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The placenta, the first and largest organ to develop after conception, not only nurtures

and promotes the development of the conceptus, but, it also functions as a barrier

against invading pathogens. Early phases of pregnancy are associated with expansion

of specific subsets of Natural Killer cells (dNK) and macrophages (dMϕ) at the maternal

uterine mucosa, the basal decidua. In concert with cells of fetal origin, dNK cells, and

dMϕ orchestrate all steps of placenta and fetus development, and provide the first

line of defense to limit vertical transmission. However, some pathogens that infect the

mother can overcome this protective barrier and jeopardize the fetus health. In this

review, we will discuss how members of the classical TORCH family (Toxoplasma,

Other, Rubella, Cytomegalovirus, and Herpes simplex virus) and some emerging viruses

(Hepatitis E virus, Zika virus, and SARS-CoV2) can afford access to the placental fortress.

We will also discuss how changes in the intrauterine environment as a consequence

of maternal immune cell activation contribute to placental diseases and devastating

pregnancy outcomes.

Keywords: pregnancy, viral infection, maternal-fetal transmission, innate immunity, Natural Killer cells,

macrophages, cytokine environment

INTRODUCTION

Human pregnancy is associated with tremendous changes of the maternal uterine mucosa
(endometrium), called decidua, to promote the implantation, and the development of the
blastocyst. The interstitial implantation, in humans and non-human primates, is characterized
by complete enclosure of the blastocyst by the decidua (1). A privileged crosstalk between the
endometrium and a competent 256-cell blastocyst must be completed in a limited time called the
implantation window. The outer surface of the blastocyst also is composed of cytotrophoblasts
(CTBs), a unique cell type of the placenta, which will follow two differentiation programs
(2). In the first program CTBs fuse to form the multinucleated syncytiotrophoblast (STB)
outermost layer surrounding the inner core of the placental villi. The villous core containing
mesenchymal/fibroblastic stroma stem cells, immature fetal capillaries and a population of yolk
sac-derived macrophages termed Hofbauer cells (HBCs), is surrounded by a bilayer of CTBs.
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In the second program, CTBs of the cell column differentiate
into interstitial and endovascular invasive cytotrophoblast cells
(iCTBs). Subsequently, iCTBs invade the decidua and remodel
thematernal spiral arteries through active replacement of smooth
muscle and vascular endothelial cells. Completion of vascular
remodeling by trophoblast cells which happens by the end of first
trimester of pregnancy (10–12 weeks), promotes the switch from
high-resistance to low-resistance vessels with enlarged lumen to
ensure routing of high blood flow into the intervillous space (3).
As the development advances, the highly branched villous trees of
the placenta are bathed with maternal blood till parturition. The
invasion fetal trophoblast cells and tissue remodeling are under
strict control by maternal immune cells to ensure confinement
of the placenta to the allocated space within time constraints of
pregnancy. Flaws in these developmental steps have been clearly
incriminated in many great obstetrical syndromes including pre-
eclampsia and fetal growth restriction (FGR), both associated
with faulty placental development (3).

Unlike the fetus, the placenta is in direct contact withmaternal
cells. Intermingling between fetal and maternal cells, which is
mandatory for placenta and fetal development, happens within
privileged sites (maternal-fetal interface, composed of the basal
decidua, and the intervillous space). Hormones are able to prime
the decidua-associated remodeling (2), complete “physiological
change” requires the presence of trophoblast cells. The extent of
trophoblast cell invasion and tissue remodeling, both necessary
for efficient and healthy placenta in late pregnancy, are dictated
by a finely tuned crosstalk between fetal cells and maternal tissue
resident immune cells. Leukocytes represent more than 40%
of total cells in the basal decidua (4). While a large fraction
of immune cells are tissue resident leukocytes, many factors
produced by decidual stromal cells and trophoblast cells could
contribute to the recruitment of additional leukocytes from the
periphery (5, 6). A high percentage of decidual immune cells are
non-cytotoxic CD56 super bright Natural Killer (dNK) cells that
lack the expression of the Fc gamma receptor IIIA, CD16, and
are endowed with angiogenic and regulatory activities. In the first
trimester of pregnancy, dNK cell population represents 70% of
leukocytes (7–9). Their rate remains relatively high in the second
trimester but declines in the third trimester to reach normal
uterine level at parturition (10). Other immune cell populations
are also present in first trimester basal decidua, although, at lower
levels. Decidual macrophages (dMϕ) represent 20–25% of total
leukocytes, while dendritic cells and mast cells only represent
1–2% (11). The decidua contains only 5–10% T lymphocytes,
including CD8, CD4, and γδT cells, but B cells are barely
present. The low level of B cells suggests that it is very unlikely
that any eventual antibody response would harm invading
trophoblast cells (12). Minor immune cell subsets include innate
lymphoid cells (ILCs) (13) and mucosal-associated invariant T
cells (MAIT) (14). The interaction of these immune cells with
decidual stroma and invading fetal trophoblast cells is crucial for
the establishment of an environment rich in soluble mediators
including hormones, growth factors cytokines, chemokines and
lipids, which are necessary for the development of the placenta
and of the fetus. Given their dominance and active contribution
to protection against pathogens, this review will mainly discuss

the key features of dNK cells and dMϕ during healthy pregnancy
as well as their functional adaptations during viral invasion, and
how viral infections disrupt thematernal-fetal barrier resulting in
congenital infections.

DECIDUAL NK CELLS

Natural killer (NK) cells are innate lymphoid cells with
documented anti-viral and anti-tumor functions. They are found
in the bloodstream (pNK), where they represent up to 15%
of circulating lymphocytes, but also in various tissues such as
lymphoid organs, liver and uterus. NK cells are classified in
two major populations according to the cell surface expression
of CD56 (NCAM) and CD16. The majority of pNK cells
(∼95%) are CD56dimCD16pos and characterized by a highly
cytotoxic capacity, the remaining 5% are CD56brightCD16neg

(8, 15). At the implantation bed, the majority of dNK cells
are CD56 super bright (dNKbright) that share some phenotypic
similarities with the minor population of pNK and only a small
fraction CD56dim (dNKdim) (8, 15, 16). dNK cells express most
of the activating and inhibitory NK cell receptors including
the NKp30, NKp46, NKG2C, NKG2E, NKG2D, NKG2A, 2B4,
CD85/LILRB1/ILT2 (LILRB1), and Killer-cell immunoglobulin-
like family of receptors (KIR) such as KIR2DL1, KIR2DL2/3,
KIR2DL4, KIR3DL2 (10, 16–18). However, the function of
several NKR is different as compared with pNK cells (15, 19). For
example, the inhibitory LILRB1 in the periphery is an activating
receptor in the decidua, whist the co-activating 2B4 receptor
functions as inhibitory receptors in dNK cells. dNK cells also
express many other receptors that are not expressed on resting
pNK cells. dNK cells have a constitutive expression of CD69
and CD25, and display differential expression of NKp44/NCR2
and NKp30/NCR3 splice variants implying the involvement of
the decidual environment in shaping their cell fate (20). dNK
cells also express high levels of integrins (αD, αX, β1, and β5)
and other receptors such as CD53, CD63, and CD151 (8) as
well as tissue residency markers (CD49a, CD9, and CD103). In
addition, several chemokine receptors (CXCR3, CXCR4, CCR1,
and CCR9) endow them with high mobility to warrant a fine-
tuned dialogue with other cells (21).

dNK cells can be classified under three major subsets dNK1,
dNK2, and dNK3. dNK1 is the most abundant subset (>30%),
followed by dNK2 and dNK3 (22, 23). While all three subsets
express of NKG2A, LILRB1 expression is a major hallmark
of dNK1 cells. dNK1 cells also express the regulatory CD39
ATPase, involved in the shift between pro-inflammatory and
immunosuppressive environment, large amounts of cytotoxic
granules enriched in perforin and granzymes (8), and a
combination of KIRs expression that further discriminates four
dNK1 subgroups. Similar to dNK1, dNK2 cells express the
NKG2C and NKG2E activating receptors as well as the NKG2A
inhibitory receptor counterpart that recognize HLA molecules
on fetal trophoblast cells. In addition, dNK2 cells express the
ANXA1 and ITGB2 receptors. Finally, the third subset expresses
CD160, CD161, TIGIT, KLRB1, ITGB2, and CD103 (22, 24).
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FIGURE 1 | Decidual Natural Killer cells. dNK cells, the main innate immune

cell population at the maternal-fetal interface. Inhibitory and activating

receptors are presented. Transcription factors (Eomes and Tbet) and cell

surface markers (LILRB1, ITGB2, CD160, CD161) defined by single cell RNA

sequencing and large scale phenotyping allow the distinction of three dNK cell

subsets (dNK1, dNK2, and dNK3).

The differential levels of NKp44 and NKG2A receptors suggest
the presence of at least two subgroups of dNK3 cells.

In contrast to other tissues, all three CD49apos dNK cell
subsets express the Eomes and Tbet transcription factors
although, at variable levels. Compared to EomeshighTbetlow

dNK1 cells, dNK3 cells are EomeslowTbethigh whilst dNK2
cell express intermediate levels of both transcription factors
(Figure 1).

How these three subsets interact with each other’s, with fetal
trophoblast cells and decidual stromal cells (DSC), and whether
they are all needed to direct the invasion of trophoblast cells,
remodeling of the maternal-fetal interface and the development
of the placenta are still in debate. Nonetheless, a finely tuned
dialogue between different subsets of dNK cells, decidual cells,
and invading trophoblast cells seems necessary to promote the
complete establishment of the maternal-fetal interface but also
the development of the fetus and the placenta (25).

Indeed, through direct interaction with iCTBs and production
of a highly diverse secretome rich in cytokines, chemokines
metalloproteinases, and growth promoting factors such as VEGF,
IGF2, pleiotrophin, osteoglycin, and osteopontin), dNK cells
direct the extent of trophoblast invasion, tissue remodeling as
well as placental and fetal growth (26, 27). Some of these soluble
factors are also important for the establishment of a local pro-
and anti-inflammatory cytokine balance that is necessary for
fetal tolerance as well as protection against mother-to-child
transmission of pathogens.

By contrast to pNK, dNK cells are devoid of cytotoxicity
during healthy pregnancies preventing harmful reaction
against the semi-allogeneic trophoblast cells (15, 28). Several
mechanisms have been suggested for their involvement in

restricting dNK cell lytic machinery. These include (i) a defective
polarization of the microtubule organizing center (MTOC),
resulting in the formation of an immature immunologic synapse
with target cells (29); (ii) the lack of SAP adapter molecule
expression preventing activating signal from 2B4 (CD244) (19);
(iii) the engagement of the NKG2A inhibitory receptor by its
natural ligand HLA-E on trophoblast cells (30); and (iv) the
expression of inhibitory isoforms of the Natural Cytotoxicity
Receptors, NKp44 and NKp30 (16, 17, 20). Finally, the pressure
of the local environment maintains cell cytotoxicity under a tight
control (24).

Despite these regulatory mechanisms, dNK cell cytotoxic
machinery can be unleashed resulting in failure in the
harmonious mother-fetus dialogue and adverse pregnancy
outcomes. For instance, patients with recurrent spontaneous
abortion exhibit a change in the distribution of dNK cell subsets
was associated with enhanced production of inflammatory
cytokines and lytic granules, but impaired ability to produce
growth promoting factors (27, 31). Thus, changes in dNK
cell functions and the finely-tuned dialogue at the maternal-
fetal interface is probably responsible for fetal trophoblast cells
apoptosis and the resulting miscarriage. In addition, genetic
studies demonstrated that particular combinations of HLA-C
haplotypes andmaternal inhibitory KIRs can be linked to defaults
in trophoblast invasion and pregnancy disorders including pre-
eclampsia pathologies (32, 33).

DECIDUAL MACROPHAGES

Decidual macrophages (dMϕ) represent the second largest
population of leukocytes. The local environment at the maternal-
fetal interface orchestrates dMϕ differentiation and functions.
In early stages of pregnancy, dMϕ have an M1 phenotype,
then they switch to a mixed M1/M2 profile during trophoblast
cell invasion. Once the placenta is fully developed, they
switch toward an M2 phenotype to prevent fetal rejection
(34). Consequently, dMϕ share features of pro-inflammatory
and tolerogenic macrophages, simultaneously expressing M1
(CD64, CD80, CD86) and M2 markers (CD163, CD206,
DC-SIGN) (35–39).

Similar to dNK cells, dMϕ secrete a large panel of pro-
angiogenic factors and pro- and anti-inflammatory cytokines
(40, 41). Their localization in the vicinity of spiral arteries
and secretion of metalloproteinases allude to their active
involvement in vascular remodeling (42). In concert with dNK
cells, dMϕ promote trophoblast cell invasion and placental
development (43, 44) while contributing to defense against
threatening pathogens.

VIRAL INFECTIONS DURING PREGNANCY

The maternal-fetal interface constitutes a physical and immune
barrier shielding the fetus from pathogens in the maternal
circulation. However, some pathogens especially viruses can
reach the fetal compartment either through hematogeneous or
decidual spread, resulting in congenital syndrome and high
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case-fatality (Figure 2). Even in the absence of maternal-to-fetal
transmission, previous epidemics of many emerging viral threats
have resulted in poor pregnancy outcomes including maternal
and fetal morbidity andmortality and peripartum infections with
severe sequelae.

Threatening TORCH Pathogens During
Human Pregnancy
The TORCH family [Toxoplasma, Other (syphilis, varicella-
zoster, parvovirus B19), Rubella, Cytomegalovirus and Herpes
simplex viruses 1 and 2] are well-recognized as pregnancy
threating pathogens for human pregnancy.

The Human cytomegalovirus (HCMV), a large DNA virus
that belongs to the herpesviridae family, is the most common
cause of maternal and fetal morbidity and mortality. Primary
maternal infection carries a 30–40% risk of vertical transmission.
Congenital infection during the first trimester of pregnancy
can result in severe congenital syndrome characterized by
irreversible damage including deafness, psychomotor delays,
myopathies, chorioretinitis, and devastating microcephaly
(45). Even asymptomatic newborns can develop late neuro-
developmental damage within the first 3 years of life (46).
These congenital disorders could be partially attributed to
severe placenta disruption with increased edema, massive
inflammation, and avascular villi. HCMV infected placenta are
characterized by massive viral-induced cytopathic effects in the
villous capillaries and stromal cells and chronic villitis due to
maternal inflammatory response.

The highly pathogenic Human immunodeficiency virus
1 (HIV-1) is an RNA virus from the retroviridae family.
Histological analyses of first trimester placenta from untreated
HIV-infected women revealed the presence of decidual necrosis
and chorioamnionitis associated with the presence of HIV-1
in fetal tissues. Syncytin, the envelope glycoprotein of human
endogenous retrovirus highly expressed by fetal trophoblast,
mediates HIV entry through cell-to-cell fusion contributing to
viral dissemination, and establishment of viral reservoir in deep
tissues (47). Despite the high permissivity of trophoblast cells
and dMϕ, intrauterine transmission of HIV-1 is very rare during
the first trimester of pregnancy (48) but occurs more frequently
during labor and delivery. Although, ART can lower considerably
the transmission rate, cesarean delivery is recommended for
HIV-infected women with high viral loads.

Emerging Viruses
Lessons from recent outbreaks and the current pandemic crisis,
designated genotype 1 of Hepatitis E virus (HEV-1), Zika virus
(ZIKV), and SARS-CoV2 as emerging viruses that can threaten
human pregnancy.

Hepatitis E virus (HEV), a water-borne pathogen transmitted
by the fecal-oral route, belongs to the Hepeviridae family. Strains
that infect humans are classified in two species,Orthohepevirus A
(eight genotypes) and Orthohepevirus C (49). HEV-1, prevalent
in developing countries, is highly pathogenic during pregnancy
with high maternal and fetal mortality rate (20%) due to
fulminant hepatitis, hemorrhage, preeclampsia like syndrome,

and severe placental diseases (50). The transmission rate of HEV-
1 ranges from 50 to 100% (51). Trans-placental transmission
has been documented by the presence of progeny virions
in the fetal placenta and umbilical cord (52). Significant
effort has been recently made by our team to understand
mechanisms underlying HEV-1-related placental disorders (53).
We demonstrate that pathogenic HEV-1 replicates efficiently
both in maternal and fetal tissues, produces infectious progeny
virions, and induces alteration of the local secretome leading to
severe tissue damage.

ZIKV, a mosquito-borne Flavivirus, is able to surmount the
physical and immunological barrier of the placenta to reach
the developing conceptus in ∼1 out of 10 infected pregnancies.
In the 2015 outbreak in the western hemisphere, ZIKV was
declared a serious public health concern, in particular for
pregnant women due to surge of devastating microcephaly
in newborns and increased frequency of placental pathology
including preeclampsia, miscarriage and still birth (54, 55).
Histological analysis of term placenta from congenital infected
neonates, revealed the presence of immature villi with a large
increase in the number of proliferating HBCs. Our group, among
others, provided the proof that ZIKV targets a wide range of
maternal and fetal cells including dMϕ and HBCs, triggers
massive inflammation and tissue damage, which may lead to
placental insufficiency (56, 57). More recently, we described
potential mechanisms for ZIKV-induced pathogenesis during
early pregnancy (58). We showed that the virus usurps the
placenta lipidome and the mitochondrial network to build
replication factories necessary for the production of infectious
progeny virions, and to overcome the placental intrinsic defense
mechanisms through impairment of the homeostatic equilibrium
of pro-/anti-inflammatory environment.

Pregnancy increases the risk of adverse maternal and offspring
outcomes from many respiratory viral infections including
Influenza virus. In December 2019, Wuhan, China, was faced
with the outbreak of the deadliest acute respiratory distress
syndrome, COVID-19 disease. On March 11, 2020 COVID-19
was declared a pandemic by theWorld Health Organization. The
etiological agent of COVID-19, SARS-CoV2, is a newly identified
member of a zoonotic family of coronaviruses responsible
for severe acute respiratory syndrome (SARS). The former
two family members SARS-CoV and Middle East respiratory
syndrome (MERS)-CoV are the respective etiological agents
responsible for the 2002 and 2012 outbreaks (59, 60).

Although, the COVID-19 pandemic has now infected large
numbers of pregnant women, the risks and specific effects
of SARS–CoV-2 are still largely unknown. Early reports of
Chinese pregnancy cohorts did not provide evidence for
maternal-fetal transmission in late gestation, but infection
was clearly associated with increased risk of admission to
intensive care, miscarriage, pre-eclampsia, premature membrane
rupture, preterm labor and preterm birth (61–63). Neonates
born to infected mothers presented fetal distress with abnormal
respiratory gastrointestinal symptoms and refractory shock with
multiple organ failure was reported (64). Furthermore, the
presence of SARS-CoV-2 was detected either in amniotic fluid,
umbilical cord blood or placental sections (65, 66). Vertical
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FIGURE 2 | Schematic representation of the human maternal-fetal interface and fetus, and transmission of pathogens. Basal decidua containing decidual Natural

Killer cells (dNK), maternal macrophages (dMϕ), and stroma cells [mesenchymal (Ms) and fibroblasts (Fb)]. Maternal gland (MG). Extravillous invasive cytotrophoblast

cells (iCTBs) invade the maternal decidua. Trophoblast Villous core contains trophoblast cells, mesynchymal cells, Hoffbauer cells (HBC), and fetal capillaries protected

with an outermost layer of multinucleacted syncytiotrophoblast cells (STBs). Placental chorionic villi floating bathed by maternal blood within the intervillous space.

Viruses can reach the fetus through hematogenous spread or through the basal decidua. Illustration of Zika virus (ZIKV), as model. ZIKV can replicate in the decidua

and placental cells before dissemination to the fetus.

transmission of SARS-CoV2 has been suspected in several
cases but the mechanisms that allow the virus to breach the
placental fortress and reach developing fetus are still lacking.
Recent analyses of infected case reports and small cohorts from
infected mothers and newborn dyad, revealed the presence of
SAR-CoV2 antigens or viral RNA in fetal trophoblast cells
and stromal cells (65, 66). The observation of SARS-CoV-2
spike protein in both maternal and fetal side is associated with
tissue necrosis and massive recruitment of inflammatory cells to
the intervillous space, termed chronic histiocytic intervillositis
(67). Thus, placenta from COVID-19 pregnancies are highly
likely to develop tissue inflammation and abnormal or injured
maternal vessels.

As a cardinal unit for growth and regeneration, fetal
trophoblast cells are central for the maintenance and
development of the placenta and fetus, and defense against
invading pathogens. The trophoblast rich in stem cells is
endowed with intrinsic defense mechanisms, which include
the production of type III interferons and a set of interferon
stimulated genes (ISGs). In addition, a variety of receptors
known as pattern recognition receptors (PRRs) including the
Toll like receptors (TLRs) are widely expressed in the fetal
placenta, but, very little is known about the expression of
TLRs at the maternal decidua (68). Both innate immune cells
and non-immune cells of the maternal-fetal unit including

decidual cells, mesenchymal and trophoblast stem cells, and
the amniotic epithelium express TLRs 3, 7, 8, and 9 that
can sense viral infection (69). In addition to the intrinsic
defense mechanisms and inducible antiviral defenses could
lead to beneficial effects by restricting viral replication and
dissemination. However, the downstream signaling pathways
and induced differential response may determine the final
outcome. Our group and others demonstrate the placenta
increases the production of a large number of ISGs including
IFITM family members, IFI6 and ISG20, and type III IFNs to
preempt ZIKV infection (58, 70, 71). Similarly, we reported
the involvement of many factors in limiting HEV-1 infection
(53). However, trophoblasts function as an active barrier
preventing the transmission of certain viral infections to the
fetus and sustained inflammatory response may result in
disruption of the fine-tuned microenvironment leading to
viral dissemination and major pregnancy disorders such as
preeclampsia, or UGR.

Immunity to Viral Infection
The “immune privilege” status of the maternal-fetal interface
prevents harmful immune response to semi allogeneic embryonic
cells. Nevertheless, there is an accumulating body of evidence
supporting the active role of decidual immune cells in particular
dNK cells and dMϕ in controlling infections (72–74).
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Our previous studies demonstrated that dNK cells can
infiltrate HCMV-infected maternal-fetal tissues and colocalize
with infected cells. dNK cells are then able to specifically
detect and kill infected cells via the activating NKG2C/E
and NKG2D receptors. They are also able to acquire specific
cytotoxic functions directed against infected decidual fibroblasts
(73). Interestingly, HCMV infection is also linked to a change
in the secretome of dNK cells. Overall, by modulating the
secretory profile of dNK cells toward increased production
of cytotoxic factors, HCMV-infection likely constitutes virus-
specific immune response (73).

Likewise, the secretion of IFN-γ by dNK cells during HIV-1
infection shapes the polarization of dMϕ endowing them with
natural resistance to infection (72, 74). This resistance is lost
when the dNK cells are no longer in contact with dMϕ or
when the IFN-γ is neutralized by blocking antibodies, further
confirming the role of the local environment in the control of
the infection (72). In addition to their role during viral infection,
dNK cells are able to balance the contradictory demands of fetal
tolerance and protection against bacterial infection. Recent work
by the group of Lieberman demonstrated that dNK cells are able
to kill intracellular Listeria monocytogenes in trophoblasts and
dMϕ, through the transfer of granulysin cytotoxic molecules via
tunneling nanotube (75).

The role of dMϕ in the protection against pathogens did
not receive much attention. However, dMϕ express high levels
of Toll-like receptors (TLRs 1–9) and engagement of these
receptors in vitro enhances the secretion of pro- and anti-
inflammatory cytokines that are compatible with maintenance
of the fetotolerant immune environment during initiation of
immune responses to pathogens (76). Likewise, dMϕ antiviral
innate immune response to HIV-1 is initiated by activation of
TLRs 7 and 8 which in turn would restrict genome replication
(74). Activation of TLR pathway induces downstream signaling
cascades that ultimately lead to the production interferons (IFNs)
and hundreds of IFN-stimulated genes (ISGs) with antiviral
activity (77).

Our recent work highlighted the involvement of IFNs and a
set of ISGs in placental defense against viral infection (53, 70).

Cytokine Induced Immunopathology
The microenvironment of the uterine mucosa, within first
semester of pregnancy, is mandatory not only for embryo
implantation but also for the maternal-fetal tolerance (24).
Despite the protective effect of immune cells, an overwhelming
immune response at the maternal-fetal interface may constitute
the other edge of the sword. Viral-induced disequilibrium of
pro-inflammatory and anti-inflammatory factors could mediate
tissue injury, leading to virus spread, and adverse pregnancy
outcomes (78).

In the context of HCMV, modulation of the cytokine
environment is considered as a potential initiator and/or
exacerbator of placental and fetal injury. Indeed, HCMV
infection during pregnancy is associated with a shift toward a
proinflammatory cytokine status. Levels of the cytokines, TNFα,
IL-1β, IL-12, and IL-17; the chemokines CCL-2 (MCP1), CCL-4

(MIP-1β), and CXCL10; and the growth factors GM-CSF and
PDGF-bb were significantly elevated in amniotic fluids from
congenital HCMV fetuses (79). In addition, stillborn HCMV-
infected placenta have significantly elevated levels of CCL-2 and
TNFα levels than uninfected placenta (80). Our team has shown
that dNK cells produce high levels of sICAM-1, CXCL-1 (GROα),
IL-6, Granzyme B when stimulated with infected autologous
decidual cells. On the other hand, dNK cell production of CCL-4,
IL-8, CXCL-10 (IP-10), GM-CSF, RANTES, and CCL-3 (MIP-1α)
was significantly decreased. These changes in dNK cell secretome
are necessary for the recruitment and initiation of anti-viral
immune response but reduce trophoblast cell invasion and might
be partially responsible for HCMV-associated fetal damages (73).

Increased production of pro-inflammatory cytokines was also
associated with pregnancy disorders upon HEV-1 infection.
Several pro-inflammatory factors (TNFα, IL-6, IFN-γ, and TGF-
β1) were increased in the maternal-fetal interface and peripheral
blood from HEV-1 infected women with adverse pregnancy
outcomes (81). Our studies revealed that HEV-1 skews the
cytokine, chemokine, and growth factor secretory profile in both
the decidua and placenta tissues with increased levels of IL-
6, sICAM-1, CCL-3, CCL-4, G-CSF, and GM-CSF (53). These
alterations in the local secretome were not only correlated with
viral load but also promoted tissue apoptosis and necrosis, and
may be responsible for HEV-1-associated pregnancy disorders.
HEV-1 infection was also associated with decrease of CXCL-
10 at the maternal fetal interface that could impair the
invasion/migration of the fetal trophoblast and remodeling
of maternal spiral arteries, both of which are mandatory for
successful placentation.

ZIKV infection has been associated modulation of many
factors such as VEGF-A, MMP-2, and MMP-9 that play a role
in angiogenesis and ECM degradation. In contrast, the levels
of sICAM-1 and IL-8, which could favor transmission of ZIKV,
were increased. We found that ZIKV does not interfere type I
or type II IFNs, but induces strong increase in the production of
type III IFNs (IFN-λ2/3) and a set of interferon stimulated genes
(70). We also provided the first evidence that ZIKV infection
induces the production of several active lipid mediators which
plays can modulate the placenta pro- and anti-inflammatory
responses (58). The association between ZIKV-induced pro- and
anti-inflammatory lipid metabolites and cytokines/chemokines
have been implicated in the physiopathology of several infectious
inflammatory disorders.

Modification of the local cytokine profile has also been
reported in SARS-CoV-2 infection. SARS-CoV-2 infection
is associated with immune cell activation, which may be
responsible for a cytokine storm, leading at least to multiple
system organ failure (82). The infection is associated with
increased levels of pro-inflammatory cytokines IL-6, IL-
10, GCSF, CXCL10, MCP-1, MIP-1α, and TNF (83). Taken
together, the cytokine storm induced during SARS-CoV-
2 infection could impair the migration of trophoblasts
cells and the remodeling of the maternal spiral arteries
and contribute to placentation defects. The permanent
increased pro-inflammatory state could also be likely to
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impact the fetal brain development of the fetus, thus
increasing the risk of autism, mental health disorders, or
schizophrenia (84).

CONCLUDING REMARKS

Lessons from the TORCH pathogens and emerging viruses have
demonstrated that the infection of the maternal-fetal interface
during early pregnancy is often associated with placental diseases
and is highly detrimental to fetal development. Viral tropism and
efficient replication combined with altered local environment
dictate the extent of tissue damage. Significant effort has
been made toward understanding the essential role of dNK
cells in viral spread. However, why in some cases these cells
fail to control the infection or participate to tissue damage
need to be further investigated. dNK cell responsiveness to
pathogens can be dependent on host factors. Thus, one research
axis can focus on KIR and HLA alleles expressed by the
host. Indeed, several examples of matched and mismatched
KIR and HLA were previously described to be protective or
deleterious during viral infections. Metabolic alterations may
also underlie the failure of the immune response especially that
viral infections are known to deplete and/or enrich the local
environment with several metabolites that alters immune cell
function. Viral factors may also shape the immune response.
For instance, HEV-1 and ZIKV downregulate IFNλ and other

ISGs in infected target cells, favoring their own replication
and spread at the maternal-fetal interface. Although, similar
alterations were previously reported in cell line-based models,
the mechanisms that are at play in the decidua and placenta
tissue remain elusive. The impact of such mechanisms on
dNK cells need also to be further investigated. Another open
question is whether dNK cells can expand in response to
infected cells and generate a “memory-like” response. Such a
memory may generate a natural vaccine against viruses and
contribute to the control of viral transmission to the fetus.
Finally, a particular attention should be given to dMϕ since these
cells constitutes the first barrier against different infections in
other tissues.
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