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ESKAPE Pathogens in Bloodstream Infections Are 
Associated With Higher Cost and Mortality but Can Be 
Predicted Using Diagnoses Upon Admission
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T2 Biosystems, Inc., Lexington, Massachusetts, USA

Background. ESKAPE bacteria are thought to be especially resistant to antibiotics, and their resistance and prevalence in blood-
stream infections are rising. Large studies are needed to better characterize the clinical impact of these bacteria and to develop algo-
rithms that alert clinicians when patients are at high risk of an ESKAPE infection.

Methods. From a US data set of >1.1 M patient encounters, we evaluated if ESKAPE pathogens produced worse outcomes than 
non-ESKAPE pathogens and if an ESKAPE infection could be predicted using simple word group algorithms built from decision 
trees.

Results. We found that ESKAPE pathogens represented 42.2% of species isolated from bloodstream infections and, compared 
with non-ESKAPE pathogens, were associated with a 3.3-day increase in length of stay, a $5500 increase in cost of care, and a 2.1% 
absolute increase in mortality (P < 1e-99). ESKAPE pathogens were not universally more resistant to antibiotics, but only to select 
antibiotics (P < 5e-6), particularly against common empiric therapies. In addition, simple word group algorithms predicted ESKAPE 
pathogens with a positive predictive value of 7.9% to 56.2%, exceeding 4.8% by random guessing (P < 1e-99).

Conclusions. Taken together, these data highlight the pathogenicity of ESKAPE bacteria, potential mechanisms of their patho-
genicity, and the potential to predict ESKAPE infections upon admission. Implementing word group algorithms could enable earlier 
and targeted therapies against ESKAPE bacteria and thus reduce their burden on the health care system.
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Despite over 100  years of innovation, bloodstream infections 
(BSIs) remain challenging to treat and manage effectively. 
Difficulties include an incomplete understanding of the invading 
species, limited antimicrobial options, and a dysregulated host 
response to infection known as sepsis [1]. Sepsis contributes 
to >35% of inpatient deaths and is the most expensive US hos-
pital–treated condition, representing $23.7 billion in annual 
health care costs [2]. Because of the high burden of an untreated 
infection, clinicians administer antimicrobial drugs in patients 
suspected of BSI at rates of 50%–70% [3–5], far exceeding the 
actual BSI infection rate of 10%–15% [6–10]. A  consequence 
of overprescribing antibiotics is the emergence and spread of 
antibiotic resistance. In a 2019 report to the United Nations, 

an international committee concluded that by 2050 antibiotic-
resistant infections could cause 10 million deaths per year and 
an economic collapse comparable to the 2008–2009 global fi-
nancial crisis [11]. Therefore, new technologies and better sci-
entific understanding are needed to counter the growing threat 
of sepsis and antimicrobial resistance.

The “ESKAPE” pathogens are a group of infectious bacteria 
that have garnered particular attention for their ability to es-
cape or evade common therapies through antimicrobial re-
sistance. The ESKAPE pathogens were first defined in 2008 
and consist of Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter spp. [12]. In 2009, the Infectious 
Diseases Society of America found a lack of new antibiotics in 
pharmaceutical pipelines to combat ESKAPE pathogens and 
made recommendations to incentivize innovation [13]. Over 
the past 10  years, many novel therapies to treat ESKAPE in-
fections have been developed, including new antibiotics, bac-
teriophages, antimicrobial peptides, and nanoparticles [14]. In 
addition, a meta-analysis of 83 studies comparing antibiotic-
susceptible vs -resistant bacteria highlighted that a major factor 
driving the economic burden of ESKAPE pathogens is antibi-
otic resistance [15]. But despite these advancements, ESKAPE 
pathogens remain a major health care burden, and recent 
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studies suggest upward trends of ESKAPE prevalence [16], 
economic cost [17], and resistance [18, 19]. We hypothesize 
that these challenges arise in part from a paucity of large-scale 
studies that evaluate the true impact of ESKAPE pathogens rel-
ative to non-ESKAPE pathogens and a paucity of simple algo-
rithms to identify patients at risk of an ESKAPE infection.

To improve our understanding and management of ESKAPE 
pathogens, our goal in this study was 2-fold. First, across a 
data set of >400K patient encounters, we evaluated if ESKAPE 
pathogens were associated with worse outcomes and higher 
costs than non-ESKAPE pathogens. Second, across a data set 
of >1.1M patient encounters, we assessed if simple word group 
algorithms based on admission code text could predict an 
ESKAPE BSI.

METHODS

Patient Data Set

The data source was a US database of inpatient hospital en-
counters comprised of 193 US hospitals, 6  235  171 patients, 
and 4.16  years from May 2014 to June 2018 (Premier, Inc., 
Charlotte, NC, USA). This database was previously employed in 
disease areas including myocardial infarction [20], pneumonia 
[21], gram-negative infections [22], and cancer [23]. A hospital 
encounter was defined as a discrete patient stay from admis-
sion to discharge. To compare the impact of ESKAPE and non-
ESKAPE pathogens, we only included patients with a positive 
blood culture for a bacterium during the hospital encounter. To 
develop an algorithm predictive of ESKAPE BSI, we included 
all patient encounters with a blood culture result (ie, nega-
tive or positive) and at least 1 code upon admission from the 
International Classification of Diseases, Clinical Modification, 
Ninth (ICD-9-CM) or Tenth (ICD-10-CM) Revision [24]. 
For algorithm development, if an ESKAPE and non-ESKAPE 
BSI were detected within the same hospital encounter, the en-
counter was classified as ESKAPE.

Definition of ESKAPE and Antibiotic Resistance

We defined ESKAPE based on the original 2008 definition [12]. 
Resistance was defined directly from hospital reporting of anti-
biotic susceptibility testing. Only “resistant” or “susceptible” re-
sults were included; that is, “intermediate” and “indeterminate” 
results were excluded.

Algorithm Development

To predict ESKAPE infections, we parsed the ICD codes upon 
admission for unique words. Each word was employed as a 
binarized feature representing the presence or absence of the 
word. We developed 3 sets of word groups using different stop-
words that could not be used. We defined the most predictive 
words of ESKAPE infection using decision trees grown with 
splits to minimize the Gini impurity criterion [25]. Algorithm 
performance was compared against random Bernoulli draws 

with probability of 0.5. To compare performance against a more 
complex algorithm, we used a dense neural network with 2 
hidden layers and a cross-entropy loss function weighted 50:1 
in favor of ESKAPE infections.

To evaluate model performance, we used a stratified random 
split to divide the data set into 3 parts: training, validation, and 
testing sets, representing 60%, 20%, and 20% of the data, re-
spectively. The algorithms were fit to the training set, and the 
hyperparameters (eg, tree depth) were selected based on the 
validation set. Final model performance was evaluated with the 
holdout testing set not used for fitting or hyperparameter selection.

Statistical Testing and Software

All data preprocessing, analysis, statistical testing, and ma-
chine learning used the Julia programming language [26]. To 
compare means, medians, 2-proportions, 1-proportions, and 
survival curves, we used the unequal variance t test, Mann-
Whitney U test, Fisher exact test, binomial test, and log-rank 
test, respectively.

RESULTS

Prevalence of ESKAPE Pathogens

We first evaluated the prevalence of ESKAPE pathogens in pos-
itive blood cultures. In total, there were 403 437 unique patients 
across 494 817 hospital encounters, with 825 529 unique iso-
lates and 36.6M antibiotic susceptibility results. Patients were 
50.9% female with a median age of 64.0 (25th–75th percentiles, 
50.0–76.0) years. The most prevalent ESKAPE pathogens were 
S. aureus, K. pneumoniae, and P. aeruginosa, which represented 
21.9%, 7.5%, and 7.2% of the total, respectively. The most prev-
alent non-ESKAPE pathogens were E. coli, E. faecalis, and P. mi-
rabilis, which represented 22.6%, 5.6%, and 4.0% of the total, 
respectively. Overall, the proportion of isolated species classi-
fied as ESKAPE pathogens was 42.2% (Figure 1A). The isolates 
were comprised of 874 unique species, but the majority of the 
species were rare, such that the top 20 most prevalent species 
represented 86.4% of the total (Figure 1B). Further, the pro-
portion of ESKAPE isolates depended on geographic region, 
with the lowest proportion in the West South Central region 
(39.5%; 95% confidence interval [CI], 39.2%–39.9%) and the 
highest proportion in the Mountain region (49.9%; 95% CI, 
48.9%–50.8%). All regional ESKAPE proportions differed from 
the overall US proportion of 42.2% (P < .003) (Figure 1C).

Impact of ESKAPE Pathogen Infections on Patient Outcome

We next examined how ESKAPE pathogens impacted patient 
care. First, we found that the relative proportion of ESKAPE 
pathogens was 15.6% lower than non-ESKAPE pathogens 
(P  <  1e-99) (Figure 2A). However, compared with patients 
with non-ESKAPE pathogens, patients with ESKAPE patho-
gens showed a longer length of stay by a median of 1.0  days 
(P  <  1e-99) or a mean of 3.3  days (P  <  1e-99) (Figure 2B). 
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Among surviving patients at discharge, a higher proportion of 
patients with ESKAPE pathogens remained in the hospital for 
all lengths of stay (P < 1e-99) (Figure 2C). Further, the total cost 
of care for patients with ESKAPE pathogens was higher than 
for those with non-ESKAPE pathogens by a median of $2600 
(P < 1e-99) or a mean of $5500 (P < 1e-99) (Figure 2D). In ad-
dition, at discharge, 6.6% of patients with non-ESKAPE patho-
gens expired, whereas 8.7% of patients with ESKAPE pathogens 
expired, an absolute increase in all-cause mortality of 2.1% 
(P < 1e-99) (Figure 2E). Among these expired patients, a higher 
proportion of patients with ESKAPE pathogens remained in the 
hospital for all lengths of stay (P < 1e-63) (Figure 2F).

Comparison of Antibiotic Resistance

We next evaluated the proportion of isolated species with anti-
biotic resistance. We first considered only the top 20 species (8 
ESKAPE and 12 non-ESKAPE) and top 30 tested antibiotics to 
provide a qualitative comparison of the most common species 
and antibiotics. The median number of isolates tested for each 
combination of species and antibiotics was 3911 (25th–75th 
percentiles, 1250–9290), and 99.5% (597/600) of the combin-
ations had at least 100 tested isolates. Compared with non-
ESKAPE pathogens, ESKAPE pathogens qualitatively showed 
similar resistance patterns as the same antibiotics (Figure 3).

To quantitatively evaluate if ESKAPE pathogens are more 
resistant than non-ESKAPE pathogens, we aggregated re-
ported resistance within all ESKAPE and non-ESKAPE spe-
cies, and then stratified by gram staining to employ a common 
clinical grouping (Figure 4). Non-ESKAPE species showed 
higher resistance for gentamicin, trimethoprim/sulfameth-
oxazole, tetracycline, and ciprofloxacin. In contrast, ESKAPE 
species showed higher resistance for vancomycin, penicillin, 
cefazolin, ceftriaxone, and piperacillin/tazobactam. In addi-
tion, we observed relatively high resistance against ampicillin 
for gram-positive ESKAPE species (53.6%) and gram-nega-
tive ESKAPE species (47.0%) and relatively high resistance in 
gram-positive ESKAPE species against levofloxacin (39.2%) 
and erythromycin (61.8%). All differences in reported resist-
ance between ESKAPE and non-ESKAPE species were signif-
icant within the gram-positive (P  <  1e-45) (Figure 4A) and 
gram-negative (P < 5e-6) (Figure 4B) groups.

Predicting ESKAPE BSIs With ICD Codes Upon Admission

To predict ESKAPE BSIs, we included all patients with a blood 
culture result, representing 1  499  550 patient encounters. Of 
these encounters, 28.8% had a positive blood culture. To be 
comparable with the reported 10%–15% blood culture posi-
tivity [6–10], we randomly downsampled positive blood culture 
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Figure 1. Prevalence of ESKAPE species in blood cultures in the United States. A, From left to right, relative proportions of gram staining, families, species, and ESKAPE 
from isolated bacteria. B, Relative prevalence of all 874 unique isolated species. The area of the circle is proportional to prevalence. C, Geographic distribution of ESKAPE 
pathogen prevalence in the United States. Values represent the proportion of ESKAPE isolates relative to non-ESKAPE, and range represents 95% confidence interval by the 
Wilson method.
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Figure 3. Proportion of isolates reported resistant for combinations of the top 20 most prevalent species and top 30 most frequently tested antibiotics. Species are ordered 
first by ESKAPE (orange) and non-ESKAPE (blue) and then by prevalence, and antibiotics are ordered by frequency of resistance testing (ie, gentamicin was most frequently 
tested).
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Figure 2. Impact of ESKAPE pathogens on patient outcomes. A, Relative proportions (±95% Wilson confidence intervals) of ESKAPE and non-ESKAPE pathogens. B, Patient 
length of stay by bacteria type with boxplot (median ± interquartile range [IQR]) overlaid with means (triangles). C, Proportion of patients in the hospital by length of stay and 
bacteria type for surviving patients. D, Total cost of care by bacteria type with boxplot (median ± IQR) overlaid with means (triangles). E, Proportion of patients expired at 
discharge by bacteria type (±95% confidence interval). F, Proportion of patients in hospital by length of stay by bacteria type for expired patients.
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encounters, resulting in a final count of 916 508 unique patients, 
where patients were 50.1% female, with median age of 63.0 
(25th–75th percentiles, 47.0–76.0) years. These patients com-
prised 1  185  682 patient encounters, where 10.01% (118  660) 
had a positive blood culture and 4.85% (57 564) had a positive 
blood culture with an ESKAPE species. The total number of 
unique diagnosis words upon admission was 15 769. We fit de-
cision trees to these words and developed 3 word groups to pre-
dict ESKAPE infections (Table 1).

We next evaluated the performance of the word groups to 
predict ESKAPE BSIs with a holdout test data set of 237 137 pa-
tient encounters with a blood culture result, where 11 493 were 
positive for ESKAPE species (Figure 5). The neural network 
showed the best predictive performance, with an area under the 
receiver operating characteristics curve (ROC AUC) of 0.763 
(95% CI = 0.759–0.767). Within the decision tree algorithms, 
all 3 word groups significantly exceeded the performance of 
random guessing, with absolute increases in ROC AUC of 
12.1%–20.2% (P < 1e-99) and absolute increases in accuracy of 
14.8%–48.4% (P < 1e-99). Compared with random guessing, all 

differences in ROC AUC, accuracy, sensitivity, specificity, pos-
itive predictive value (PPV), negative predictive value (NPV), 
and positivity were significant for all 3 word groups (P < 5e-16). 
In addition, we observed a negative correlation between PPV 
and positivity. From word group 1 to word group 3, the PPV 
decreased from 56.2%, 12.6%, and 7.9%, whereas positivity 
increased from 3.6%, 17.2%, and 36.1%, respectively. Thus, as 
models became less conservative (higher positivity), the ability 
to correctly predict a positive ESKAPE infection decreased 
(lower PPV).
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Table 1. Selected Words to Predict ESKAPE Using ICD Code Text Upon 
Admission; if Any of the Words Are Present in an ICD Code Upon Admission, 
the Algorithm Predicts a Blood Culture Positive With an ESKAPE Species

Word Group No. Words in Group

1 staph, pseudomonas, pneumoniae

2 tract, ulcer, abscess

3 foot, leg, cutaneous, shock, pressure, anemia

Abbreviation: ICD, International Classification of Diseases.
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DISCUSSION

In this study, we found that ESKAPE pathogens make up 
nearly half the species in bloodstream infections and are as-
sociated with higher lengths of stay, cost of care, and mor-
tality compared with non-ESKAPE pathogens. Administering 
effective therapy is a critical yet challenging task for patients 
with life-threatening bloodstream infections. For example, a 
meta-analysis of 70 studies found that 46.5% of patients with a 
bloodstream infection were given empiric therapy that was not 
effective, and those patients had 2-times higher odds of death 
[27]. In addition, in previous studies of sepsis and septic shock, 
for every hour delay in delivery of effective therapy, survival 
decreased by 7.6% [28] and odds of death increased by 4.0% 
[29]. Taken together, there is an urgent need to rapidly identify 
patients at highest risk of sepsis and triage them onto effective 
therapy. Our results contribute to this goal by demonstrating 
that patients with ESKAPE pathogens are at higher risk of poor 
outcomes, and implementing simple word group algorithms 
can identify patients at risk for an ESKAPE pathogen infection.

As this was an observational study, it was not possible to as-
sess whether implementing a word group algorithm improves 
identification of patients with ESKAPE pathogens or patient 
outcomes relative to standard of care. To answer that ques-
tion, a multicenter randomized controlled study is needed. But 
given that this study used >1M patient encounters, we were able 
to identify features of patients most associated with ESKAPE 
pathogens based on robust statistics. In addition, the raw data 
set of patients with an ICD admission code and a negative or 
positive blood culture produced a 28.8% blood culture positivity 
rate, higher than the 10%–15% positivity previously reported 

[6–10]. Thus, the data set may be biased relative to the native 
population. We attempted to account for this in 2 ways. First, 
in all comparisons of ESKAPE vs non-ESKAPE, we excluded 
patient encounters without positive blood culture results, so 
those comparisons were independent of positivity. Second, in 
the development of algorithms, we randomly downsampled 
the positive group to yield a 10% positivity rate and evaluated 
algorithms on a test data set not previously seen by the algo-
rithms. Although a bias may still exist, we found that the algo-
rithms generalize well to an unseen data set, with 10% blood 
culture positivity, and thus show promise to be implemented 
in practice.

Despite these limitations, our results support findings of pre-
vious studies and highlight why ESKAPE pathogens are impor-
tant. The original ESKAPE papers [12, 13] called attention to the 
antibiotic resistance of the ESKAPE species and the need for new 
therapies but did not delineate differences in patient outcome be-
tween ESKAPE and non-ESKAPE species. Across >400K patient 
encounters, we found that the ESKAPE pathogens represented 
42.2% of all detected species, with significant regional differ-
ences across the United States (Figure 1). In addition, compared 
with non-ESKAPE species, we found that on average ESKAPE 
pathogens were associated with a 3.3-day increase in length of 
stay, $5500 increase in cost of care, and 2.1% increase in mor-
tality (Figure 2). Based on the reported resistance by species, it 
was not immediately evident why ESKAPE pathogens should re-
sult in worse outcomes, as resistance was clearly reported across 
the most prevalent ESKAPE and non-ESKAPE species (Figure 
3). But after aggregating species by ESKAPE and non-ESKAPE, 
we found differences in resistance by antibiotic, where ESKAPE 
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pathogens were significantly more resistant to vancomycin, 
cefazolin, ceftriaxone, and piperacillin/tazobactam (Figure 4). 
Given that the Surviving Sepsis guidelines recommend vanco-
mycin, cefazolin, ceftriaxone, and piperacillin/tazobactam as 
empiric therapies [30], we hypothesize that the enhanced path-
ogenicity of ESKAPE pathogens may not be due to an overall 
higher resistance to antibiotics, but rather higher resistance to 
the most commonly used empiric therapies.

Algorithms to identify patients at highest risk of poor out-
comes can augment human intuition and improve patient care. 
Previous studies include time-varying auto-adaptive algorithms 
to forecast hospital-wide incidence of ESKAPE pathogens [31], 
which, while accurate, were not designed to predict an ESKAPE 
infection within a single patient. Similarly, >200 studies have 
modeled antimicrobial resistance at the population level [32]. At 
the individual patient level, models to predict bacteremia have 
all utilized rapid diagnostic tests as inputs, such as procalcitonin, 
albumin, and bilirubin [33], procalcitonin alone [34], or blood 
measurements such as platelet counts and creatinine [35]. In 
addition, while a 2015 review found 15 published models to 
predict bacteremia, the authors found that none of the models 
were in active clinical use [36]. We postulate that one reason for 
a lack of implementation may be that some of the models are too 
time-consuming and complicated, requiring software, mathe-
matics, and diagnostic blood tests. We therefore focused on ICD 
admission text as the only input, producing a simple mental 
model that can be easily applied by a busy clinician.

Based on this sparse history of successfully implemented bac-
teremia algorithms, and given that the neural network requires 
software to use, we focused primarily on the word groups. The 
selected word groups to predict ESKAPE showed tradeoffs in 
PPV and positivity, providing options for different levels of con-
servatism (Figure 5). Word group 1 was the most predictive but 
was also the most conservative (lowest positivity). This is per-
haps not surprising given that the words include the genus and 
species of 3 ESKAPE pathogens (Table 1). Word group 2 is per-
haps more interesting because the 3 words refer to interfaces of 
the body with the outside world: “tract,” “ulcer,” and “abscess.” 
Finally, word group 3 consisted of words associated with the 
lower body, blood, and skin and was the least predictive and 
conservative. Word group 3 used “anemia” as a predictor, which 
was previously associated with surgical site infection after hys-
terectomy [37], pneumonia after stroke [38], and general infec-
tion with aplastic anemia [39]. Similarly, the lower body words 
of “leg” and “foot” can refer to lower body infections associated 
with abscesses or ulcers, which can manifest as a comorbidity of 
diabetes [40]. Overall, as all 3 word groups exceeded the predic-
tive capacity of random guessing, they could prove useful as part 
of workflows to triage patients with a blood culture order and 1 
of these words in an admission diagnosis. Specifically, we envi-
sion algorithm usage by nurses and physicians in the emergency 
department or intensive care unit through word prompts, alerts 

configured in an electronic medical record system, and phys-
icians and administrative staff when configuring guidelines.

In conclusion, our results from a relatively large US data set 
highlight the pathogenicity of ESKAPE bacteria and quantify 
their impact on patient length of stay, cost of care, and mortality. 
We also found that among all blood culture orders, employing 
simple word algorithms can predict ESKAPE infections better 
than random guessing. To our knowledge, this is the first study 
to compare the impact of ESKAPE vs non-ESKAPE bacteria on 
a nationwide data set, and the first to predict ESKAPE patho-
gens or bacteremia using admission diagnosis words. Given the 
steady rise of antibiotic resistance and the high cost of treating 
sepsis, rapidly identifying patients infected with ESKAPE 
pathogens will continue to be a major health care priority. We 
show here that by employing simple algorithms, major gains in 
our ability to predict ESKAPE pathogens can be realized, which 
can potentially reduce their pathogenic effects.
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