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Abstract
This work presents a model-agnostic evaluation of four different models that estimate 
a disease’s basic reproduction number. The evaluation presented is twofold: first, the 
theory behind each of the models is reviewed and compared; then, each model is 
tested with eight impartial simulations. All scenarios were constructed in an experi-
mental framework that allows each model to fulfill its assumptions and hence, obtain 
unbiased results for each case. Among these models is the one proposed by Thomp-
son et al. (Epidemics 29:100356, 2019), i.e., a Bayesian estimation method well estab-
lished in epidemiological practice. The other three models include a novel state-space 
method and two simulation-based approaches based on a Poisson infection process. 
The advantages and flaws of each model are discussed from both theoretical and prac-
tical standpoints. Finally, we present the evolution of Covid-19 outbreak in Colombia 
as a case study for computing the basic reproduction number with each one of the 
reviewed methods.
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1  Introduction

During the COVID-19 pandemic, the effective reproduction number R has become 
one of the main tools for public administrations to understand the local evolution 
of the epidemic and later to plan accordingly. The importance of this measurement 
lies in its ability to estimate the number of secondary cases arising from a single 
infectious individual during their entire infectious period. Given its potential, sev-
eral governments (Zhao et al. 2020; Dickens et al. 2020; “The R number” 2020), 
including the Government of Colombia, have used it to mandate lockdowns and 
mobility restrictions to keep infection rates in check, thus avoiding the saturation of 
health facilities.

Despite its popularity, there is no consensus on the best algorithm for the com-
putation of this measurement. Even the most popular models are nuanced by par-
ticular diseases’ biological factors and the social contexts of the populations they 
affect (Adam 2020). For this reason, the purpose of this study is to develop four 
statistical models for the estimation of the effective reproduction number in a way 
that captures both the biological and social dimensions of the epidemic.

We begin by presenting the model proposed by Cori et al. (2013) and extended 
by Thompson et al. (2019), which has been implemented in several software pack-
ages and has remained popular during the COVID-19 pandemic. Due to its sta-
tistical techniques, we named this model as the Bayesian model. We analyze the 
model’s assumptions, advantages, and limitations. In particular, we identify the 
modelling features that weaken the predictive power of this model under scenarios 
of social changes. For the COVID-19, for example, the most common tool imple-
mented by the governments has been the implementation of curfews and lockdowns 
that significantly change the mobility patterns of people. Thus, under these circum-
stances, conclusions derived from the previous model become less reliable.

By acknowledging the merits and weaknesses of the Bayesian model, we then 
propose three alternative models that, from a theoretical standpoint, address these 
challenges. The first model, called state-space model, comes from a time-series 
approach, and introduce elements of state space models into the logic of the disease 
dynamic to better predict its reproductive rate. The other two models, named Gen-
eral Poisson and Exponential Poisson, take a discrete event simulation approach 
that pay more attention to the data generation processes and via Monte Carlo simu-
lations estimate the evolution of the disease. While tackling the issues of the Bayes-
ian model, there is no preference hierarchy among these four options. For example, 
the last two models are excellent at capturing the impact of policies but require 
strong computational capacity. In contrast, the state-space model is easy to imple-
ment and captures policies well, but it is more volatile than the previous models, so 
noise from the data can confuse it.

In order to better understand the scope and limitations of these models, we 
present eight simulated epidemic scenarios and the corresponding R estimations 
from each of the models. This allows us to empirically compare the advantages 
and disadvantages of the application of each model. Moreover, with the insights 
derived from the simulation exercise, we use the developed models in a case study 
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to analyze the reproduction number of the COVID-19 pandemic in Colombia dur-
ing the first months of the outbreak. The results of these exercises are summarized 
in Appendix as a Table 1 that is intended to guide researchers and practitioners in 
the cases where each model should be preferred, and what are the caveats that they 
need to be aware of. In that way the paper brings to the academic literature novel 
modelling strategies to capture the dynamics of diseases under context with social 
changes and at the same time can be used as a quick reference guide for practition-
ers that want to use these techniques to develop policies to control the spread of the 
disease.

2 � Estimating the Reproduction Number

This section describes the theory and calibration of four alternative models for the 
estimation of the reproduction number. The first subsection is dedicated to conceptual-
izing the reproduction number and the scope of its definitions. The second subsection 
presents two of the models, both of which are based on the concept of the “time-since-
infection,” and estimates reproduction numbers using time series methods. The final 
subsection presents two novel models based on stochastic simulation processes that 
describe the infection dynamics of the disease. The models are calibrated to fit the 
observed cases, and the reproduction number series are extracted from the models.

2.1 � Different Reproduction Numbers

One of the key elements for understanding the evolution of an epidemic is the basic 
reproduction number. This metric estimates the number of secondary cases arising 
from a single infectious individual during their entire infectious period. Its value can 
be divided into three components (van den Driessche 2017):

1.	 The duration of the infectious period.
2.	 The probability of the infection being passed on from an infected individual to a 

susceptible secondary individual.
3.	 The mean number of times that an infectious individual comes across a susceptible 

individual in a single unit of time.

Such a decomposition makes it evident that this measurement is influenced by the 
disease’s biological factors (which determine how long an individual is infectious and 
define how easy it is for the disease to be transmitted between individuals) as well as 
by social factors (which determine the types and frequencies of interactions between 
individuals). Because of the latter type of factors, the basic reproduction number of 
almost any disease depends on the social characteristics of the population, making it 
hard to extrapolate results across populations. Moreover, these social factors are also 
time-dependent, as they are affected by changing factors such as mandatory quaran-
tines, social distancing guidelines and changes in the susceptible population.
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Authors such as Fraser (2007) and Cori et  al. (2013) proposed differentiating 
between two types of reproduction numbers. The effective reproduction number, 
R(t) , is defined as the mean number of individuals who an individual whose infection 
started on day t will infect given that all three of the aforementioned factors remain 
constant. On the other hand, the case reproduction number, RC , accounts for changes 
in these factors during the individual’s infectious period. Hence, the first number has 
a prospective and counterfactual nature, whereas the second represents a retrospective 
approach that allows for the visualization of the influence of social changes (usually 
driven by public policy) on the evolution of the epidemic. Last, both of these indica-
tors indicate whether the epidemic is expanding (if they are greater than 1) or contract-
ing (if they are smaller than 1).

Under these definitions, the following sections present the models used to estimate 
each of the indicators. Please note that, in what follows, the quantities represented by a 
single symbol may technically vary between models, however its conceptual purpose 
is the same. This was designed to highlight the correspondent parts among the models 
without the need of additional symbols that will complicate the reading flow.

2.2 � Time‑Since‑Infection Models

This section presents two models based on the original estimations used by Ker-
mack-McKendrick (1927). We choose to follow this modeling strategy because of its 
intuitive calculations (Fraser 2007) and its popularity in evaluating the most recent 
outbreaks (Thompson et  al. 2019). The reference model for this section is the one 
developed by Cori et al. (2013), which epitomizes the current state of this family of 
models. Given the techniques that are used in this work, we refer to this model as 
the “Bayesian model” from this point on. We begin by describing its main features, 
discussing its limitations, and finally introducing a novel model that overcomes these 
limitations.

2.2.1 � Bayesian Model

Let IN(t) be the number of individuals who become infectious during period t . This 
stochastic value depends on the number of infectious individuals found during pre-
vious time steps adjusted by their infectious potential during those time steps. The 
renewal equation for this process is defined as

Equation  (1) is understood as the conditional expectation of IN(t) given the inci-
dences noted in previous periods. We omit the usual conditional notation from the 
expected value to simplify the notation, and carry this convention throughout the rest 
of the work.

To illustrate Eq. (1), an individual who became infectious during period t − 10 
is expected to infect �(t, 10) susceptible individuals during period t . Furthermore, 
the value of �(t, �) is assumed to be multiplicatively decomposable into two factors: 

(1)E
[
IN(t)

]
=

∞∑

�=1

�(t, �)IN(t − �).
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�(t) , which reflects the social characteristics of the population, and �(�) , which is 
exclusively associated with the biological dimension of the disease. We therefore 
write

Based on the logic suggested by Wallinga and Teunis (2004), �(�) can be inter-
preted as the distribution of the serial interval of the disease. In other words, �(�) 
represents the probability that an individual begins to be infectious � units of time 
after the person who infected them became infectious themselves. Under this inter-
pretation, Wallinga and Teunis (2004) deduced that the mean number of individuals 
who each infected individual will infect is given by

Combining both equations, we obtain

and

Thus, following Fraser’s (2007) logic:

Assuming we possess a priori knowledge about the serial interval, the calibration 
of this model is reduced to the estimation of E

[
IN(t)

]
 . To that end, we assume that 

the number of infectious cases during period t follows a Poisson distribution with a 
mean dictated by Eq. (5). Furthermore, we also assume that R(t) remains constant 
during a time window of length w following period t . Under these assumptions,

Therefore, given a prior distribution of R ∼ Gamma
(
�1, �2

)
 , where �1 and �2 are 

the rate and shape parameters, respectively, the posterior distribution of R is

(2)�(t, �) = �(t)�(�).

(3)R(t) =

∞∑

�=1

�(t, �) = �(t).

(4)R(t) =
E
�
IN(t)

�

∑∞

�=1
�(�)IN(t − �)

(5)E
[
IN(t)

]
= R(t)

∞∑

�=1

�(�)IN(t − �).

(6)Rc(t) =

∞∑

�=1

�(�)R(t − �).

(7)
t∑

t�=t−w

IN
(
t�
)
∼ Poisson

(

R(t)

t∑

t�=t−w

∞∑

�=1

�(�)IN
(
t� − �

)
)

.

(8)R(t) ∼ Gamma

(

�1 +

t∑

t�=t−w

IN
(
t�
)
, �2 +

t∑

t�=t−w

∞∑

�=1

�(�)IN
(
t� − �

)
)

.
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According to Fraser (2007), the main advantage of this model is the ease of its compu-
tations. However, conceptual problems arise from the estimation of the distribution of the 
serial interval. As the author suggested, serial intervals are influenced by social directives. 
Hence, the assumption of a fixed serial interval distribution can affect the ability of our 
estimated R(t) to capture such changes. In addition to this conceptual problem, the selec-
tion of the window w poses a challenge. This meta-parameter has a smoothing effect over 
subsequent periods. For this reason, this estimation of R(t) reflects the infection rate over 
a small number of subsequent days instead of a single day.

2.2.2 � State‑Space Model

Looking to overcome both of the limitations mentioned in the previous section, the pre-
sent model redefines Eqs.  (1–6) to produce a definition of �(�) that captures only the 
biological dimension of the disease. Moreover, the model employs a time series method 
known as a state-space model instead of a Bayesian estimation framework, thus avoiding 
issues related to the estimation window.

Let fInc be a probability function, where fInc(t) is the probability that it takes an indi-
vidual t days since being exposed to the disease to reach the beginning of his infectious 
phase. Similarly, let FInf be a cumulative distribution function, where FInf(t) is the prob-
ability that a person remains infectious for at most t time steps. We thus define

Intuitively, Eq. (9) defines �(t) as the probability that an individual who was infected t 
periods ago remains infectious today. Moreover, Ω =

∞∑

�=1

�(�) is the expected amount of 

time an individual remains infectious; this is a direct consequence of applying a convolu-
tion to the survival function in Eq. (9). Equation (1) can thus be modified to address dis-
ease incubation periods:

Notice how this equation draws a relationship between future and past incidences. 
Combining these two equations, we see that

and

(9)�(t) =

t∑

�=1

fInc(�)
(
1 − FInf(t − �)

)
.

(1′)E

[
∞∑

�=1

fInc(�)IN(t + �)

]

=

∞∑

�=1

�(t, �)IN(t − �).

(2′)R(t) =
E
�∑∞

�=1
fInc(�)IN(t + �)

�

∑∞

�=1
�(�)IN(t − �)

Ω

(3′)E

[
∞∑

�=1

fInc(�)IN(t + �)

]

=
R(t)

Ω

∞∑

�=1

�(�)IN(t − �).
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The quantity R(t) is thus calculated as the product of the transmission rate on a 
given day, E[

∑∞

�=1 fInc(�)I(t+�)]∑∞

�=1 �(�)I(t−�)
 , and the mean number of days an individual will remain 

infectious, Ω.
As in the previous model, we assume that the incidences at time t follow a Poisson 

distribution with a mean as given by Eq. (4′):

However, instead of assuming a Bayesian context for the data, we assume a non-
Gaussian state-space model. State-space analysis is well suited to time series problems 
in which we’re interested in the hidden properties of a system given a series of associ-
ated observations (Durbin and Koopman 2012). In our case, these are the R(t) series 
and the series of incidences, respectively.

State-space models are usually described by a state equation, which describes 
the dynamics of the unobserved system state, and an observation equation, which 
describes how that state relates to the observations. Equations 10 and 11, respectively, 
instantiate those equations for the problem at hand.

where

and

Under initial conditions1

(4′)
∞∑

�=1

fInc(�)IN(t + �) ∼ Poisson

(
R(t)

Ω

∞∑

�=1

�(�)IN(t − �)

)

.

(10)�t+1 = T�t + R�t,

(11)
∞∑

�=1

fInc(�)IN(t + �) = e�t,1
∞∑

�=1

�(�)IN(t − �),

T =

[
1 1

0 1

]

,

R =

[
�1 0

0 �2

]

,

�t =
[
�t,1 �t,2

]�

� t ∼ N

([
0

0

]

,

[
1 0

0 1

])

.

1  Large variances are given to the other prior distributions to highlight our lack of knowledge about 
them. This allows the model to quickly adjust to the data.
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Kalman filtering and smoothing are applied to approximate minimum variance 
estimators for the means and covariances of each state vector �t (Durbin and Koop-
man 2012). From the previous equations, the values of �1 and �2 are yet to be defined. 
However, these can be estimated as maximum likelihood estimators on the incidences. 
Finally, the parameter �1,1 is adjusted to match as prior the R0 found in the epidemio-
logical literature; however, it can be estimated also via maximum likelihood over that 
neighborhood to give it the freedom to adjust to the specific context being analyzed.

From the previous definitions, the system state is thus described by a two-dimen-
sional vector in which the first component is related to R(t) , and the second describes 
a stochastic slope for that series (Harvey 1990). More explicitly, it is possible to derive 
from Eq. (11) that

Following this line of thought, Rc(t) can also be computed, analogously to Eq. (6), 
by

The reader should note that this estimation procedure overcomes the two theoreti-
cal problems of the Bayesian model in the previous section. However, it poses the new 
challenge of obtaining the a priori estimations of the incubation and infection time 
distributions. For that reason, even though this model represents a theoretical improve-
ment over the Bayesian model, its application is contingent on the availability of accu-
rate estimations of the aforementioned distributions.

2.3 � Simulation‑Based Models

The two models described in the previous sections are based on fitting a Poisson pro-
cess that represents the transmission dynamics. Instead of getting into the details of 
the process’s dynamics, these models reduce the underlying process to a link equation 
that involves the observed sequence data. This subsection presents a different perspec-
tive: one centered around modeling the process. This shifts the problem from a statisti-
cal challenge to a probabilistic challenge. These new models also rely on simulations, 
which introduce a computation-time problem. The first model presented in this sec-
tion describes fairly general dynamics, but its calibration is computationally demand-
ing. The second model limits the first one, allowing for analytic solutions to otherwise 
recursive computations, thus easing some of the computational burden of the model. 
We name them the general Poisson model and exponential Poisson model to reflect the 
additional restrictions added to the second model.

�1 =
[
ln
(

R0

Ω

)
0
]�

, P1 =

[
109 0

0 109

]

.

(12)R(t) = e�1,tΩ.

(6′)Rc(t) =

∞∑

�=1

�(�)
R(t − �)

Ω
.
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2.3.1 � General Poisson Model

We begin by summarizing the notation for the rest of this section:
I(t) ∶= the number of infectious individuals during period t.
IN(t) ∶= the number of newly infectious individuals during period t (i.e., they were 

not infectious during period t − 1).
E(t) ∶= the number of individuals in the disease incubation stage during period t.
EN(t) ∶= the number of newly incubating (or exposed) individuals during period t.
Let Finc and Finf be the distributions of infected individuals’ incubation and infec-

tious period lengths, respectively. Both distributions are assumed to be independent of 
time and the characteristics of individuals.

�(t) ∶= the expected number of individuals who a single person will infect during 
period t.

We chose to denote the last variable by �(t) because of its similarity to �(t, �) from 
previous sections. However, in this case, there is no lag in the computations because 
this value is linked with the infectious potential of an individual during period t and 
not to the potential of previously infected individuals that remain infectious at time t.

2.3.2 � Process Description

The process begins with the following configuration:

•	 EN(0) > 0.
•	 ∀� ≥ 0, I(�) = IN(�) = 0.
•	 ∀� ≥ 1 E(�) = 0.

•	 t = 0.

Step 1  ∀i ∈
{
1… , EN(t)

}
 , generate two samples xinc(i) and xinf (i) from Finc and 

Finf  , respectively. Next, update the process variables according to:

E(h) → E(h) + 1 for all h ∈
{
t + 1,… , t + xinc(i)

}

IN
(
t + xinc(i) + 1

)
→ IN

(
t + xinc(i) + 1

)
+ 1

I(h) → I(h) + 1 for all h ∈
{
t + xinc(i) + 1,… , t + xinc(i) + xinf(i)

}

Step 2  Update EN(t + 1) as a sample of a Poisson variable with mean �(t)I(t).

Step 3  Update t → t + 1 and return to Step 1.

Finally, let Ω be the expected value of Finf . The reproduction numbers for this pro-
cess can be computed by

and

(4″)R(t) = �(t)Ω
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Model Calibration
Given the distributions Finc and Finf and the initial number of exposed cases EN(0) , 

fitting the model is equivalent to extracting the series �(t) from the incidence data. We 
carry out this process in two steps: the first establishes a goodness-of-fit criterion, and 
the second reduces overfitting of the incidence series.

For all t ∈ 1,… , T , let ÎN(t) be the observed number of individuals who start being 
infectious during period t . On the other hand, let f (x ∶ �) be the fraction of the pro-
cess simulations in which IN(t) = x given the parameters B. Then, the log-likelihood2 
of the observed incidence series is given by:

The maximum likelihood estimator B can be obtained from Eq.  (11). Neverthe-
less, this method produces significant overfitting of the incidence series. We avert this 
defect by introducing a regularization factor � on the series �(t) in the following cost 
function:

A higher value of � will thus impose a higher cost on the nonlinear changes along 
the �(t) series; these nonlinear changes are likely due to overfitting. The final estima-
tion can then be rewritten as

We end this subsection by providing a selection criterion for the meta-parameter � . 
Assuming the process’s true parameters are �opt(t;�) for some � ∈ R+ , it holds that

where T  is the length of the vector �(t) as well as that of the incidence time series. To 
arrive at this statement, suppose vector �opt(t;�) is indeed the true series �(t) describ-
ing the process. �opt(t;0) is optimized freely with T  parameters, whereas �opt(t;�) is 
said to be optimized over a subset of the previous optimization space. Equation 14 is 
then the null hypothesis of a Chi-squared likelihood-ratio test.

A reasonable meta-parameter � is one for which the p value of the test is not too 
small (we recommend a value above 5%), ensuring that the regularized optimum is not 

(6″)Rc(t) =

∞∑

�=1

�(�)R(t − �).

(13)ll(�) =

T∑

t=1

ln
(
f
(
ÎN(t) ∶ �

))
.

(14)C(�;�) = −ll(�) +
�

T − 2

T∑

t=3

(
�(t − 1)

�(t)
−

�(t − 2)

�(t − 1)

)2

.

(15)�opt(t;�) = (C(�;�(t))).

(16)2
(
ll
(
�opt(t;0)

)
− ll

(
�opt(t;�)

))
∼ �2

T
,

2  The presented log-likelihood function is an approximation based on the number of simulations com-
pleted. Nevertheless, by the law of large numbers, it is well known that this estimation converges to that 
of the likelihood process.
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significantly different from the unrestrained optimum. Our algorithm then proceeds 
by calculating the p values associated with increasingly high values of � and then by 
selecting the highest value of � for which the p value remains above the predetermined 
threshold.

2.3.3 � Exponential Poisson Model

An advantage of the general Poisson model is its flexibility in terms of the distribu-
tions Finc and Finf . However, its reliance on simulations results in the requirements 
of extensive computations as well as a large sample of data in order for its results to 
be statistically meaningful. Given those limitations, we now propose a less flexible 
model than the general Poisson model, but one that allows for the analytical com-
putation of previously recursive calculations while preserving most of the general 
model’s power. We modify the general model as follows:

�1 ∶= Let e−�1 be the probability that an individual incubating the infection dur-
ing period t becomes infectious during period t + 1.

�2 ∶= Let e−�2 be the probability that a previously infectious individual becomes 
noninfectious during period t.

Notice how these new definitions limit Finc and Finf to memoryless processes. 
We thus derive

These equations allow for a very efficient calculation of the expected state of 
the system during any period given only its initial state. Last, note that Eqs.  (4″) 
and (6″) remain unchanged since this model is a particular instance of the general 
model.

Model Calibration
Under the new assumptions, the likelihood of the parameter vector � can be 

rewritten as

Equations (12–14) remain unchanged from those of the general case.

(17)E[I(t)] = e−�2E[I(t − 1)] + (1 − e−�1 )E[E(t − 1)],

(18)E[E(t)] = �(t − 1)E[I(t − 1)] + e−�1E[E(t − 1)],

(19)E
[
IN(t)

]
= (1 − e−�1)E[E(t − 1)],

(20)E
[
EN(t)

]
= �(t − 1)E[I(t − 1)].

(4′)ll(�) =

T∑

t=1

(
E[I(t)]ln

(
ÎN(t)

)
− E[I(t)] − ln

(
ÎN(t)!

) )
.
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2.3.4 � Construction of Confidence Intervals

Unlike for the time-since-infection models, extracting confidence intervals for R(t) 
from the Poisson models is not entirely straightforward. We thus propose a bootstrap 
procedure to this end, based on the technique proposed by Davison and Hinckley 
(1999).

Let IN(t) be the simulated incidence series obtained by minimizing the loss function 
described in Eq. (12). The residual of this series with respect to the observed series is 
defined by

For an integer v > 0, v ≤ t ≤ T − v defines the local moving average

and the local variance estimator

In all of the simulations in this study, v is set to 2. Nevertheless, experiments have 
shown this process to be robust to changes in this meta-parameter.

For extreme values of t , Eqs. (20) and (21) are adapted by omitting the necessary 
terms. Given the likely heteroscedasticity of series ÎN(t) , we standardize the above 
residuals by

Resampling is then performed as follows: let integer B denote the number of resam-
pling iterations (typically, B = 1000 ), and let T be the length of the observed incidence 
series. For each b in { 1, … , B} , sample {r∗

b
(1), … , r∗

b
(T)} with replacement from 

{r(1), … , r(T)} . The b-th bootstrapped series is then obtained as

The model in question is then fit to the series Î∗
b
(t) following the procedure given in 

the previous subsections, yielding a bootstrapped series R∗
b
(t). For each t , the collec-

tion of estimators R∗
1
(t), … , R∗

B
(t) allows for the extraction of quantiles that define a 

confidence interval for R(t).
Finally, notice that every step of the calibration procedure is continuous. Thus, by 

the envelope theorem, the bootstrapped �(t) are suitable for defining confidence inter-
vals for R(t) and Rc(t).

(21)e(t) = IN(t) − ÎN(t)

(22)Īv(t) =
1

2v + 1

t + v∑

𝜏 = t − v

�IN(𝜏)

(23)s2(t) =
1

2v

t + v∑

� = t − v

(
ÎN(�) − I

−
v
(t)

)2

.

(24)r(t) =
e(t)

s(t)
.

(25)Î∗
b
(t) = IN(t) + r∗

b
(t)s(t).
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3 � Evaluation of Simulated Data

In the present section, the models described above are compared in terms of the qual-
ity of their fit to simulated data generated for eight theoretical settings that correspond 
to different functional forms of R(t) ; these data were simulated following the logic 
of the disease infection process. For the simulations, a discrete model is used where 
individuals in an incubation state turn infectious in the next stage with probability Finc , 
while infectious individuals turn noninfectious in the next stage with probability Finf . 
Following the settings of the general Poisson model, for these simulations, we have

In this way, from a given series of �(t) coefficients or, equivalently, from a series of 
reproduction numbers R(t), a series of new infected cases, IN(t), can be simulated.

Visual inspection is used as the method of smoothing the hyperparameters (time 
windows for the Bayesian model and � for the general Poisson model). We discuss this 
selection in Sect. 3.5.

The parameters used for the simulations are as follows:

1.	 Bayesian model window size: 7
2.	 Maximum number of lag periods: 7 in Eqs. (7) and (7′)
3.	 Finc and Finf are generated from geometric distributions with parameters 2 and 7, 

respectively.

a.	 For the time series models, given the truncation in the number of lags allowed, 
only the first seven values are considered, and their probabilities are normalized 
so that their sum is 1 while keeping the mean unchanged.

b.	 The serial interval is computed from the original Finc and Finf distributions. 
Then, the truncation and normalization of the probabilities are performed.

c.	 Finally, the general Poisson model is not included in the simulations. The high 
computational cost for this model implies that its calibration can take several 
hours or even days for a sufficiently long data series, limiting its use in public 
policy decisions. Thus, the models included are the Bayesian model, the state-
space model and the exponential Poisson model.

3.1 � Simulation Scenarios

To attain a complete evaluation of the models studied, the simulations considered repre-
sent different disease transmission dynamics. In practice, the R(t) series corresponds to a 
combination of some of these basic dynamics as well as other dynamics. Nevertheless, 
studying these dynamics separately helps in identifying the strengths and limitations of 
each model. The scenarios considered are the following:

1.	 R(t) remains constant.
2.	 R(t) linearly increases.
3.	 R(t) linearly decreases.

EN(t + 1) ∼ Poisson(�(t)I(t)).
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4.	 R(t) increases in steps.
5.	 R(t) decreases in steps. This scenario resembles the results obtained by different 

models fitted to the COVID-19 epidemic data in Colombia up to April 2020.
6.	 R(t) remains constant except for two large infectious peaks.
7.	 R(t) suddenly vanishes.
8.	 The observed new case (incidence) series presents small values with respect to its 

expected value.

3.2 � Evaluation Metric: Mean Absolute Percentage Error (MAPE)

As a quantitative measure, this paper uses the mean absolute percentage error to compare 
the theoretical value of R(t) against its estimated value produced by each of the models. 
This metric is chosen due to its intuitive interpretability and its robustness with respect to 
changes in the magnitude of R(t) during the observation period.

3.3 � Results

Figure 1 summarizes the adjustment quality of each model for each of the different 
scenarios. The graphs omit the cases in which MAPE of R(t) is larger than 200%, as 
this allows for an optimal visualization of the cases with reasonably small errors. The 
following section analyses each of the scenarios; still Table 1 in Appendix summarizes 

MAPE
(
R, R̂

)
=

1

n

n∑

t=1

|
||||

R(t)−�R(t)

R(t)

|
||||

Fig. 1   MAPE between the ground truth and every model basic reproduction number obtained from each 
simulation (Color figure online)
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the main conclusions that practitioners and researchers need to be aware of in case 
they want to use these models for their analyses.

We now present the detailed results for each simulation. For the following figures, 
the new case series for each simulation and the corresponding expected incidences are 
shown in the figures on the left. In contrast, the right side figures consist of the R(t) 
series estimated by the three models in each of the scenarios.

Scenario 1. R(t) remains constant (Figs. 2, 3). 
In this first scenario, one can observe that the exponential Poisson model is the only one 

that captures the nature of the series from the start. The other models take longer to adjust 
to the theoretical series. In the long run, all three models underestimate the real R(t) , with 
the exponential Poisson model presenting the largest deviation from the real value.

Scenario 2. R(t) increases linearly (Figs. 4, 5).
In the second scenario, one can notice the sensitivity of the state-space model, 

which reacts quickly and strongly to changes in the number of cases presented. The 
Bayesian model displays certain “resistance to change,” which leads to its systematic 
underestimation of the real value. In this case, the best estimation of the real R(t) value 
is attained by the exponential Poisson model, although it underestimates the real value 
for most of the time interval considered.

Scenario 3. R(t) linearly decreases (Fig. 6, 7).
Scenario 3 begins with a large infection potential that produces a large number 

of cases from the start. All three models adjust rapidly to this setting. The best esti-
mation is achieved by the exponential Poisson model, which does not underestimate 
R(t) except at the beginning of the interval. The state-space had a similar perfor-
mance to the Bayesian, yet at the end it captured the value better.

Fig. 2   Simulated new incidences and expected new incidences for scenario 1 (authors’ simulations) 
(Color figure online)
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Scenario 4. R(t) increases by steps (Fig. 8, 9).
Scenario 4 can be associated with the end of a social distancing and quarantine 

period since at the beginning, there is a low contagion rate that suddenly increases 
due to the change in social behavior. In this case, the state-space model is the first 

Fig. 3   R(t) computed by each model on scenario 1 versus ground truth (authors’ simulation) (Color fig-
ure online)

Fig. 4   Simulated new incidences and expected new incidences for scenario 2 (authors’ simulations) 
(Color figure online)
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Fig. 5   R(t) computed by each model on scenario 2 versus ground truth (authors’ simulation) (Color fig-
ure online)

Fig. 6   Simulated new incidences and expected new incidences for scenario 3 (authors’ simulations) 
(Color figure online)
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to adjust to the change. The exponential Poisson model also adjusts rapidly, but 
the amount of adjustment is insufficient, probably due to the regularization that 
this model requires. The Bayesian model adjusts well to the new level of R(t) but 
requires a relatively long time to reach the correct level. After the structural change, 

Fig. 7    R(t) computed by each model on scenario 3 versus ground truth (authors’ simulation) (Color fig-
ure online)

Fig. 8   Simulated new incidences and expected new incidences for scenario 4 (authors’ simulations) 
(Color figure online)
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Fig. 9   R(t) computed by each model on scenario 4 versus ground truth (authors’ simulation) (Color fig-
ure online)

Fig. 10   Simulated new incidences and expected new incidences for scenario 5 (authors’ simulations) 
(Color figure online)
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both the Bayesian and the state-space models are closer to the theoretical value than 
the exponential Poisson model.

Scenario 5. R(t) decreases by steps (Figs. 10, 11).
In contrast to what happened in the previous case, in scenario 5, the exponential 

Poisson model adjusts rapidly and precisely to the level change in R(t) , followed (in 
terms of their response times) by the state-space model and the Bayesian model (in 
that order). After the structural change, during period 25, the exponential Poisson 
model is closest to the new level of the reproduction number. In the scenarios where 
the R(t) values are initially high, the adjustments of the models are systematically 
better than the adjustments for low initial values, especially that of the exponen-
tial Poisson model. This could be attributed to the fact that as the number of cases 
reported increases, the exponential Poisson distribution moves away from near-zero 
values, thereby producing difficulties in the iteration of the simulation procedure.

Scenario 6. R(t) remains constant except for two large infectious peaks (Figs. 12, 
13).

Scenario 6 is included to represent the situations where due to an unexpected 
event, the R(t) value increases significantly, returning later to its base state. In this 
case, the Bayesian model performs an oversmoothing of the data and fails to detect 
the infectious peaks. The state-space model presents a large initial overestimation 
and displays other estimated peaks in the wrong places. In turn, the exponential 
Poisson model adjusts best to the observed levels and does the best job of identify-
ing the locations of the peaks.

Fig. 11   R(t) computed by each model on scenario 5 versus ground truth (authors’ simulation) (Color fig-
ure online)
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Scenario 7. R(t) suddenly vanishes (Figs. 14, 15).
In scenario 7, we observe the same behaviors exhibited by the three methods as 

those seen in scenario 5. The drop in R(t) is detected fastest and most precisely by the 
exponential Poisson model.

Fig. 12   Simulated new incidences and expected new incidences for scenario 6 (authors’ simulations) 
(Color figure online)

Fig. 13   R(t) computed by each model on scenario 6 versus ground truth (authors’ simulation) (Color fig-
ure online)
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Scenario 8 (Figs. 16, 17).
Scenario 8 shows that for realizations with case numbers that are markedly below 

the expected value, both the Bayesian model and the exponential Poisson model 

Fig. 14   Simulated new incidences and expected new incidences for scenario 7 (authors’ simulations) 
(Color figure online)

Fig. 15   R(t) computed by each model on scenario 7 versus ground truth (authors’ simulation) (Color fig-
ure online)
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Fig. 16   Simulated new incidences and expected new incidences for scenario 8 (authors’ simulations) 
(Color figure online)

Fig. 17   R(t) computed by each model on scenario 8 versus ground truth (authors’ simulation) (Color fig-
ure online)
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underestimate R(t); however, their estimations improve toward the end of the interval, 
while the state-space model displays oscillations above and below the theoretical level 
with some largely overestimated peaks. This behavior of the state-space model can be 
attributed to the low counts of disease cases.

3.4 � Discussion

The Bayesian model is highly stable. For this reason, it adjusts well under scenario 
1, in which R(t) is constant. However, this quality is also the reason why it achieves 
poor performances under scenarios 2 and 3, where the infection rate increases and 
decreases, respectively. Moreover, this model requires the calculation of a constant 
serial interval with a fixed time window, which requires regularization hyperparam-
eters. However, these values also make the model react slowly to fast changes in the 
infection patterns, as can be visualized for scenarios 4 and 5.

The state-space model reacts quickly to changes in the behavior of the infection. 
However, it also exhibits a small delay in noticing these changes, as can be observed 
for scenarios 5 to 7. This is because the dependent variable requires the estimation of 
future incubation times, and this creates this delay in the reaction of the model to the 
trend. In a similar way, this method reports high instability at the beginning of every 
simulation. We thus recommend starting analyses based on this method only after 
using some periods for the initial calibration of the model. Moreover, it is important to 
highlight that due to the lack of a regularization parameter, this method is more sensi-
tive to changes in the data than the other models.

Finally, from the results obtained from the exponential Poisson model, it can be 
inferred that its main advantages are the following:

1.	 The visual adjustment of the visualization parameter allows the researchers to tune 
the smoothness of the estimator according to their expert knowledge of epidemiol-
ogy and historical performance.

2.	 The model has a strong capacity to identify fast changes in data trends but is also 
capable of identifying smooth areas and reducing noise generated by the data col-
lection process (scenarios 2 and 3).

3.	 Although it has a reaction lag, its lag is significantly lower than those of the other 
models. Moreover, it also presents highly accurate results under low incidence 
scenarios (scenario 8).

Finally, given that the optimization of the model includes a heuristic process, its 
computational complexity is greater than that of the other two. This issue becomes 
relevant due to the need to produce models for different regularization standards to 
evaluate their fitness.

3.5 � Comments Regarding the Regularization Parameter

This section expands upon the previous discussion about the regularization parameter 
of the exponential Poisson model � that controls the smoothness of the estimation of 
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R(t). To motivate this point, several regularization parameters are used to estimate 
scenarios 1 and 4. Figures 18 and 19 present the results for three values, where the 
first option (“Poisson”) has an expert adjust the criterion, the second option has low 

Fig. 18   Lambda regularization for constant R(t) (Color figure online)

Fig. 19   Lambda regularization for changing R(t) (Color figure online)
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regularization, i.e., � = 0 (“Poisson 1”), and finally, the last option has a computation-
ally high value � = 1032 (“Poisson 2”).

Scenarios 1 and 4 (Figs. 18, 19)
These figures highlight two important elements of this method to consider. On 

the one hand, the calibration parameter can change the tendency of the series. As 
seen in scenario 1, if the optimizers start in an inappropriate local optimum, the 
high regularization makes the model retain this mistake and produce trends that are 
not realistic. On the other hand, it is important that � is high enough as it protects 
the series from data noise, as clearly demonstrated by Poisson 1. For this regulari-
zation parameter, the method tends to be highly sensitive to changes in the values 
of the data and transfers the noise to the prediction. However, the parameter can 
induce under- or overestimation of the series, as is visually clear from Fig. 19.

For these reasons, it is important to use this third method with a high level of cau-
tion. If the researcher has robust knowledge of the disease patterns and is capable of 
finding a reasonably good � , then the method is promising. However, if the researcher 
is merely exploring the data, this method can induce significant errors.

4 � Case Study: COVID‑19 Epidemic in Colombia

To provide an illustration of the application of the previous models to a case study, we 
employed the three described models (Bayesian, state-space, and exponential Poisson) 
to describe the evolution of the COVID-19 epidemic in Colombia. The models were 
fit to the epidemiological surveillance data published by Colombia’s National Health-
care Institute (Instituto Nacional de Salud) starting with the country’s first reported 
case on March 6, 2020, through August 15, 2020. The meta-parameters used in this 
application were as follows:

1.	 The constant R(t) window w in the Bayesian model was set to w = 5.
2.	 For ease of implementation, the supports of the distributions in the different models 

were limited to

a.	 supp(�) = [0, 7]

b.	 supp
(
finc

)
= [0, 5]

c.	 supp
(
finf

)
= [0, 15]

3.	 Finc ∼ Gamma(3.16, 5.16) (Gao et al. 2020) Finf ∼ Weibull(24.20, 2.98) (Ling 
et al. 2020), and the serial interval � ∼ Weibull(2.23, 5.42)(Nishiura et al. 2020).

4.	 In the exponential Poisson model, Finc and Finf were taken to be exponential distri-
butions with the same means as those of the above distributions.

5.	 The regularization parameter � in the exponential Poisson model was selected using 
the procedure described in Sect. 2.3.3 with a p value of 0.001.

6.	 95% confidence intervals were obtained for all cases.
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These parameters were agreed by the expert committee of the Institute based on the 
literature review and their context-specific knowledge on the reproduction of the virus.

Fig. 20   R(t) estimations for the COVID-19 epidemic in Colombia from March to April 2020 (Color fig-
ure online)

Fig. 21   R(t) estimations for the COVID-19 epidemic in Colombia from April to June 2020 (Color figure 
online)
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4.1 � Results

Figure 20 zooms into the rate R(t) around the onset of the epidemic. All three models 
agree on a declining rate during the second half of March. This phenomenon can be 
explained by the first wave of quarantines in the country, including a nation-wide quar-
antine that started on March 24. By mid-April, the Bayesian and state-space models 
converged to a rate of approximately 1. Unfortunately, at the earliest stages the models 
have some differences while they finish the warmup period. Still all align as the sam-
ple increases.

Figure 21 highlights a period of transition from total quarantines to spatially and 
occupationally split quarantines around the country. This period saw oscillatory pat-
terns in R(t) as well as a sharply increased rate at the beginning of May. This may 
be associated with changes to the restrictions for citizens under quarantine (República 
2020a; b,c).

Last, Fig. 22 shows a relatively stable period. The peaks around June 19 and July 
3 are likely associated with nation-wide tax exemptions on several products on those 
two days, which set off a shopping spree in several large cities around the country. 
The third peak around July 20 might be related to the independence of the country 
and related events around this date. The state-space model detected these phenomena 
the best, while the Bayesian model resulted in soft estimations that hid them away. 
Moreover, the state-space model identified other peaks in R(t) as well; they might be 
associated with other singular events or simply numerical noise. This calls for a deeper 
investigation of the political, economic, and social events on those dates. Finally, 
the exponential Poisson does a good job identifying the peaks, but depending on the 

Fig. 22   R(t) estimations for the COVID-19 epidemic in Colombia from June to August 2020 (Color fig-
ure online)
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period there is a lag with the state-space model. Thus, among these two models, it is 
possible to identify the range of dates where the events took place.

Overall, it is noteworthy that the models were aligned on the main trends of the pan-
demic in Colombia. However, in their differences, significant elements appear that describe 
the effects of public policy. First, at the beginning, due to the small number of cases, the 
state-space model was very noisy. In that moment, the Bayesian and the exponential 
Poisson model provide a more stable description of the way in which the first round of 
lockdowns reduced the transmission of the disease. However, the Bayesian had a higher 
smoothing which does not allow the visualization of the changes in the lockdown schedule. 
Consistently with the simulation results, these issues suggest that the other two models will 
provide more useful information regarding the impact of policies. In that topic, the Pois-
son model begins with a lag, probably due to the low number of initial cases that affect the 
initial performance of the model. Yet, once the cases increase, the Poisson tends to agree 
with the state-space model fairly well. Therefore, the Poisson model is providing a good 
combination of smoothness and identification of policy changes. However, it is important 
to realize that the exponential Poisson relies in strong assumptions about the distribution of 
the infection and incubation rates.

For the case of COVID-19, the literature presented at the beginning of the section, 
suggested that these distributions are indeed from gamma and Weibull families. In that 
sense, the shape of the distribution is not that different to an exponential, yet it is not 
the same. In this case, having the state-space model as a back-up suggests that the dis-
tribution simplification is not that bad for some policy decisions. The other important 
element to recall is the importance of the smoothing parameter in the Poisson model. 
In this case, to choose the smoothing parameter different options were considered and 
the selection was chosen on the capacity of the model to match the initial data (after 
a warming period). Still, other researchers might have chosen other parameters based 
on different criteria (such as the one presented in the previous sections). This adds a 
level of subjectivity to the model that is undesirable. Hence, the recommended way to 
use these models is to evaluate all of them. The Bayesian will match data at the start 
as policies are not yet implemented, so the social component of the transmission rate 
is constant. Then, once public policies start to take place, the combination of the state 
space model and the Poisson model (either exponential or general) can help with the 
analysis of policies. In that moment, the recommendation will be to evaluate reason-
able smoothing parameters and check if both models are consistent, which becomes a 
robustness test in itself. In that last element, it would be ideal to use the Generalized 
Poisson as it can be a better fit for the dynamics of the disease. Yet, as it comes with a 
significant computation burden, the previous results show that the exponential version 
can provide a suitable simplification.

5 � Conclusions

The effective reproduction number is a key instrument for the development of poli-
cies associated with the prevention and mitigation of an epidemic. However, its esti-
mation requires the consideration of different sets of assumptions, which may vary 
widely across diseases and social contexts. For this reason, this study focused on 
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understanding the implications, reaches, and limitations of those assumptions and 
thereafter proposed three novel models that improve the estimation of R(t) . Our simu-
lation studies showed none of them to be a priori preferable to the others. We thus rec-
ommend the simultaneous use of several of them (making their assumptions explicit) 
to provide policy-makers with complete information. This information should then be 
interpreted by experts, so they can make appropriate decisions. Finally, even though 
the results from our case study allowed for reasonable analysis of the COVID-19 epi-
demic in Colombia, it is important to note that there were several meta-parameters 
involved in the different models, such as the distributions for the infectious and incu-
bation periods. It is thus paramount to advance studies on the biology of diseases that 
will enable statistical analyses such as the ones shown here by providing accurate esti-
mations of said meta-parameters.

Appendix

Table  1 summarizes features, limitations, and elements to consider when adjusting 
each one of the models presented in this work to a real dataset.
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