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Abstract: Historical temperature records reveal that the boreal forest has been subjected to a signif-
icant lengthening of the thermal growing season since the middle of the last century, and climate
models predict that this lengthening will continue in the future. Nevertheless, the potential phe-
nological response of trees to changes in growing season length remains relatively undocumented,
particularly for evergreen boreal tree species growing in cold environments. Here, we used the
recently defined zero growth (ZG) concept to extract and characterize the metrics of seasonal radial
growth dynamics for 12 balsam fir trees subjected to a 12-year soil warming experiment using high
resolution radius dendrometer measurements. The ZG concept provides an accurate determination of
growth seasonality (onset, cessation, duration, growth rates, and total growth) for these slow-growing
trees characterized by significant shrinkage in tree diameter due to dehydration in the winter. Our
analysis revealed that, on average, growth onset starts at day 152 ± 7 (±1 SE, 31 May–1 June) and
ceases at day 244 ± 27 (31 August–1 September), for a growing season duration of about 3 months
(93 ± 26 days) over a 12-year period. Growing season duration is mainly determined by growth
cessation, while growth onset varies little between years. A large part (80%) of the total growth occurs
in the first 50 days of the growing season. Given the dynamics of growth, early growth cessation
(shorter growing season) results in a higher average seasonal growth rate, meaning that longer
growing seasons are not necessarily associated with greater tree growth. Soil warming induces earlier
growth cessation, but increases the mean tree growth rate by 18.1% and the total annual growth by
9.1%, on average, as compared to the control trees. Our results suggest that a higher soil temperature
for warmed trees contributes to providing better growth conditions and higher growth rates in the
early growing season, when the soil temperature is low and the soil water content is elevated because
of snowmelt. Attaining a critical soil temperature earlier, coupled with lower soil water content, may
have contributed to the earlier growth cessation and shorter growing season of warmed trees.

Keywords: tree growth; point dendrometer; seasonality; phenology; treenetproc; boreal forest

1. Introduction

The examination of historical daily temperature records reveals that the Canadian
forest has been subjected to significant climate warming since the middle of the last century,
with even greater warming in the boreal forest, typically characterized by colder temper-
atures [1]. In addition to the general warming trend, an average lengthening, by about
15 days, of the thermal growing season (days with daily mean temperature above 5 ◦C),
starting 6 days earlier and ending 9 days later, coupled with increased cumulative growing
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degree days, has been reported for the 1948–2016 period [1]. These trends in thermal grow-
ing season length are predicted to continue throughout this century, potentially adding
more than a month of favorable conditions for the yearly growth of trees and plants [2,3].
Together with the fertilization effect of rising atmospheric CO2 and N inputs on tree growth,
the lengthening of the growing season could potentially contribute to a large increase in C
sinks observed over the last decades in northern temperate and boreal forests [4,5].

Nevertheless, the potential phenological response of trees to changes in climate season-
ality remains relatively undocumented, particularly for the cold environment of the boreal
forest. Several approaches have been used to document the seasonal growth dynamics of
trees, each with their strengths and weaknesses. Phenological metrics linked to vegetation
activity onset, cessation, duration, and peak can be derived over a large spatial scale from
satellite observations of the photosynthetic activity of vegetation [6,7]. These metrics are,
however, generally restricted to the analyses of pixels with a strong detectable annual cycle
of vegetation, filtering out evergreen boreal coniferous forest regions [8,9]. Characterizing
vegetation dynamics from satellite information in cold environments characterized by a
short growing season, short daily sunshine duration in winter, persistence of snowpack
in early spring, and the dominance of coniferous tree species remains challenging [10].
Moreover, phenological metrics derived from satellite images do not inform about species-
specific variations, nor seasonal tree growth dynamics and tree productivity. Indeed, the
greening effect documented from the satellite-derived normalized difference vegetation
index (NDVI) does not always translate into ground-observed phenological trends or
tree growth rates [7,11,12]. The extraction of metrics of tree seasonality using remote
sensing techniques also involves technical challenges for taking into account the quality
of the sensors and other distortions in the satellite images, and large discrepancies exist
between ground-observed and satellite phenological transitional dates [8]. Phenological
metrics derived from satellite information are also restricted in terms of temporal and
spatial resolution, which are, for example, 16 days and 250 m resolution for MODIS NDVI
images [13].

Transitional phenological dates can also be assessed from ground-based observations,
including networks of leaf and bloom measurements of representative cloned cultivars
(e.g., [14]), networks of digital phenological cameras (e.g., [15]), and local monitoring initia-
tives [16]. However, the assessment of phenological metrics, such as leafing and blooming,
are also generally limited to deciduous trees, and they do not inform on tree growth dy-
namics over the entire growing season and on resultant tree productivity, particularly for
the evergreen boreal tree species.

At the tree level, cambial activity and xylem formation (xylogenesis) of boreal species
can be characterized using cellular analysis of repeatedly sampled micro-cores of newly
formed xylem throughout the growing season [17] and by the pinning method [18]. These
techniques are, however, laborious and time consuming in addition to damaging to the
trees, limiting the long-term monitoring of individual trees. Characterization of growth
dynamics using these techniques is also limited in terms of temporal resolution by the
sampling (or pinning) interval. In addition, shifting sample points along the stem during
the growing season generates additional variability in the measurements.

Over the past decade, a growing number of studies have used electronic dendrometers
to track variations in tree radius or circumference (radius hereafter) at high temporal
resolution in order to document the critical dates of xylem phenology [19–25]. These metrics
of tree growth phenology include the timing of growth onset, cessation, and maximum
growth rate, along with growing season duration and cumulative seasonal growth.

However, there are also limitations to determining phenological transition dates and
quantifying tree growth using point dendrometers. In dendrometer data, both the signal of
irreversible tree growth and the reversible signal of stem size, due to water storage depletion
and replenishment of wood tissues, are confounded. These variations correspond to three
distinct previously documented phases (growth increment, contraction or shrinkage, and
expansion or recovery) of the circadian cycle of stem radius variation [26–28] and may be
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extracted with the help of a function for stem cycles definition included in the Dendrometer
R package [29]. In addition to the diurnal cycle that characterizes stem size variation,
periods of stem shrinkage may occur over a longer period, from a few days during the
growing season, due to dry conditions of air and soil [30,31], to seasonal (i.e., months)
during the winter, due to the dehydration of wood tissues [22,32]. During these periods of
stem shrinkage, the signal is still characterized by cycles of stem contraction and expansion,
but at a value below a precedent maximum stem size. Zweifel et al. [30] thus defined
the zero growth (ZG) concept, according to which no growth occurs during periods of
stem shrinkage. Using this concept, the signal of stem size variation may be partitioned
into a growth (GRO) phase, which begins when the previous maximum stem radius is
exceeded and ends when stem shrinkage occurs, and a tree water deficit (TWD) phase,
which begins when the stem size decreases below a precedent maximum. The GRO phase
derived from the ZG concept is slightly different from the increment phase of the circadian
cycle approach [28]. The beginning of the GRO phase is determined from a previous
maximum stem size, while the increment phase begins when the stem size exceeds the
morning maximum.

One advantage of the ZG approach is that the GRO signal can be cumulated over
the growing season to estimate yearly cumulative growth, which is not possible with the
three-cycle approach. In the three-cycle approach, the same variation in stem size may be
considered to be an increment phase when it occurs several days in a row; this can thus
greatly overestimate total growth, if the stem radius variation during the increment phases
is cumulated over the whole growing season [24,28]. Nevertheless, it should be noted that
both approaches can be reconciled with a slight change in definition. Indeed, the TWD
signal derived from the ZG concept could be decomposed into phases of stem contraction,
shrinkage or dehydration, and stem expansion, recovery, or rehydration, thus restricting
the increment phase to the GRO phase.

Another advantage of the ZG concept is that the timing of seasonal growth onset and
cessation can be respectively derived from the maximum stem radius recorded over the
previous season and during the current growing season [22]. From these metrics, growing
season duration, cumulative growth, and average growth rate can also be derived. This
simplification is particularly relevant for slow-growing trees inhabiting cold environments
characterized by a long period of winter dehydration for which spring growth onset may
be confused with stem rehydration before the beginning of cambial growth [32,33]. In
this context, the three-cycle approach does not seem appropriate for precisely identify
the timing of growth onset and cessation [24], and deriving the timing of growth onset
during the spring rehydration phase is practically impossible without resorting to the ZG
concept, or without the use of a complementary technique, such as micro-coring [27,32,33].
Seasonal growth dynamics have already been estimated from raw dendrometer data by
fitting a statistical model to the data [19,20,34–36]. As opposed to the ZG concept, this
approach results in a continuous growth curve (CG approach) characterizing the seasonal
growth dynamics. Even with this approach, it remains difficult to precisely determine
growth onset and cessation, and the beginning of the growing season remains practically
undistinguishable from the early spring rehydration period.

The aims of this study are to test the use of the ZG concept for extracting and char-
acterizing the metrics of seasonal radial balsam fir growth dynamics using high temporal
resolution dendrometer measurements and to assess interannual variability, as well as the
effects of a 12-year soil warming experiment on radial growth. In addition to potentially
promoting better growth throughout the growing season, the early warming of soil temper-
atures in spring can induce favorable conditions for xylogenesis when air temperatures are
above critical temperatures [37], but delayed soil warming due to snow cover still prevents
tree growth [38,39]. We thus hypothesized an earlier growth onset, a longer duration of
the growing season, and a higher annual radial growth for warmed-soil trees as compared
to controls.
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2. Methods
2.1. Study Site

The experimental area is located at the boundary of the Lac Laflamme watershed
(47◦19′31.36′′ N; 71◦07′43.15′′ W, 740–760 m.a.s.l.), which is one of the three study water-
sheds that are part of the Québec Forest Ecosystem Research and Monitoring Network
(Réseau d’Étude et de Surveillance des Écosystèmes Forestiers; RESEF). The forest is domi-
nated by mature balsam firs (Abies balsamea (L.) Mill.), with a small component of white
spruce (Picea glauca (Moench) Voss) and paper birch (Betula papyrifera Marsh.). The site is on
Precambrian charnockitic gneiss covered by sandy till, with a terrain slope of 15%. Climate
norms (1981–2010) were −0.18 ◦C and 1460 mm for mean annual air temperature and
mean annual precipitation, respectively. The forest is located in the Laurentian Mountains,
Québec, Canada, and underwent defoliation by the hemlock looper (Lambdina fiscellaria,
Guenée) from 2012–2014 [40]. The 2012 defoliation was concurrent with a severe drought in
the area in July 2012. With only 23 mm of rain in July as compared to the 143 mm long-term
average, it was the driest summer month ever observed since 1960 [41].

2.2. Soil Warming Experiment

The soil warming experiment was set up in autumn 2008 and the short-term (2–3 years)
effects on soil ion fluxes and mineralizable carbon, as well as on xylogenesis and tree
growth of mature balsam firs, have been documented [34,42–44]. The experiment consists
of 12 balsam firs (6 heated and 6 control) around which 70 m of heating or non-heating
cables were buried in a spiral pattern (0.9 to 2.5 m radius, approximately 30 cm between
successive turns) at the interface of the organic and mineral soil (5–10 cm belowground).
The soil temperature below each tree was measured continuously with a thermistor (model
107-L, Campbell Scientific, Logan, UT, USA) positioned between the cables and linked
to a data logger (model CR1000, Campbell Scientific, Logan, UT, USA). The continuous
measurements were averaged and recorded at 15 min intervals. The warming cables of
the 6 heated trees were activated and deactivated with a data logger when the average
difference of temperature between the heated and non-heated soils reached 3 ◦C and 5 ◦C,
respectively, with the objective of maintaining an average difference of 4 ◦C. Since 2009, the
soils were heated from the beginning of the spring snow melt until the first frost days in
the fall.

Each of the twelve trees in the experiment was equipped with radius dendrometers
(model DR1, Ecomatik, Munich, Germany), south oriented, and positioned at approximately
2 m height to ensure being above the snow cover. Stem radial variation was measured
continuously, and data were averaged and recorded every 15 min using the same data
logger used for the soil measurements.

The soil warming treatment was initially nested within two levels of artificial precipi-
tation (no added NH4NO3 and three times the natural NH4NO3 concentration in ambient
precipitation) applied to the canopy every week from mid-June to mid-September from
2009 to 2011 using a system of reservoirs, pumps, valves, pipes, and sprinklers. No short-
term effects of this N-enriched precipitation on tree growth were detected [34], so we did
not consider this treatment in our analysis.

2.3. Characterization of Tree Growth Seasonality from Dendrometer Data

The extraction of parameters defining the seasonal dynamics of tree radial growth was
performed with the help of the treenetproc package in R, V 0.1.4 [22,45,46]. These parameters
included growth onset and cessation (day of year; DOY), growing season length (days), total
annual growth (µm), and the average daily growth rate (µm/day). Spring growth onset is
defined as the DOY at which the stem radius surpasses the maximum value recorded in
the past year, and growth cessation is considered as the DOY at which the maximum value
is reached (Figure 1, [22]). The length of the growing season is the difference between these
two values, and total annual growth is the difference between the radius measurements
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corresponding to the beginning and end of growth. Finally, the average daily growth rate
is the total annual growth divided by the length of the growing season.
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Figure 1. Example of characterization of a growing season using stem radius variations of a balsam fir
tree recorded by a dendrometer at a temporal resolution of 15 min. The day of the year corresponding
to the maximum value recorded the previous season (1), the day of the year at which stem radius
surpasses the maximum value recorded in the past year (2), and the day of the year at which the
maximum value is reached (3) are labelled.

Prior to the seasonal tree growth parameter extraction, the raw 15 min dendrometer
data were visually examined and validated for any erroneous data that could be manually
removed. As input, the treenetproc R package requires raw dendrometer data and air
temperature. The purpose of the latter is to identify frost shrinkage periods in order to
avoid assigning dendrometer data as outliers [22]. Internal data logger temperature data
were used as an indicator of air temperature. This ensures accurate synchronicity between
the ambient temperature and dendrometer measurements. The treenetproc package was
then used to temporally align the dataset, filling the dataset via linear interpolation for
small gaps (fewer than 3 time steps), and correcting for erroneous shifts and jumps in
the manually cleaned dendrometer data [22]. We adjusted the parameters controlling the
rigidity of outlier (tol_out) and jump (tol_jump) detection so that only jumps in the data
associated with dendrometer adjustment or replacement were applied.

The treenetproc R package, used to determine growth onset and cessation (grow_seas),
includes a tolerance factor parameter to adjust the determination of growth onset and
cessation (tol_seas). This factor allows us to take into account the asymptotic shape of the
seasonal growth pattern at the beginning and end of the growing season, as well as the
presence of erratic measurements during these periods that can influence the determination
of the beginning and end of growth [22]. The default value is set to 5%, so that the start
and end of the growing season corresponds to the DOY when 5% and 95% of the total
annual growth is completed, respectively. We set the parameters to the default value for the
main analysis and also set the timing to correspond to the time when 80% and 90% of the
total annual growth was completed (tol_seas value of 10% and 20%). We varied the tol_seas
parameter only for the determination of growth cessation because this parameter has little
influence on the timing of growth initiation, which is generally characterized by a much
steeper slope of stem radius variation compared to the growth cessation phase.

The 12 dendrometers were operational from March 2009 to December 2021. Since
the calculation of growth onset depends on the maximum radius measurements of the
previous year, seasonal parameters were characterized for each tree, starting in the second
year of measurements (2010) until 2021.
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2.4. Statistical Analyses

Interannual variability in parameters characterizing tree growth seasonality (growth
onset and cessation, growing season length, total annual growth, and the average daily
growth rate), along with the soil warming treatment effect, were assessed by means com-
parisons and from mixed between-subjects (control/heated) and within-subjects (years)
analysis of variance of the trimmed mean [47]. The trimmed mean excludes the lowest and
the largest values of the distribution and computes the arithmetic mean on the remaining
values. Analysis of variance based on trimmed means has been proposed as a robust alter-
native to classical statistical methods, when distributional assumptions are not met [47].
The bwtrim function of the WRS2 R package V 1.1-1 was used for this purpose [47]. We
performed one analysis considering the 12 growing seasons (2010–2021) of the 7 trees that
survived the 2012 event and another by including the 3 growing seasons (2010–2012) of the
5 trees that did not survive. Additionally, the strength of the monotonic association among
the parameters characterizing the seasonal dynamics of radial growth of individual trees
(i.e., experimental units) were analyzed using Spearman’s rank-order correlation.

3. Results
3.1. Soil Temperature and Dendrometer Data

The snow cover melted earlier, spring soil warming occurred, on average, 25 days
earlier (heated and control soils reach 2 ◦C on day 113 and 138, respectively, Figure 2),
and the mean annual May to October temperature of the heated soils was, on average,
3.8 ± 0.2 ◦C (±SE) higher compared to that of the unheated soils over the period 2009–2021.
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Figure 2. Average annual pattern of daily mean soil temperature (2010–2021) of control and heated
plots. The shaded area represents the standard error.

Based on the dendrometer data, the seasonal parameters could not be evaluated for
some trees in some years. The defoliation and severe drought that occurred in the area
in July 2012 had a marked impact on the growth of trees in the subsequent years, and
5 trees died in 2013 from these events (trees 102, 111, 115, 124, and 125). The stem of
another tree failed during an episode of sustained high winds that occurred from 12 to
15 August 2021 (tree 122). The parameters used to define the growing season could not be
evaluated for three other seasons due to malfunctioning dendrometers. For two of these
seasons (tree 111 in 2011 and tree 124 in 2012), the dendrometers had to be replaced due to
water infiltration and ice formation in the sensor that prevented linear movement of the
potentiometer. This phenomenon was observed in one case at the end of March and in the
other during the month of November, two periods characterized by alternating rain and
snow. Following this observation, plastic bibs were stapled to the trunk of the tree above
the sensor to protect it from rain and snow, which prevented the problem from recurring.
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Finally, the 2018 season could not be evaluated for one tree (122) because the potentiometer
had reached its maximum stroke during the growing season, and the late readjustment
of the sensor made it impossible to join the series of measurements before and after the
period with missing measurements. In the end, the studied database includes 4.83 million
soil temperature measurements and 4.85 million stem radius measurements at a temporal
resolution of 15 min, from which we characterized the tree growth seasonality of 94 of the
144 seasons (Figures S1–S12).

3.2. Tree Growth Seasonality

Annual, treatment, and overall averages of parameters characterizing the seasonal
dynamics of balsam fir radial growth are presented in Table 1. Over the 12 studied years,
the growth onset of balsam fir trees occurred, on average, on day 152 ± 7 (31 May–1 June;
Tables 1 and S1). The earliest seasonal onset was observed in 2013, 10 days earlier than the
average (day 142, 22 May), while the latest season, observed in 2019, started 11 days later
than the average (day 163, 12 June). The average growth onset of control (DOY 151) and
heated (DOY 152) trees did not differ significantly, and the soil warming treatment did not
influence yearly variability (P ≥ 0.1 for treatment–year interaction; Table 2).

Table 1. Average metrics of the seasonal radial balsam fir growth dynamics for control and soil-heated
trees over a 12-year period (2010–2021).

Years Means

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Growth onset (DOY; 5% of yearly growth completed)
Control 147 155 147 140 149 149 155 156 157 164 157 146 151
Heated 145 160 148 146 157 148 153 153 154 162 155 145 152
Overall 146 157 147 142 152 149 154 155 156 163 156 146 152

Growth cessation (DOY; 95% of yearly growth completed)
Control 249 232 236 241 273 241 264 248 294 259 242 214 248
Heated 254 232 242 242 261 226 268 223 234 242 232 206 240
Overall 252 232 239 242 268 235 266 237 270 252 238 211 244

Growing season duration (days; from 5% to 95% of yearly growth completed)
Control 102 77 89 102 124 92 109 92 137 95 85 68 96
Heated 109 72 95 96 104 77 116 71 80 80 76 61 88
Overall 106 75 92 99 116 86 112 83 114 88 81 66 93

Total annual growth (µm)
Control 1572 1672 1260 679 547 685 896 1292 1107 1055 1102 1065 1115
Heated 1018 1031 1079 824 818 1301 1513 1957 1409 1504 1547 1090 1216
Overall 1295 1322 1178 741 663 949 1160 1577 1228 1248 1293 1073 1160

Average daily growth rate (µm/day)
Control 15.4 21.6 16.6 7.4 4.3 8.0 8.5 15.1 7.9 11.3 13.9 15.8 12.7
Heated 11.4 14.9 12.7 8.9 8.1 16.4 13.9 26.9 17.6 18.7 20.4 17.9 15.0
Overall 13.4 17.9 14.8 8.0 5.9 11.6 10.8 20.2 11.8 14.4 16.7 16.5 13.7

Table 2. Mixed between-subjects (control/heated) and within-subjects (years) analysis of variance of
the trimmed means of parameters used to characterize the growth phenology of 7 balsam fir trees
over the 2010–2021 period, excluding the 5 trees that did not survive the combined drought and
defoliation events occurring in 2012.

Effect
Onset Cessation Duration

Total Rate
5% 80% 90% 95% 80% 90% 95%

Treatment 0.2 2.0 5.0 * 9.6 * 2.8 5.6 * 11.2 ** 8.4 ** 21.0 ***
Year 85.1 *** 38.1 *** 14.4 *** 68.2 *** 3.5 * 3.0 * 19.0 *** 3.8 * 9.6 ***

Interaction 0.5 0.8 1.0 27.2 *** 1.6 1.0 2.9 * 0.9 1.3

Significance: * < 0.1, ** < 0.01, *** < 0.001.
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Growth cessation (95% of yearly growth completed) occurred, on average, on day
244 ± 27 (31 August–1 September). The earliest end date was observed in 2021, 33 days
sooner than the average (day 211, 30 July), while the latest end date was observed in
2018, when the season ceased 26 days later than the average (day 270, 27 September). The
growth cessation of warmed trees (day 240) occurred, on average, 1 week (7 days) earlier
than for the control trees (day 248, P < 0.1; Tables 1, 2 and S2), and the effect of the soil
warming treatment varied among years (P < 0.1 for treatment–year interaction; Table 2),
with maximum differences of 24 and 60 days for the years 2017 and 2018, respectively.

On average, the resultant growing season length was evaluated as 93 ± 26 days, with
longer growing seasons for control trees (96 days) than for heated trees (88 days, P < 0.001;
Tables 1, 2 and S3) and a less significant interaction of the soil warming treatment with the
years (P < 0.1, Table 2). On average, the total annual growth ranged from 0.66 mm in 2014
to 1.58 mm in 2017 and averaged 1.16 mm over the 12-year period (Tables 1, 2 and S4). The
total annual growth of the heated trees is 9.1% higher than for the control trees (P < 0.01;
Tables 1 and 2), and this difference does not vary significantly over the years (P > 0.1 for
treatment–year interaction, Table 2). Trees grew, on average, at a mean daily growth rate of
13.7 µm per day, with an 18.1% higher growth rate for heated (15.0 µm d−1) compared to
control (12.7 µm d−1) trees (P < 0.001, Tables 1, 2 and S5). There is no significant difference
in the effect of the warming treatment on tree growth rates within years (P > 0.1 for the
treatment–year interaction, Table 2). As for total annual growth, the lowest overall average
growth rates were observed in 2013 (8.0 µm d−1) and 2014 (5.9 µm d−1).

While, on average, 95% of the total annual growth is completed by day 244 (Table 1),
80% of total growth is completed 43 days earlier (DOY 201, Table S6), and 90% of the
total growth is completed 25 days earlier (DOY 222, Table S7). Considering the lower
threshold value for characterizing the end of the growing season (80% or 90% of the
total annual growth instead of 95%) considerably reduces the between-trees and within-
years variability of this seasonal parameter and the corresponding growing season length
(Tables 1 and S6–S9). The effect of the warming treatment on the timing of growth ces-
sation and growing season is more tenuous when considering a lower threshold for the
characterization of growth cessation (Table 2). Differences in growth cessation, growing
season length (95% of yearly growth completed), and daily growth rates between heated
and control trees remain statistically, but marginally, significant (P < 0.1) when including
the 3 growing seasons of the 5 trees that did not survive the combined defoliation and
drought event of 2012 (Table S10). Nevertheless, no difference in the total annual growth
between treatments was detected.

3.3. Correlations among the Seasonal Parameters

The analysis of the correlation among parameters characterizing radial growth season-
ality revealed that the total annual growth is closely and positively related to the average
daily growth rate (p = 0.88, P < 0.001), the latter being negatively related to the timing of
growth cessation (95% of yearly growth completed, p = −0.59, P < 0.001) and to growth
duration (p = −0.60, P < 0.001), but not to the timing of growth onset (p = −0.04, Table 3).
The duration of the growing season is closely and positively related to the timing of growth
cessation if a 95% threshold was considered (p = 0.93, P < 0.001), and the relationship
remain statistically significant for the two other thresholds analyzed (80% and 90%). Finally,
the timing of growth cessation is positively related to the timing of growth onset, with a
tighter relationship when the 80% threshold was considered (P < 0.001, Table 3).
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Table 3. Spearman’s rank correlation coefficient among the parameters used to characterize growth
phenology of 7 balsam fir trees over the 2010–2021 period, excluding the 5 trees that did not survive
the combined drought and defoliation event occurring in 2012.

Effect
Cessation Duration

Total Rate
80% 90% 95% 80% 90% 95%

Onset 5% 0.51 *** 0.26 * 0.23 * −0.28 ** −0.17 −0.05 −0.08 −0.04
Cessation 80% 0.49 *** 0.41 *** 0.59 *** 0.27 ** 0.28 ** 0.02 −0.10

90% 0.68 *** 0.30 ** 0.87 *** 0.60 *** −0.24 * −0.45 ***
95% 0.22 * 0.55 *** 0.93 *** −0.22 * −0.59 ***

Duration 80% 0.46 *** 0.35 *** 0.11 −0.06
90% 0.62 *** −0.22 * −0.44 ***
95% −0.21 * −0.60 ***

Total 0.88 ***

Significance: * < 0.1, ** < 0.01, *** < 0.001.

4. Discussion
4.1. Tree Growth Seasonality

This study is the first to document seasonal radial growth dynamics of trees in cold
environments over a relatively long period from high resolution radius dendrometer
measurements using the ZG concept. Our analysis over the 12-year period revealed
that the onset of growth of balsam fir trees occurs, on average, on day 152 ± 7 (±1 SE,
31 May–1 June). The timing of growth onset and cessation of naturally growing balsam
fir trees located at a nearby site (approximately 500 m away) has already been estimated
from raw dendrometer data using the CG approach [20]. From this analysis, an earlier
average growth onset (by 12 days) was identified for the 2004–2010 period. For the 2010 and
2011 growing season, D’Orangeville et al. [34], also using the CG approach, identified that
growth onset occurred 25 and 28 days sooner, respectively, for the same trees studied here.

The earlier onset of growth derived from the CG approach may be induced by the
confusion between spring growth onset and stem rehydration occurring before the begin-
ning of cambial growth (Figure 1). The ZG concept by which growth onset was determined
from the previous maximum stem radius recorded over the previous season apparently
makes it possible to accurately identify the beginning of cambial growth, even during the
phase of tree stem enlargement due to the rehydration of trees in early spring (Figure 1).
A close look at Turcotte et al.’s study [32] revealed that the onset of wood formation in
black spruce trees, as determined by cellular analysis of repetitively sampled micro-cores,
coincides with the time when the radius of the tree exceeds the maximum value recorded
by dendrometers over the previous season. This growth onset was May 27 in 2005, which
is very close to our average growth onset estimate over the 12-year period (5 days earlier,
DOY 147 vs. 152). Turcotte et al.’s study [32] is among the few documenting the large
magnitude of tree shrinkage occurring during the winter period for trees growing in the
cold area of the Canadian boreal forest. In most cases, trees are monitored during the
frost-free period, but according to the ZG concept, trees should be monitored continuously
for growth onset determination, including during the late fall and winter period of stem
shrinkage due to stem dehydration, and during the early-spring stem expansion period
due to stem rehydration [22].

Our dating of seasonal growth cessation shows much greater interindividual and
interannual variability than growth onset estimates, as well as greater divergence from
growth cessation dated using the CG approach (Table 1; [20,34]). This is consistent with
earlier observations that this metric shows greater variability as compared to growth onset,
which was not as well explained by the climatic variables over the 2004–2010 period for
trees growing nearby [20]. The asymptotic curve of the late growing season growth makes
the determination of growth cessation more complex when compared to the early growing
season period, which is characterized by more abrupt changes in the dendrometer records
(Figures 1 and S1–S12; [20]). The CG approach is very sensitive to stem shrinkage due
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to dry conditions occurring at the end of the growing season, or to the onset of winter
desiccation in late fall, as the asymptote of the modeled progressive growth curve will be
underestimated by attempting to minimize the sum of the squared residuals at the end
of the growing season [20]. Dating of growth cessation using the ZG approach is also a
challenge. From this concept, identification of growth cessation relies on the maximum
radius size recorded in a given year. Because this maximum value depends on a single
high-resolution observation, very small erratic fluctuations in the signal occurring at the
end of the growing season can lead to great variability in determining the end-of-season
dates, given the asymptotic shape of the dendrometer data during this period. To overcome
this problem, Knüsel et al. [22] proposed the use of a tolerance factor for characterizing
growth onset and cessation by excluding the first and last observations corresponding
to a certain proportion of the total annual growth. A sensitivity analysis of this factor
for the application of the ZG concept revealed a much greater influence on dating of
growth cessation than growth onset, for the reason mentioned above. The use of the lower
threshold value reduces the variability in the timing of growth cessation by avoiding the
slow growth phase of the late growing season, while capturing a large part of the annual
growth (Figures S1–S12). The time it takes to reach a certain threshold (e.g., 50% of yearly
growth completed) and to move from one threshold to another could also be studied [36].

Correlation analyses revealed that the length of the growing season was closely related
to the timing of growth cessation (p = 0.93, P < 0.001, Table 3), but not to the timing of
growth onset. This indicates that the late and slow-growing part of the season is the most
determinant of the seasonal growth duration. However, growth cessation and duration are
only marginally significantly related to total annual growth (p = −0.21 to −0.22, P < 0.1),
indicating that growth phenology metrics (onset, cessation, duration) are not the only
drivers of tree growth and productivity. Seasonal growth was also a result of the growth rate
during the growing season, with the latter being strongly positively related to cumulative
seasonal growth (p = 0.88, P < 0.001, Table 3). The average growth rate over the season is
also negatively related to the timing of growth cessation (p = −0.59, P < 0.001). Given the
dynamics of cell growth, a season that ends abruptly will result in a higher growth rate
over a short period of time, whereas seasons that last longer will have a protracted period
of lower average growth and a lower overall growth rate. The weak relationship observed
with the start of the growing season underscores the importance of late-season weather
conditions in determining growing season duration. Using the CG approach, Duchesne
et al. [20] similarly observed that growing season duration for balsam fir trees growing
in the vicinity of the present study from 2004 to 2010 was primarily dictated by growth
cessation, while growth onset was much less variable between years. The synchronicity
of growth onset over the years suggests that day length or photoperiod, a parameter that
is much more constant from year to year compared to spring climatic conditions, may be
an important factor determining the onset of the growing season [48,49]. In the context
of climate change, this raises concerns about the adaptation of tree species to the future
synchrony of climate seasonality and photoperiod.

4.2. Soil Warming Effect

We hypothesized earlier growth onset, longer duration of the growing season, and
superior annual radial growth for warmed-soil trees compared to controls. Contrary to our
hypothesis, our results show that growth onset of control and heated trees did not differ
significantly, relativizing the potential effects of earlier snowpack melting and higher soil
temperature on boreal tree seasonal growth onset. The latter is apparently more closely
linked to photosynthetically active radiation and air temperature [20]. Moreover, contrary
to our hypothesis, the growth of warmed trees ceased, on average, 1 week earlier and
lasted 8 days less than that of the control trees. Finally, a part of our hypothesis was
verified, given that (despite a shorter growing season) warmed-soil trees had an 18.1%
higher average growth rate and 9.1% higher total annual growth. This suggests a positive
effect of soil heating early in the growing season, but a negative effect later in the growing
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season. Among the factors potentially favoring a higher growth rate, it has been shown
that soil warming increased the cumulative nutrient fluxes (measured using ion-exchange
membranes) in the forest floor and the mineral horizon during the first 3 years of this
experiment [43]. A higher soil temperature for warmed trees (Figure 2) can also contribute
to providing better growth conditions and higher growth rates, particularly in the early
growing season, when soil water content is elevated because of snowmelt [50]. The effect
of soil warming in the late growing season may, however, exacerbate the general declining
trend in soil water content throughout the growing season until September, when higher
precipitation and lower plant water uptake contributed to the soil water replenishment
at values similar to those noted in the spring [50]. In 2006, an anomalous early growth
cessation (DOY 187, 6 July) and a low seasonal radial growth (550 µm) for trees growing
nearby were related to an early peak in soil temperature [20,51]. No other climatic variable
was found to be correlated with the timing of growth cessation over the 2004–2010 period.
Therefore, exceeding a critical soil temperature (Figure 2) early in the season, coupled with
lower soil water content, may have contributed to the earlier growth cessation and shorter
growing season of warmed trees. Another likely explanation for the early growth cessation
of fast-growing trees is the control of photosynthesis by sink activity [52]. According to this
concept, higher seasonal productivity leads to earlier growth cessation due to carbon sink
limitations. However, this concept is apparently not supported by consistent observations
from the experiments [53].

As reported after a 3-year-long manipulation with soil warming at the studied site [42],
a twin experiment at two other sites showed no significant effect of soil warming on the
phenological phases of cell enlargement, wall thickening, and lignification, nor on the
number of cells produced by black spruce trees (Picea mariana, Mill. BSP) after 3 [54], and
6-year-long manipulations [55]. These studies characterized the xylogenesis of trees from
cellular analysis of weekly sample micro-cores. The temporal resolution of the method used
makes it difficult to detect a difference of a few days in tree growth phenology in response
to the soil warming treatment, as we document in the present study. Here, the relatively
small treatment effect could be detected due to the high temporal resolution of the approach
used to document tree growth phenology. Treatment effects may also be greater over a
12-year period compared to analyses conducted over a 3- or 6-year period. Consistent with
these studies, our analysis nevertheless reveals a relatively small effect of the soil warming
treatment compared to the interannual variability in tree growth seasonality induced by
other climatic parameters, notably air temperature [42,54,55].

4.3. Effects of Drought and Insect Defoliation

A total of 5 of the 12 instrumented trees died as a result of insect defoliation and
the concurrent drought that occurred in 2012. The results indicate that 4 of the 5 dead
trees showed the lowest radial growth among the 12 trees in the years preceding the event
(Table S4), suggesting that the least vigorous trees are primarily those that succumbed.
The impact on the growth of the surviving trees is noticeable 2 to 4 years after the event,
when growth was significantly reduced compared to other years (Table S4). The death of
these trees is unfortunate for the monitoring of the ongoing experiment, but these trees
continue to be monitored with dendrometers. This monitoring represents an opportunity
to document the etiology of tree death. Diurnal cycles are observable in the data, even
several years after tree death. Analysis of these cycles, coupled with information on sap
flow in living trees, could also unravel the influence of ambient air moisture and sap flow
on stem radial variations.

5. Conclusions

This study is the first to document seasonal radial growth dynamics of trees in cold
environments over a relatively long period of 12 years using the ZG concept. The latter
seems well suited to determine the metrics of growth seasonality from dendrometer data
for slow-growing trees subjected to significant winter shrinkage in tree diameter due to
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dehydration. The results contribute to our knowledge on tree growth seasonality in the
boreal forest by showing that growth occurs over a short period of about 3 months, with
most of the growth being achieved in the first 50 days of the growing season. The timing of
growth cessation is the stronger determinant of growing season duration, while growth
onset has a smaller influence. The average growth rate of trees is higher during growing
seasons that end early and is lower as seasons lengthen, meaning that longer seasons
are not necessarily the most productive. Soil warming induced earlier growth cessation
and shortened the growing season, but increased the mean growth rate and total annual
growth of the trees. These results provide crucial information on the potential phenological
response of trees to changes in thermal growing season length to better anticipate the effects
of climate change on boreal forest productivity. However, as is often the case in this type of
study, the results are based on the monitoring of one tree species at a single site. Additional
studies are needed to improve our knowledge of the phenological response of boreal forest
tree species to climate change.
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//www.mdpi.com/article/10.3390/s22145155/s1, Table S1: Growth onset (DOY; 5% of yearly growth
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trees over a 12-yr period (2010–2021); Table S3: Growing season duration (days; from 5% to 95% of
yearly growth completed) for control and soil-heated balsam fir trees over a 12-yr period (2010–2021);
Table S4: Total annual growth (µm) for control and soil-heated balsam fir trees over a 12-yr period
(2010–2021); Table S5: Average daily growth rate (µm/day) for control and soil-heated balsam fir trees
over a 12-yr period (2010–2021); Table S6: Growth cessation (DOY; 80% of yearly growth completed)
for control and soil-heated balsam fir trees over a 12-yr period (2010–2021); Table S7: Growth cessation
(DOY; 90% of yearly growth completed) for control and soil-heated balsam fir trees over a 12-yr period
(2010–2021); Table S8: Growing season duration (days; from 5% to 80% of yearly growth completed)
for control and soil-heated balsam fir trees over a 12-yr period (2010–2021); Table S9: Growing season
duration (days; from 5% to 90% of yearly growth completed) for control and soil-heated balsam fir
trees over a 12-yr period (2010–2021); Table S10: Mixed between subjects (control/heated) and within
subjects (years) analyze of variance of the trimmed means of parameters used to characterize growth
phenology for 12 balsam fir trees over the 2010–2021 period, including the 5 trees that not survived
from the combined drought and defoliation event occurring in 2012; Figures S1–S12: Characterization
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