that in this case, the curves start at different values. This
means that the spontaneous synchronization effect no longer holds. On the other hand,
initial efficiencies can be functions of the angle settings, which should be easy to check
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experimentally. Finally, the time evolution of the number of coincidences shows the same
“fast” and “slow” time scales, and is almost identical to ηA(t).

Figure A2. LA/LB = 1/7.5. Left: observable <ηA>(t) and <ηB>(t) averaged over 1000 iterations
with different initial conditions, values {a,b,∆} as in Figure A1. Right: evolution of the number
of coincidences.

In summary, <η>(t) in one station evolves following the time scale corresponding to
the other. If the setup is only slightly asymmetric, spontaneous synchronization holds. If
it is strongly asymmetric instead, the system relaxes first with the “fast” time scale, and
then evolves according to the “slow” one. Spontaneous synchronization no longer holds,
and dynamics become far more complex than in the symmetrical or quasi-symmetrical
cases. Possibilities of new types of observable predictions are vast, and remain to be
fully explored.
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